18 7 2008 7 Vol.18 No.7 The Chinese Journal of Nonferrous Metals Jul. 2008 1004-0609(2008)07-1299-06 1, 2 1, 2 2 3 (1. 411105 2. 411105 3. 430070) GeSbS Sb 2 S 3 GeSbS Sb 2 S 3 O 437 A Effects of chalcogenide glass microstructure defects on its second order nonlinearity GONG Yue-qiu 1, 2, LIU Si-wei 1, 2, LI Xu-jun 2, ZHAO Xiu-jian 3 (1. Faculty of Materials Optoelectronics and Physics, Xiangtan University, Xiangtan 411105, China; 2. Key Laboratory of Low Dimensional Materials and Application Technology, Ministry of Education, Xiangtan University, Xiangtan 411105, China; 3. Key Laboratory of Silicate Materials Science and Engineering, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China) Abstract: GeSbS chalcogenide glasses with various ratios of germanium and antimony were prepared by conventional melt-quenching method. The results of Raman, SEM and EPMA tests show that the microstructure defects of the chalcogenide glasses play an important part in their second-order nonlinear optical properties (SNOP). The glasses show large SNOP because of Sb 2 S 3 microcrystal or the mental antimony in the glasses even before they were polarized. After the electrical/thermal polarized, GeSbS glasses show larger SNOP with the increase and growth of the microcrystal. The glasses show larger SNOP because of the existence of Sb 2 S 3 microcrystal or the mental antimony in the glasses. Key words: chalcogenide glasses; second-order nonlinear optical property; electrical/thermal poling; microcrystal YVES [1] As 2 S 3 ( )2007 (SYSJJ2007-10) (10672139) 2008-02-20 2008-06-06 / 0732-8298119 E-mail: yqgong@xtu.edu.cn
1300 2008 7 DONG [2] GeS 2 -Ga 2 S 3 -AgCl PbO-Bi 2 O 3 -Ga 2 O 3 [3] [4] GeS 2 GeSbS He-Ne 632.8 nm 2.2 mw 30s 1 cm 1 2 2.1 Ge-Sb-S Vis-NIR ( 1) XRD Vis-NIR 1 1 (99.999 ) (Ge, Sb, S) GeS 2 Sb 2 S 3 ( 1) 0.1 Pa 1 mm [5] Maker (SHG) Nd YAG 1 064 nm 30 mj SEM ( (JSM 5610LV) X ( JCXA 733) ( Renishaw InVia ) 1 (1 x)ges 2 xsb 2 S 3 Vis-NIR Fig.1 Vis-NIR spectra of (1 x)ges 2 xsb 2 S 3 glasses 1 532 nm Sb 2 S 3 Maxwell [6] GeS 2 532 nm Sb 2 S 3 1 Ge-Sb-S Table 1 Sample No. Composition and absorbing coefficient of Ge-Sb-S glasses Composition n(ges 2 )/mol n(sb 2 S 3 )/mol Absorption coefficient at 1 064 nm /cm 1 Absorption coefficient at 532 nm/cm 1 1 Ge 9 Sb 2 S 21 0.9 0.1 2.05 3.48 2 Ge 8 Sb 4 S 22 0.8 0.2 2.35 9.76 3 Ge 7 Sb 6S 23 0.7 0.3 3.12 10.55 4 Ge 6 Sb 8 S 24 0.6 0.4 3.14 11.56
