19 19 Vol. 19 No. 19 2009 10 China Journal of Modern Medicine Oct. 2009 1005-89822009 19-2946- 05 PLGA/nHA * 1 1 2 2 1 1 1. 51 0641 2.51 0630 DTX PLGA / nha S/ O/ W PLGA/ nha- DTX FTIR FTIR PLGA/ nha- DTX 3.92%88.7% PLGA- DTX PLGA 30 d PLGA 62.40%72.70% MTT PLGA/ nha PLGA PLGA- DTX PLGA/ nha- DTX ; - ; ; R 943 A Preparation and in vitro release of Docetaxel loaded PLGA/ nha microspheres * LI Xiang 1, WEI Kun 1, LUO Yun 2, GAO Xin 2, ZHAO Na 1, GUO Wusheng 1 (1.College of Materials Science and Engineering, Materials, Ministry of Education, South China University of Technology, Guangzhou 510640; 2. Department of Urology of Third Affiliated Hospital of Sun Yat-sen University, Guangzhou Guangdong, 510630 P.R.China) Abstract: Objectives To prepare docetaxel (DTX) loaded PLGA/nHA microspheres, research the effect of nha on drug loading, encapsulation efficiency, in vitro of composite microspheres and inhibiting the growth of prostate cancers. Method PLGA/nHA-DTX composite microspheres were prepared by a single-emulsion solvent evaporation method (S/O/W), with hydrophobic anticancer docetaxel as model drug. nha and drug-loaded nha were analyzed by TEM and FTIR, and drug loading, encapsulation efficiency, size and in vitro release of microspheres were studied with SEM, laser particle size analyzer and HPLC, etc. Results The results show that nha have a strong adsorption with DTX. Drug loading and encapsulation efficiency of PLGA/nHA-DTX composite microspheres were 3.92% and 88.7%, and have greatly improved compared to neat PLGA-DTX microspheres. After initial burst, composite microspheres released more slowly than neat PLGA microspheres. At the 30d after in vitro release, the cumulative release rate of composite microspheres and neat PLGA microspheres were respectively 62.40% and 72.70%. Cytotoxicity test results showed that PLGA/nHA composite microspheres had better effect than PLGA microspheres and 2009-08- 03 * No 2007AA021807 No 2007AA021908 No 50732003 [ ] E- mail weikun@scut.edu.cn 2946
19 PLGA/nHA DTX to inhibit cancer cell growth. Conclusion Because nha has a strong adsorption with DTX, PLGA/nHA- DTX composite microspheres compared to neat PLGA-DTX microspheres enhance drug loading and encapsulation efficiency, and have better drug delivery effect. The effect of inhibiting the growth of cancers of the composite microspheres is also better. Key words: Docetaxel; PLGA; hydroxyapatite; composite microsphere; drug delivery Taxotere 1 1.1 1.1.1 PLGA O/ W 0.9 g PLGA 50 50 Mw 3 6 [1 2] ml 50 mg Docetaxel 80 0.4%W/V M450 W/O PLA PLGA glycol chitosan 4 h 10 000 r/min 3 36 h 1 2 d 15 d [3 4] 1.1.2 PLGA/ nha S/ O/ W 50 mg Docetaxel 30 ml 0.25 g HA nha 10 min, 24 h 40 DCM [5~8] Docetaxel nha 0.9 g PL- GA 6 ml 10 000 r/min 1 min S/O 0.4% W/V [9~11] / S/O/W 1.1.1 [21] 1.2 PLGA TEM H- 7650 nha ph FTIR Nexus Nicolet HA PLGA 1.3 PLGA SEM Nova NanoSEM 430 [12] HA PLGA HA FEI [12~20] LA- 950 Hortiba PLGA PLGA/nHA 1.4 1 ml 5 ml 2 mmol/l 2947
