Risk Analysis of Portfolio by Copula2GARCH

Σχετικά έγγραφα
46 2. Coula Coula Coula [7], Coula. Coula C(u, v) = φ [ ] {φ(u) + φ(v)}, u, v [, ]. (2.) φ( ) (generator), : [, ], ; φ() = ;, φ ( ). φ [ ] ( ) φ( ) []

Research on the Correlation of Portfolio Value at Risk in Financial Markets

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

copula, 5 3 Copula Κ L = lim System s Engineering M ay., 2006 : (2006) ,,, copula Ξ A rch im edean copula (Joe,

Supplementary Appendix

ΤΟ ΜΟΝΤΕΛΟ Οι Υποθέσεις Η Απλή Περίπτωση για λi = μi 25 = Η Γενική Περίπτωση για λi μi..35

Arbitrage Analysis of Futures Market with Frictions

, Ilmanen 2003 ADCC VAR. NO.2, 2011 Serial NO.315 CONTEMPORARY FINANCE & ECONOMICS JA [1] Cappiello et al.

Δθαξκνζκέλα καζεκαηηθά δίθηπα: ε πεξίπησζε ηνπ ζπζηεκηθνύ θηλδύλνπ ζε κηθξνεπίπεδν.

Vol. 31,No JOURNAL OF CHINA UNIVERSITY OF SCIENCE AND TECHNOLOGY Feb

DOI /J. 1SSN

ΠΩΣ ΕΠΗΡΕΑΖΕΙ Η ΜΕΡΑ ΤΗΣ ΕΒΔΟΜΑΔΑΣ ΤΙΣ ΑΠΟΔΟΣΕΙΣ ΤΩΝ ΜΕΤΟΧΩΝ ΠΡΙΝ ΚΑΙ ΜΕΤΑ ΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΚΡΙΣΗ

: Ω F F 0 t T P F 0 t T F 0 P Q. Merton 1974 XT T X T XT. T t. V t t X d T = XT [V t/t ]. τ 0 < τ < X d T = XT I {V τ T } δt XT I {V τ<t } I A

1. ARCH Models for Financial Applications", John Wiley & Sons Ltd., New York, (2010), with Ε. Xekalaki.(ISBN ).

ΠΕΡΙΓΡΑΜΜΑ ΜΑΘΗΜΑΤΟΣ

90 [, ] p Panel nested error structure) : Lagrange-multiple LM) Honda [3] LM ; King Wu, Baltagi, Chang Li [4] Moulton Randolph ANOVA) F p Panel,, p Z

No General Serial No JOURNAL OF XIAMEN UNIVERSITY Arts & Social Sciences CTD F CTD

Research on Economics and Management

, ; 3.,,,. ; : A

ER-Tree (Extended R*-Tree)

Schedulability Analysis Algorithm for Timing Constraint Workflow Models

Optimization Investment of Football Lottery Game Online Combinatorial Optimization

ΧΩΡΙΚΑ ΟΙΚΟΝΟΜΕΤΡΙΚΑ ΥΠΟΔΕΙΓΜΑΤΑ ΣΤΗΝ ΕΚΤΙΜΗΣΗ ΤΩΝ ΤΙΜΩΝ ΤΩΝ ΑΚΙΝΗΤΩΝ SPATIAL ECONOMETRIC MODELS FOR VALUATION OF THE PROPERTY PRICES

Approximation Expressions for the Temperature Integral

The Research on Sampling Estimation of Seasonal Index Based on Stratified Random Sampling

Web-based supplementary materials for Bayesian Quantile Regression for Ordinal Longitudinal Data

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΠΡΟΣΩΠΙΚΑ ΣΤΟΙΧΕΙΑ ΣΠΟΥΔΕΣ

The Simulation Experiment on Verifying the Convergence of Combination Evaluation

Παρούσα Θέση Καθηγητής στη ιεθνή Χρηματοδοτική και Τραπεζική, Τμήμα ιεθνών και Ευρωπαϊκών Οικονομικών Σπουδών, Οικονομικό Πανεπιστήμιο Αθηνών.

