17 5 2005 9 PROGRESS IN CHEMISTRY Vol. 17 No. 5 Sep., 2005 3 3 3 ( 510630), Langmuir ( ) : O782 + 19 : A : 10052281X(2005) 0520931207 Research Progress in Lattice Matching and Electrostatic Compatibility in Growth of Biominerals Induced by Monolayers Ouyang Jianming 3 3 ( Institute of Biomineralization and Lithiasis Research, Jinan University, Guangzhou 510632, China) Abstract Lattice geometrical matching and electrostatic compatibility are the most important factors to lead oriented nucleation and then to give special physical and chemical properties to biominerals in organisms. However, it is not fully understood how the organic matrices to control the nucleation and growth process of inorganic crystals. As an important template in mimicking biomineralization, Langmuir monolayer has special advantages. In this paper, the research progress in lattice geometrical matching and electrostatic interactions of biominerals such as calcium carbonate, calcium phosphates, barite and lepidocrocite, etc, are reviewed. The effects of hydrophilic headgroups, charges and the aggregated states of monolayers on lattice geometrical matching and electrostatic compatibility at the inorganicπorganic interfaces are discussed. The problems faced and the developing direction are also indicated. Key words monolayer ; lattice matching ; electrostatic interactions ; biomineralization ; crystal growth ( [1 3 ) ( ) ] Π [4 ],, : 2004 6, : 2004 11 3 (No. 20471024) (No. 20031010) (Q02060) 3 3 e2mail :toyjm @jnu. edu. cn
932 17 LB 01413 01496nm, CaCO 3 SA [5 ] [6,7 ] [8 ] [ 2FeO (OH) ] ( Fe 3 O 4 ) [9 ] [10 ], Π, [6 ] 1 (a) CaCO 3 SA 4 : (calcite) (aragonite) (vaterite) ( ) CaCO 3 potential lattice match between monolayer and (1 1 0) ( ) face of calcite [13 ] CaCO 3 ; (,SA), CaCO 3 ; ( ) 1b (1 10) Ca 2 + [13 ] : SA,, ( 1 1 0 ) Ca 2 + ;, (0186nm) SA (0187nm) SA CaCO 3, ( A 0 ) 0119 0121nm 2, CaCO 3 SA Heyword Mann [5 ] 3 [13 ], 0146 ( 0150nm CaCO 3 0150nm ( ) CaCO 3 1a), a = 015nm, b = 015nm, = 60, d 100 =, 0143nm ; (b) (1 10) Ca 2 + SA SA, (1 10) Ca, (1 1 [13 ] 0) (amorphous) Fig. 1 (a) Hexagonal net of stearate molecules with, interheadgroup spacing about 0150nm ; ( b ) diagram showing the superimposition of the coplanar the Ca atoms, of the ( 1 1 0) face of calcite on the hexagonal net of, ab (001) [11 Mann 13 ] stearate molecules. close packed stearate molecules, coplanar Ca atoms in the (1 10) face of calcite, COOH 0143nm Ca2Ca (1 10) ( OSO 3 H) 01413 01496nm SA ( PO 3 H 2 ) (001)