19 50 50 V/V 5min HPLC HPLC LC- 10A Diamonsil C18 200 nm 4.6 mm 5μm / =65/35 1.0 ml/min 30 230 nm Y X mg/l Y=16.531X- 6.3176 r 2 =0.9999 1 1.5 15 mg 5 ml ph 7.4 [22] PBS 0.1%W/V 80 630/cm O- H 2c 15 ml 37 709/cm DTX 80 r/min 10 ml 2c Docetaxel HA 10 ml 709/cm HA DTX HA 1.6 MTT 3 570/cm 630/cm PC- 3 american type culture HA DTX HA [21] collection 37 5% 95% OH- DTX O- H N- H 90% HA DTX EDTA 0.25% cck8 PC- 3 96 5 10 3 cells/ 24 h 200 μl PL- GA/nHA- DTX PLGA- DTX DTX PLGA/nHA 0.4 ng/ml 32.0 ng/ml 96 h PBS 2 100μL 10μLcck8 2 h 450 nm 2 a b c nha nha DTX DTX FTIR OD 3 3 2.3 % =Ac- As /Ac- Ab 3 PLGA 100% As + +cck8+ PLGA 3c d Ac + +cck8 Ab PLGA/nHA +cck8 GraphPad Prism 5.01 IC 50 2 a b nha nha TEM 2a HA 472 565 602 962 3-1 035/cm PO 4 3 570/cm /cm SEM 2.1 nha nha nha 1 HA 20~50 2.5 nm PEG 1 PLGA- DTX PLGA/nHA- DTX 37.40μm 53.88μm HA SEM PLGA- DTX PL- 2.2 2948
19 PLGA/nHA GA/nHA- DTX 83.50% 1.0 88.70% HA 0.8 0.6 1 μm % % PLGA- DTX 37.40 1.3485 4.68 83.50 PLGA/nHA- DTX 53.88 1.3728 3.92 88.70 5 PLGA/nHA- DTX PLGA- DTX 2.6 DTX PLGA/nHA PC- 3 4 1 5 Docetaxel PL- PLGA- DTX 11.13% GA/nHA- DTX PLGA- DTX DTX PLGA/nHA- DTX 19.67% PC- 3 PLGA- DTX DTX PLGA/HA PLGA/nHA- DTX PLGA/nHA nha 2 PC- 3 PLGA/nHA- DTX PLGA DTX 96 h PLGA- DTX DTX PLGA- DTX IC 50 5.459 HA DTX ng/ml 4.994 ng/ml P > 30 PLGA- DTX 0.05 PLGA/nHA- DTX IC 50 72.70% PLGA/nHA- DTX 62.40% 5.459 ng/ml 3.686 ng/ml P <0.05 PLGA- DOC PL- PLGA GA/HA- DOC IC 50 4.994 ng/ml a b 3.686 ng/ml P <0.05 nha PLGA- DTX 2 0.4 0.2 0.0-0.2 0.4 0.8 4 8 16 32 ng/ml DTX PLGA/nHA- DTX PLGA/nHA PLGA/- DTX DTX PLGA- DTX PLGA/nHA- DTX IC 50 x±s c d 1 DTX P <0.05 2 PLGA- DTX P <0.05 96 h IC 50ng/mL DTX 5.459±1.099 PLGA- DTX 4.994±1.109 PLGA/nHA- DTX 3.686±1.103 12 3 PLGA- DTX a b PLGA/nHA- DTXc d SEM 80 70 60 DTX % 50 40 30 20 10 4 2.7 MTT PLGA- DTX PLGA/HA- DTX 0 0 5 10 15 20 25 30 d 3 Docetaxel O/W S/O/W PLGA- DTX PLGA/nHA- DTX PLGA nha PLGA HA DTX H PLGA/nHA- DTX 1 2949
19 62.40% MTT PLGA/nHA- DTX PLGA- DTX DTX PLGA/nHA Docetaxel Biomaterials, 2003, 24: 3277-3284. [11] KIM HW, KIM HE, KNOWLES JC. Bioactive porous bone scaffold coated with biphasic calcium phosphates [J]. Key Eng Mater, 2004, 254/256: 1103-1106. [12] HO ML, FU YC, WANG G J, et al. Controlled release carrier of BSA made by W/O/W emulsion method containing PLGA and hydroxyapatite[j]. Journal of Controlled Release, 2008, 128: 142-148. [13] XU QG, YASUHIRO T, JAN T, et al. Encapsulation and release of a hydrophobic drug from hydroxyapatite coated lipo- [1],,. somes[j]. Biomaterials, 2007, 28: 2687-2694. [J].,2005,13(6):622-625. [14] SHI XT, WANG YJ, ROHAN R. et al. In- vitro osteogenesis of [1] LI GF, LI GS, NING SH. Clinical research of treatment of synovium stem cells induced by controlled release of bisphosphate non- small- cell lung cancer (NSCLC) results from docetaxed- additives from microspherical mesoporous silica composite based chemotherapy [J]. China Medical of Engineering, [J]. Biomaterials, 2009, 30: 3996-4005. 2005, 13(6): 622-625. Chinese [15] NIU XF, FENG QL, WANG MB, et al. Porous nano- HA/collagen/PLLA scaffold [2],,. Hela containing chitosan microspheres for con- [J].,2006,16(16): trolled delivery of synthetic peptide derived from BMP- 2 [J]. 