«ΠΛΗΡΟΦΟΡΙΚΗ ΚΑΙ ΔΙΟΙΚΗΣΗ» ΠΡΟΣΔΙΟΡΙΣΤΙΚΟΙ ΠΑΡΑΓΟΝΤΕΣ ΤΗΣ ΧΡΗΜΑΤΟΠΙΣΤΩΤΙΚΗΣ ΣΤΑΘΕΡΟΤΗΤΑΣ

Πανεπιστήµιο Μακεδονίας Οικονοµικών και Κοινωνικών Επιστηµών Τµήµα Εφαρµοσµένης Πληροφορικής

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ 1. ΠΡΟΣΩΠΙΚΑ ΣΤΟΙΧΕΙΑ 2. ΣΠΟΥΔΕΣ

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

OLS. University of New South Wales, Australia

Σεμινάριο Κατάρτισης Financial Econometric Modelling with R Οικονομικό Πανεπιστήμιο Αθηνών, Μαΐου 2017

The Impact of Stopping IPO in Shenzhen A Stock Market on Guiding Pattern of Information in China s Stock Markets

ΓΗΑΣΜΖΜΑΣΗΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΗΑΚΩΝ ΠΟΤΓΩΝ ΣΖ ΓΗΟΗΚΖΖ ΔΠΗΥΔΗΡΖΔΩΝ. Γηπισκαηηθή Δξγαζία ΑΠΟΣΙΜΗΗ ΑΞΙΑ ΣΗ ΔΣΑΙΡΙΑ JUMBO ΒΑΔΙ ΣΑΜΔΙΑΚΧΝ ΡΟΧΝ.

A summation formula ramified with hypergeometric function and involving recurrence relation


Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) XJ130246).

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΕΠΑΝΑΣΧΕΔΙΑΣΜΟΣ ΓΡΑΜΜΗΣ ΣΥΝΑΡΜΟΛΟΓΗΣΗΣ ΜΕ ΧΡΗΣΗ ΕΡΓΑΛΕΙΩΝ ΛΙΤΗΣ ΠΑΡΑΓΩΓΗΣ REDESIGNING AN ASSEMBLY LINE WITH LEAN PRODUCTION TOOLS

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

Quick algorithm f or computing core attribute

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

IMES DISCUSSION PAPER SERIES

ΖΛΗΑ ΣΕΑΒΑΛΖ. Πηςσίο Οικονομικών Δπιζηημών, Οικονομικό Πανεπιζηήμιο Αθηνών,

AΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ

Contagion delayed effects of associated credit risk based on scale-free network

Η διεπιστημονική ορολογία του τομέα διαχείρισης φυσικών κινδύνων Το παράδειγμα του σεισμικού κινδύνου

Ulf Schepsmeier and. Jakob Stöber

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Mean-Variance Analysis

Congruence Classes of Invertible Matrices of Order 3 over F 2

The martingale pricing method for pricing fluctuation concerning stock models of callable bonds with random parameters

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

Conjoint. The Problems of Price Attribute by Conjoint Analysis. Akihiko SHIMAZAKI * Nobuyuki OTAKE

Test Data Management in Practice

Stress Relaxation Test and Constitutive Equation of Saturated Soft Soil

Optimization Investment of Football Lottery Game Online Combinatorial Optimization

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

High order interpolation function for surface contact problem

DNB W o r k i n g P a p e r. Forecasting Financial Stress. No. 292 / April Jan Willem Slingenberg and Jakob de Haan

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ: Mετακύλιση τιμών βασικών προϊόντων και τροφίμων στην περίπτωση του Νομού Αιτωλοακαρνανίας

A research on the influence of dummy activity on float in an AOA network and its amendments

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ ΠΡΟΣΩΠΙΚΑ ΣΤΟΙΧΕΙΑ ΣΠΟΥΔΕΣ

ΕΜΠΕΙΡΙΚΗ ΔΙΕΡΕΥΝΙΣΗ ΚΙΝΔΥΝΟΥ ΜΕ ΤΗ ΜΕΘΟΔΟ ΤΩΝ ΕΛΛΗΝΙΚΩΝ ΓΡΑΜΜΑΤΩΝ ΣΕ ΕΠΙΛΕΓΜΕΝΟΥΣ ΤΡΑΠΕΖΙΚΟΥΣ ΟΡΓΑΝΙΣΜΟΥΣ

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

Ελληνικό Στατιστικό Ινστιτούτο Πρακτικά 18 ου Πανελληνίου Συνεδρίου Στατιστικής (2005) σελ

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

The Construction of Investor Sentiment Index for China's Stock Market Based on the Panel Data of Shanghai A Share Companies

ΜΕΤΡΑ ΚΙΝΔΥΝΟΥ ΣΤΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ

Τo ελληνικό τραπεζικό σύστημα σε περιόδους οικονομικής κρίσης και τα προσφερόμενα προϊόντα του στην κοινωνία.