5 933 (CO 3 ) 2a, SA Π, (1 10), x y, SA, Π COO - CO 3 3 IMPA28 (a) Flotol28 (b) 2 CaCO 3 (1 10) Fig. 3 Chemical structures of diphosphonic acid reagents and the schematic representation of the mineral2reagent adsorption complex. (a) IMPA28 ; (b) Flotol28 (001) CO 3 [15 ] 3 C 3 ( 2b) - OPO 3 OSO 3, [5 (001) ], 2 HAp, NH + 3 : (a) COO - OH - Ca 2 + 3 - PO 4 (1 10) COO -, HAp (0001) CO 3 2 [8 ] ; OH ; (b), (001), (001) CO 3 4a HAp (0001) Ca 2 + 3 OSO - [5 ] 3 Fig. 2 Sterochemical complementarity between monolayers and [16 ], HAp (0001) Ca2Ca various crystal faces of calcite : (a) between (1 10) and stearic acid monolayer ; (b) between (001) face and n2 0154nm, SA ( eicosyl sulfate monolayer [5 ], a = 0149nm, b = 0174nm), Groves [14 ] ( )2 2 014 016 m 2 (0150nm) ( 001) Ca 2 + (01496nm) (001) (c) [15 ] [8,16 ] ( ) ( ) ( ) 3 3, (HAp) (0001) IMPA28 Flotol28 ( [15 ] 3) (110) 4 HAp (0001) (a) [8,16 ] 2 (1 1 (b) ) (110) Fig. 4 The lattice matching relationship between (0001) face of HAp and monolayers of stearic acid (a) and stearic ( 3c) [8,16 ] amide (b)
934 17 SA HAp, ( NH + 3 ) HAp (0001) 3 - PO 4 OH - ( 4b), a = 0149nm, b = 0172nm [8 ] Sato [17 ] (SBF) HAp HAp HAp (100), HAp,HAp c 2 HAp IMPA28 Flotol28 ( 3) [ Ca 10 (PO 4 ) 4 F 2 ] (100) 6 (a) KDP (100) ; (b) DPPC ( 5) [15 ] d (100) (01420nm) KDP(100), K2K (01416nm) ; (c) AA (100) [18,19 ] KDP (100) Fig. 6 (a) Two2dimensional representation of the (100) face in KDP crystals ; ( b ) schematic two2dimensional representation of the alignment of KDP and DPPC ; (c) schematic two2dimensional representation of KDP and AA ( = K, tetrahedron = PO 4, = DPPC or AA headgroup, = K and DPPC or AA headgroup) 5 IMPA28 (a) Flotol28 (b) {100} [15 ] Fig. 5 Optimized complexes of IMPA28 (a) and Flotol28 (b) on fluroapatite {100} surfaces [15 ] (BaSO 4 ), Heywood Mann [20 22 ] 3 : [ CH 3 (CH 2 ) 19 COOH] [ CH 3 (CH 2 ) 19 DPPC [18 ] OSO 3 Na ] [ CH 3 (CH 2 ) 19 PO (OH) 2 ] BaSO 4 [19 (AA) ] KH 2 PO 4 ( KDP) BaSO 4 7 [21 ] KDP I 42 d, a, (001) = 0174532!, c = 0169742!, KDP BaSO 4 ( 8a) (100) {011} ; (100) 6a, (100) K,BaSO 4 (100) d ( K2K) = 01416nm, DPPC, ( 7a ( 100) 01420nm,, KDP 8b) (100) K2K DPPC (0155nm) BaSO d (100) ( 6b) 4,DPPC Π KDP (100), (100 ) [ 010 ] Ba2Ba (01545nm) KDP (100) AA ( 9) [22 ] BaSO 4 2 d (100) 01420nm AA (100) SO - 4 KDP (100) K2K (01416nm) ( 9b) ( 6c) [19 ], BaSO 4 [001 ]
5 935 Fig. 8 Transmission electron micrograph of BaSO 4 crystals grown 7 BaSO 4 : (a) ; (b) [21 ] ; (c) Fig. 7 Schematic diagrams illustrating the orientation and morphology of BaSO 4 crystals nucleated under compressed anionic monolayers : (a) eicosyl sulfate, (b) eicosyl phosphate, (c) eicosanoci acid [21 ] at different monolayers and their single crystal electron diffraction patterns. ( a) and ( d) : collected from the bottom of the reaction vessel ; ( b) and ( e) : nucleated under an n2eicosyl sulfate monolayer ; ( c) and (f ) : grown under a compressed monolayer of eicosanoic acid ( 9a), [ 001 ] Ba2Ba 1100nm ( distortion), [010 ] [0 11 ] 128 BaSO 4 ( 9a), (011) Ba2Ba (01899nm) 115 BaSO 4 BaSO 4 (100) 9 (a)baso 4 (001) Ba 2 + ( ) 0155nm BaSO 4 (100) [010 ] Ba2Ba (01545nm) [001 ] BaSO 4 ; (b) BaSO 4 2 (100) SO - 4 [22] Fig. 9 (a) Scheme of the [ 100 ] zone of nucleation showing 8 BaSO 4 TEM (a) (d) : (001) BaSO 4 ; (b) (e) : (100) ; (c) (f) : [20,22 (010) ] the potential cation binding motif developed by the interaction of Ba 2 + ( large circle ) with the sulfate2 monolayer ; ( b ) stereochemical complementarity between n2eicosyl sulfate monolayer and SO 4 ions in (100) face of BaSO 4 crystal [22 ]
936 17, ) (100) BaSO 4, BaSO 4 (, 7a), ( 7b) [20 ] ph = 7 3 LB, ( 2a) ( 9b),,BaSO 4 [ 010 ] ( 7c), BaSO 4 (010) (010), [22 ] : (1), FeCl 2 (2) NH 3 (010) 2FeO (OH) [9 ], Π : FeCl 2, 0123nm 2 OH (3) 0148nm ( 10a ) JCPDS (No1080098), 2FeO (OH), a = 01388nm, b = 11254nm, c = 01307nm (010) OH 01495nm ( 10b), 2FeO, (OH) (010), 3 % 10 (a) 2FeO (OH) (010) [9 ] (b) Fig. 10 The two2dimensional structures of a stearyl alcohol monolayer ( a) and the ( 010) plane of 2FeO (OH) (b) [9 ], (4),,, (5), ( ) ( 2003, 125 (10) : 2854 2855 [ 1 ] Sheng X X, Ward M D, Wesson J A. J. Am. Chem. Soc.,
5 937 [ 2 ] Calvert P, Mann S. Nature, 1997, 386 : 127 130 [ 3 ] Shu S, Takahiko F, Takeshi N, et al. Science, 1997, 387 : 563 564 [ 4 ] Letellier S R, Lochhead M, Vogel V. Biochim. Biophy. Acta : Gen. Subject, 1998, 1380 : 31 45 [ 5 ] Heywood B R, Mann S. Chem. Mater., 1994, 6 : 311 318 [ 6 ] (Ouyang J M). (Chin. Sci. Bull. ), 2004, 49(2) : 107 114 [ 7 ] Backov R, Lee C M, Talham D R, et al. Langmuir, 2000, 16 : 6013 6019 [ 8 ] Ma C L, Lu H B, Cui F Z, et al. J. Cryst. Growth, 1997, 173 : 141 149 [ 9 ] Lin H, Sakamoto H, Seo W S, et al. J. Cryst. Growth, 1998, 192 : 250 256 [10] (Ouyang J M). LB ( Principle and Application of Langmuir2Blodgett Films). ( Guangzhou) : (Jinan University Press), 1999. Chapter 5 [11] Rajam S, Heywood B R, Walker J B A, Mann S. J. Chem. Soc., Faraday Trans., 1991, 87 : 727 734 [12] Mann S, Heywood B R, Rajam S. Nature, 1988, 334 : 692 695 [13] Heywood B R, Mann S. J. Chem. Soc., Faraday. Trans., 1991, 87 : 735 743 [14] Xu G, Yao N, Aksay I A, Groves J T. J. Am. Chem. Soc., 1998, 120 : 11977 11985 [15] Pradip, Rai B, Rao T K, et al. Langmuir, 2002, 18(3) : 932 940 [16] Lu H B, Ma C L, Cui F Z, et al. J. Cryst. Growth, 1995, 155 : 120 125 [17] Sato K, Kogure T, Kumagai Y, Tanaka J. J. Coll. Interf. Sci., 2001, 240 : 133 138 [18] Li B, Bai Y B, Xu R R, et al. Surf. Sci., 1999, 441 : 436 440 [19] Li B, Liu Y, Xu R R, et al. Langmuir, 1999, 15 : 4837 4841 [20] Heywood B R, Mann S. Langmuir, 1992, 8 : 1492 1498 [21] Heywood B R, Mann S. Adv. Mater., 1992, 4(4) : 278 282 [22] Heywood B R, Mann S. J. Am. Chem. Soc., 1992, 114 : 4681 4686