2419-2422. [2] TANG LP, XU XY, MA R, et al. Cytotoxic effects and radiation enhancement of docetaxed in uterine cervical carinaoma cell line Journal of Controlled Release, 2009, 134: 111-117. [16] SHI XT, WANG YJ, REN L, et al. Enhancing Alendronate release from a novel PLGA/Hydroxyapatite microspheric system for Hela [J]. China Journal of Modern Medicine, 2006, 16 (16): bone repairing applications [J]. Pharmaceutical Research, 2009, 2419-2422. Chinese [3] HO- YOUNG HWANG, IN- SAN KIM, ICK CHAN KWON, et al. 26: 422-430. [17] XU QG, JAN T, CZERNUSZKA. Controlled release of amoxicillin Tumor targetability and antitumor effect of docetaxel- loaded hydrophobically from hydroxyapatite- coated poly (lactic- co- glycolic acid) modified glycol chitosan nanoparticles [J]. Journal of Controlled Release, 2008, 128: 23-31. microspheres 146-153. [J]. Journal of Controlled Release, 2008, 127: [4] MUSUMECIA T, VENTURA CA, GIANNONE I, et al. PLA/PL- GA nanoparticles for sustained release of docetaxel [J]. International Journal of Pharmaceutics, 2006, 325: 172-179. [5] SANTOS C, MARTINS MA, FRANKE RP, et al. Calcium phosphate granules for use as a 5- Fluorouracil delivery system [J]. Ceramics International, 2009, 35: 1587-1594. [6] COSIJNSA A, VERVAET C, LUYTEN J, et al. Porous hydroxyapatite [18] NIE HM, HO ML, WANG CK, et al. BMP- 2 plasmid loaded PLGA/HAp composite scaffolds for treatment of bone defects in nude mice[j]. Biomaterials, 2009, 30: 892-901. [19] WON- SHIK HA, SANG- CHUL CHI, SUNG- GEUN KIM. Fabrication of a biodegradable drug delivery system with controlled release made of PLGA/5- FU/hydroxyapatite[J]. Rapid Prototyping Journal, 2008, 14: 293-299. tablets as carriers for low- dosed drugs [J]. European [20] YAOWALAK B, HIROYA A, KAZUYOSHI ST, et al. Con- Journal of Pharmaceutics and Biopharmaceutics, 2007, 67: trolled release of bovine serum albumin from hydroxyapatite microspheres 498-506. for protein delivery system [J]. Materials Science and [7] FAN J, LEI J, YU CZ, et al. Hard- templating synthesis of a Engineering B, 2008, 148: 162-165. novel rod- like nanoporous calcium phosphate bioceramics and [21] WANG YJ, WANG XD, WEI K, et al. Fabrication characterization their capacity as antibiotic carriers [J]. Materials Chemistry and Physics, 2007, 103: 489-493. [8] TSE- YING LIU A, SAN- YUAN CHEN, DEAN- MO LIU, et al. and long- term in vitro release of hydrophilic drug using PHBV/HA composite microspheres [J]. Materials Letters, 2007, 61: 1071-1076. On the study of BSA- loaded calcium- deficient hydroxyapatite [22] PANDA RN, HSIEH M, CHUNG RJ, et al. FTIR, XRD, SEM nano- carriers for controlled drug delivery[j]. Journal of Controlled Release, 2005, 107: 112-121. [9] KIM HW, KNOWLES JC, KIM HE. Hydroxyapatite/poly(- caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery[j]. Biomaterials, 2004, 25: 1279-1287. and solid state nmr investigation of carbonate- containing hydroxyapatite nano- particles synthesized by hydroxide- gel technique [J]. Journal of Physics and Chemistry of Solids, 2003, 64 (2): 193-199. [10] KIM HW, LEE SY, BAE CJ, et al. Porous ZrO 2 bone scaffold coated with hydroxyapatite with fluorapatite intermediate layer[j]. 2950