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. Λέκτορας στο Τμήμα Οργάνωσης και Διοίκησης Επιχειρήσεων, Πανεπιστήμιο Πειραιώς, Ιανουάριος 2012-Μάρτιος 2014.

Β Ι Ο Γ Ρ Α Φ Ι Κ Ο Σ Η Μ Ε Ι Ω Μ Α ΑΘΑΝΑΣΙΟΣ ΚΑΖΑΝΑΣ

Vol. 38 No Journal of Jiangxi Normal University Natural Science Nov. 2014

ΒΙΟΓΡΑΦΙΚΟ ΣΗΜΕΙΩΜΑ. Παναγιώτης Μερκούρης ΕΚΠΑΙΔΕΥΣΗ

Τ.Ε.Ι. ΗΠΕΙΡΟΥ ΣΧΟΛΗ: ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ: ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗΣ ΚΑΙ ΕΛΕΓΚΤΙΚΗΣ

Prey-Taxis Holling-Tanner

Nov Journal of Zhengzhou University Engineering Science Vol. 36 No FCM. A doi /j. issn

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

Biostatistics for Health Sciences Review Sheet

(Noise Trading Behavior in SET)

ΕΛΕΓΧΟΣ ΚΑΙ ΤΡΟΦΟΔΟΤΗΣΗ ΜΕΛΙΣΣΟΚΟΜΕΙΟΥ ΑΠΟ ΑΠΟΣΤΑΣΗ

MIA MONTE CARLO ΜΕΛΕΤΗ ΤΩΝ ΕΚΤΙΜΗΤΩΝ RIDGE ΚΑΙ ΕΛΑΧΙΣΤΩΝ ΤΕΤΡΑΓΩΝΩΝ

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Single-value extension property for anti-diagonal operator matrices and their square

ΔΘΝΙΚΗ ΥΟΛΗ ΓΗΜΟΙΑ ΓΙΟΙΚΗΗ ΚΑ ΔΚΠΑΙΓΔΤΣΙΚΗ ΔΙΡΑ ΣΔΛΙΚΗ ΔΡΓΑΙΑ

ΣΤΟΙΧΕΙΑ ΕΠΙΚΟΙΝΩΝΙΑΣ

Accumulation of Soil Arsenic by Panax notoginseng and Its Associated Health Risk

Αμυνταίου 3, Θεσσαλονίκη (Ελλάδα) Skype ioankroustalis. Ημερομηνία γέννησης 01/06/1984 Εθνικότητα Ελληνική

Gro wth Properties of Typical Water Bloom Algae in Reclaimed Water

Λήξη Εκπόνησης Διπλωματικών Εργασιών:

Working Paper Series 06/2007. Regulating financial conglomerates. Freixas, X., Loranth, G. and Morrison, A.D.

CorV CVAC. CorV TU317. 1

Ανδριανός Ε. Τσεκρέκος

Buried Markov Model Pairwise

Transcript:

2006 3 3 :100026788 (2006) 0320045208 Copula2GARCH 1, 1, 2, 2 (11, 100080 ;21, 230026) : Copula GARCH, Copula2GARCH.,,. : ; ;Copula ; GARCH : F830159 ;O21113 : A Risk Analysis of Portfolio by Copula2GARCH WU Zhen2xiang 1, CHEN Min 1, YE Wu2yi 2, MIAO Bai2qi 2 (11Academy of Mathematics and Systems Science,CAS, Beijing 100008,China ; 21University of Science and Technology of China, Hefei 230026,China) Abstract : Copula can describe the dependency structure of multi2dimension random variable. In this paper, Copula and the forecast function of GARCH model are well combined, and a Copula2Garch model is built for risk analysis of portfolio investment. By this model, empirical portfolio risk analysis is made in Chinese stock market. At last, the mini2risk portfolio is given. Key words : portfolio ; risk analysis ; Copula ; GARCH 1 Copula.,Copula. Copula Schweizer Sklar (1983), Genest MacKay (1986) Joe. H. (1993),Copula. Embrechts etc. (1999) Copula,., Claudio Romano (2002) Copula ; Embrechts etc. (2003) Durrleman etc (2001) Copula ;Roberto De Matteis (2001) Copula, Archimedean Copula ;Ling Hu (2002) Copula ; Gabriel. F. etc (2003) Copula ;Davide. M. etc (2004) Copula (CDO BDS), t2copula ; Jean2David. F. (2004) Copula ; Hull,White (2004) Copula.,Copula. CSFB (Credit Suisse First Boston) Creditrisk + J P Morgan Creditmetrics Copula. 2002 Copula. (2002a,2002b) Copula ;(2004) VaR Copula ; (2003) Copula. (2004) Copula. :2005203229 : (70221001 ;70331001) :(1977 - ),( ),,,;,,.

46 2006 3,., GARCH Copula,. Jondeau. E. etc (2002) Copula2GARCH,,Jondeau. E. Copula, t Copula. (2004a,2004b) Copula2GARCH. Archimedean Copula, Copula Copula,2 3.,.,Copula. Copula2GARCH,,,. : t2 GARCH ; Copula2GARCH ; Copula2GARCH,,,,.. 2 t2garch,. GARCH,, GARCH,,, t2garch. GARCH(1,1) : r t a t = t + a t = t e, t t v 2 t = 0 + 1 a 2 t - 1 + 2 t - 1. (1), r t, t r t,arma ARIMA t, a t ; a t r t,, (1) t GARCH ( ). t i. i. d. v t2, v 0 1., (ARCH ), t, : r t a t = + a t = t t, t t v 2 v = 0 + 1 a 2 t - 1 + 2 t - 1 { r 1, r 2,, r T },(2), a t a T }, v 0 1, R T + 1 :. (2) P( R T+1 r T ) = P( a T+1 ( r - ) T ) = P( T+1 T+1 ( r - ) T ) { a 1, a 2,, = P T+1 r - r - = 0 + 1 a 2 t + 2 t v. (3) t 0 + 1 a 2 t + 2 t, t v ( ) v t2, T T. (3) R T + 1. ITSM2000, GARCH,(3) T.

3 Copula2GARCH 47 3 Copula2GARCH m..,,,,,. Copula, GARCH,. m,i { r 1 i, r 2 i,, r Ti }, i = 1,, m. t2garch, R i = R T + 1, i F i ( )., Copula : Copula t2 Copula m R = { R T + 1,1, R T + 1,2,, R T + 1, m }. r t = { r t1, r t2,, r tm }, t = 1,, T, Copula (Joe. H. (1993) Roberto D. M. (2001) ),: m Copula : C Normal ( u 1,, u m ) = ( - 1 ( u 1 ),, - 1 ( u m ) ). (4), Copula. m, - 1. r i F i ( r), { r t1, r t2,, r tm }, t = 1,, T,: (5) u t (4), C Normal : m t2 Copula : u t = ( u 1, t, u 2, t,, u m, t ) = ( F 1 ( r t1 ), F 2 ( r t2 ),, F m ( r tm ) ), t = ( - 1 ( u t1 ), - 1 ( u t2 ),, - 1 ( u tm ) ), t = 1,2,, T. (5) ( u t ) = ( t ), t m, ^= 1 T T t = 1 t t. (6) C t,( u 1,, u m ) = t n,( t - 1 ( u 1 ),, t - 1 ( u m ) ), (7) t2,t2, t2 Copula. r i F i ( r), { r t1, r t2,, r tm }, t = 1,, T, t2 Copula,: u t = ( u 1, t, u 2, t,, u m, t ) = ( F 1 ( r t1 ), F 2 ( r t2 ),, F m ( r tm ) ), t = ( t( - 1 u 1 t ), t( - 1 u 2 t ),, t( - 1 u mt ) ), t = 1,2,, T. (8) Copula, : 1) ^ 1 (6) ; 2) ^ k+1 = 1 T + m T t = 1 t t 1 + 1, k = 1,2,. (9) t ^ k t 3) step2,,t2 Copula. Copula C( u 1, u 2,, u m ),r : F( R 1, R 2,, R m ) = C( F 1 ( R 1 ), F 2 ( R 2 ),, F m ( R m ) ) (10) 4 A :,. 200211213120041112,,.,,, Monte2Carlo.,..,2003..

48 2006 3 2003111220041112,. 1 1,., Hong Y. M(1999) Q Chen M(2002) Cn Kn,, Ljung2Box. :.. 1 Q Hong Q 6. 1406 8. 1972 10. 1024 16. 9923 Chen Kn 2. 3547 2. 9274 2. 3712 1. 5637 Chen Cn 1. 8927 3. 0333 2. 5047 1. 2367 :Hong Q,,, ;Chen Kn Cn,,Chen M(2002). Hong Y. M(1999) Chen M(2002) Q Kn Cn, 0. 99,,, (2).

3 Copula2GARCH 49 : GARCH (2) GARCH(1,1),ITSM2000 2 GARCH(1,1) 0. 0024 0. 0011-0. 0006 0. 0015 0 0. 0003 0. 0000 0. 0004 0. 0000 1 0. 1190 0. 0918 0. 0680 0. 1080 0. 2594 0. 8825 0. 0011 0. 7098 v 3. 5948 3. 5651 7. 5543 3. 4117, (3), : F 1, F 2, F 3 F 4. r 2, t, 4, r t = { r 1, t,, r 3, t, r 4, t },,,,,. Copula (6) (9),Copula,, 4,,,(6) (9) Copula,. (6) (9),, u t = ( u 1, t, u 2, t, u 3, t, u 4, t ) = ( F 1 ( r 1, t ), F 2 ( r 2, t ), F 3 ( r 3, t ), F 4 ( r 4, t ) ),, t,,,.,,copula.,233, y t = { y 1, t, y 2, t, y 3, t, y 4, t }, t = 1,,233. u 4 ) ; a) Copula Step1. y t (6) ^,(4) Copula C ( u 1, u 2, u 3, Step2. t2garch step2 (1), F( x 1, x 2, x 3, x 4 ) ; Step3. : ( b 1, b 2, b 3,1 - b 1 - b 2 - b 3 ), b 1, b 2, b 3 0 1 - b 1 - b 2 - b 3 0. (0105 VaR 0101 VaR ) ; Step4. ^ Cholesky, ^= A A ; Step5. x = ( x 1, x 2, x 3, x 4 ), x i N (0,1),y = A x, z = ( F - 1 1 (( y 1 ) ), F - 1 2 (( y 2 ) ), F - 1 3 (( y 3 ) ), F - 1 4 (( y 4 ) ) ),, F i i,( ) ( ) ; Step6. step5 10000, ( z h1, z h2, z h3, z h4 ), h = 1,,10000, F, h = ( b 1, b 2, b 3,1 - b 1 - b 2 - b 3 ) ( z h1, z h2, z h3, z h4 ). { h },10000 { h } 0105 0101 VaR,

50 2006 3. b) 3 t2 Copula Step1. y t (9) ^,(7) 3 t2copula C( u 1, u 2, u 3, u 4 ) ; Step2. t2garch step2 (1), F( x 1, x 2, x 3, x 4 ) ; Step3. : ( b 1, b 2, b 3,1 - b 1 - b 2 - b 3 ), b 1, b 2, b 3 0 1 - b 1 - b 2 - b 3 0. (0105 VaR 0101 VaR ) ; Step4. ^ Cholesky, ^= A A ; Step5. x = ( x 1, x 2, x 3, x 4 ), x i N (0,1),y = A x, x 3 S, z = F - 1 1 t y 1 SΠ3, F - 1 2 t y 2 SΠ3, F - 1 3 t y 3 SΠ3, F - 1 4 t, F i i, t ( ) 3 t2 ( ) ; Step6. step5 10000, z k y 4 SΠ3 = ( z h1, z h2, z h3, z h4 ), h = 1,,10000, F, h = ( b 1, b 2, b 3,1 - b 1 - b 2 - b 3 ) ( z h1, z h2, z h3, z h4 ). { h },10000 { h } 0105 0101 VaR,. ( b 1, b 2, b 3 ),, VaR 0105 = risk1 ( b 1, b 2, b 3 ), VaR 0101 = rik2 ( b 1, b 2, b 3 ), (11) = risk ( b 1, b 2, b 3 ).,Copula t2copula : 3 Copula. Copula b 1 ( ) b 2 () b 3 ( ) 1 - b 1 - b 2 - b 3 ( ) VaR 0. 05 0. 0146768 0 0. 83 0. 14 0. 03 VaR 0. 05 0. 0259594 0. 03 0. 76 0. 15 0. 06 0. 0098527 0 0. 8 0. 18 0. 02 VaR 0. 05 0. 0088456 0. 01 0. 79 0. 09 0. 11 t2copula VaR 0. 05 0. 016567 0. 08 0. 87 0. 03 0. 02 0. 0165669 0 0. 83 0. 15 0. 02 3, Copula,,,, VaR,. 3, t2copula Copula,Copula

3 Copula2GARCH 51, t2copula,,,var ;,,.,,, step6 h.,, h,.,,,,,. 5 t2garch,copula,,, VaR,,. Copula2GARCH, t2garch,copula,t2copula [Jondeau. E. etc (2002) ],,., : 1) t2copula,,,,; 2) t2garch, ; 3),EGARCH,,. 4) Archimedean Copula,,. : [ 1 ] Schweizer B,Sklar A. Probabilistic Metric Spaces[M]. North2HollandΠElsevier,1983,NewYork. [ 2 ] Genest C,Mackay J. The Joy of Copulas :Bivariate distributions with uniform marginals[j ]. American Statistician,1986,40,280-283. [ 3 ] Joe H. Parametric families of multivariate distributions with given marginals[j ]. Journal of Multivariate Analysis,1993,46,262-282. [ 4 ] Embrechts P,Mcneil A J,Straumann D. Correlation and dependence in risk management :Properties and pitfalls[a ]. Dempster M. Risk Management :Value at Risk and Beyond. Cambridge University Press,1999,176-223. [ 5 ] Claudio Romano. Calibrating and Simulating Copula Functions :an Application to the Italian Stock Market[ R]. 2002. [ 6 ] Embrechts P, Hoeing A,Juri A. Using copulae to bound the value2at2risk for functions of dependent risks [J ]. Finance and Stochastics,2003,7,145-167. [ 7 ] Durrleman V A,Nikeghbali G. Riboulet and T. Roncalli. Copulas :An open field for risk management[ R]. 2001. [ 8 ] Roberto De Matteis. Fitting Copulas to Data[D]. IMU,Zurich,2001. [ 9 ] Ling Hu. Essays in econometrics with applications in macroeconomic and financial modeling[d]. Yale University,2002. [10 ] Gabriel F,Markus J,Alexander S. Elliptical copulas :Applicability and limitations[j ]. Statistics and Probability Letters,2003,63 :275-286. t., 2.

52 2006 3 [11 ] Davide M,Walter V. Copula Sensitivity in Collateralized Debt Obligations and Basket Default Swaps Pricing and Risk Monitoring [ R]. 2004. [12 ] Jean2David F. Goodness2of2. t tests for Copulas[J ]. Journal of Multivariate Analysis. [13 ] Hull J,White A. Valuation of a CDO and an nth to Default CDS without Monte Carlo Simulation[ R]. 2004. [14 ] Credit Suisse of First Boston. Creditrisk + [ R]. Credit Risk Management,Framework,1997. [15 ] Morgan J P. Credit metrics[ R]. Credit Risk Management Framework,1997. [16 ]. (Copula) [J ].,2002,4 :48-51. Zhang Y T. Copula and financial risk analysis[j ]. Statistic Research,2002,4 :48-51. [17 ]. [J ].,2002,9 :41-44. Zhang Y T. Which correlated index should we choose[j ]. Statistic Research,2002,9 :41-44. [18 ]. Copula [J ].,2004,4 :67-70. Zhang M H. Quantitative research of multi2asset VaR by copula[j ]. Quantitative&Technical Economics,2004,4 :67-70. [19 ],,. Copula [J ]. 2003,3 (5) :97-101. Wei Y H,Zhang S Y,Meng L F. The application of Copula in finance[j ]. Journal of Northwest A&F University,2003,3 (5) :97-101. [20 ],,. [J ].,2004,12 (4) :1-5. Wu Z X,Ye W Y,Miao B Q. Risk analysis of foreign exchange markets by Copula[J ]. Management Science of China,2004,12 (4) : 1-5. [21 ] Jondeau Eric,Rockinger. Micheal,Conditional Dependency of Financial Series :The Copula2GARCH Model,working paper,2002. [22 ],. Copula2GARCH [J ].,2004,22 (4) :7-12. Wei Y H, Zhang S Y. The correlation analysis of financial market - the model and application of copula2garch [ J ]. System Engineer,2004,22 (4) :7-12. [23 ],,. [J ].,2004,19 (4) :355-362. Wei Y H,Zhang S Y,Guo Y. The study of correlation in financial market[j ].Journal of System Engineer,2004,19 (4) :355-362. [24 ] Hong Y M. A new test for ARCH effects and its finite2sample performance[j ].Journal of Business & Economic Statistics,1999,17 : 91-108. [25 ] Chen M,Chen G. A nonparametric test of conditional autoregressive heteroscedasticity for threshold autoregressive models[j ]. The Canadian Journal of Statistics,2002,30. [26 ],. [A].,2003. Zhang J, Yang Z H. Copula and Its Application in Calculating the VaR of Portfolio[A]. the No. 11 Annual Meeting of Field Statistics of China,2003.