18 7 1301 Sb 2 S 3 2.2 Ge-Sb-S Raman 2 Ge-Sb-S Raman α-sb Sb 2 S 3 Raman 2 3 100~165 cm 1 165~275 cm 1 275~375 cm 1 2.2.1 (100~165 cm 1 ) 2(b) GeSbS Raman 150 cm 1 Raman Raman [7] Sb 2 S 3 2 (1 x)ges 2 xsb 2 S 3 Sb Sb 2 S 3 Raman Fig.2 Raman spectra of (1 x)ges 2 xsb 2 S 3 glasses(a) and metal Sb and Sb 2 S 3 (b) 2.2.2 (165~275 cm 1 ) Sb 2 S 3 Raman 200 cm 1 260 cm 1 Sb 2 S 3 Raman 150 cm 1 300 cm 1 Ge-Sb-S Sb 2 S 3 Sb 2 S 3 1 4 Raman SbS 3/2 Raman 302 cm 1 [8] Sb 2 S 3 2 255 cm 1 [9] 250 cm 1 S 3 Ge-GeS 3 Ge Ge (υ 3 ) Sb 2 S 3 Ge S Ge Ge 205 cm 1 Raman [9] Ge Sb Ga Sb 2.2.3 (275~375 cm 1 ) SbS 3/2 GeS 4 Raman Raman 302 cm 1 Raman 340 cm 1 Raman Sb 2 S 3 GeS 4 Raman 340 cm 1 Sb 2 S 3 SbS 3 GeS 4 Raman Sb 2 S 3 [9] υ = f / µ ( f µ ) Raman Sb S (378 kj/mol) Ge S (551 kj/mol) [10] 2 1 SbS 3 Sb 2 S 3 40% Raman (306 cm 1 ) SbS 3 GeS 4 226 cm 1 Raman
1302 2008 7 [11] Sb Sb S 3 Sb-SbS 3 SbS 3 2.3 Ge-Sb-S 3 Maker 3 Sb 2 S 3 Maker Sb 2 S 3 GeS 2 532 nm ( 90 ) [12] [13] 0.9GeS 2 0.1Sb 2 S 3 χ (2) 3.26 pm/v 0.6GeS 2 0.4Sb 2 S 3 532 nm χ (2) 14.36 pm/v 4 (1 x)ges 2 xsb 2 S 3 250 6 kv 120 min Maker [13] χ (2) 5.36 pm/v 16.58 pm/v 3 GeSbS Sb 2 S 3 4 (1 x)ges 2 xsb 2 S 3 Maker 3 (1 x)ges 2 xsb 2 S 3 Maker Fig.3 Maker fringes of as-prepared (1 x)ges 2 xsb 2 S 3 glasses: (a) Sample 1; (b) Sample 4 532 nm 1 Maker Fig.4 Maker fringes of (1 x)ges 2 xsb 2 S 3 glasses after thermal/temperature poling: (a) Sample 1, 6 kv, 250, 2 h; (b) Sample 4, 6 kv, 250, 2 h Maker
18 7 1303 Maker [14] Maker SEM EPMA 5 2 3 5 EPMA Sb 2 Sb 3 Raman MARIE and after poling (mole fraction, %) Element Composition (original) (before poling) (after poling) Ge 41.62 42.34 31.12 Sb 15.52 16.05 32.57 S 42.86 41.61 36.31 3 4 EPMA Table 3 EPMA comparison of sample 4 before and after poling (mole fraction, %) Element Composition (original) (before poling) (after poling) Ge 19.99 20.51 10.15 Sb 44.73 45.61 65.58 S 35.28 33.88 23.99 [15] GeSbS 3 1) GeSbS 2) Raman SEM EPMA REFERENCES 5 (1 x)ges 2 xsb 2 S 3 SEM Fig.5 SEM images of (1 x)ges 2 xsb 2 S 3 glasses: (a) Sample 1, x=0.1; (b) Sample 4, x=0.4 2 1 EPMA Table 2 EPMA comparison of sample 1 before [1] YVES Q, DAND D, MAIER J. Second-order nonlinear susceptibility in As 2 S 3 chalcogenide thin glass films[j]. Electron Lett, 2000, 36(8): 733 734. [2] DONG Guo-ping, TAO Hai-zheng, XIAO Xiu-di, LIN Chang-gui, GONG Yue-qiu, ZHAO Xiu-jian. Study on the third and second-order nonlinear optical properties of GeS 2 -Ga 2 S 3 -
1304 2008 7 AgCl chalcohalide glasses[j]. Optics Express, 2007, 15(5): 2399 2408. [3] NASU H, TAKEDA H, HASHIMOTO T. Second harmonic generation from thermally poled PbO-Bi 2 O 3 -Ga 2 O 3 glasses[j]. Journal of the Ceramic Society of Japan, 2005, 113(8): 555 559. [4] MAYERS R A, MUKHRJEE N, BRUECK R J. Large second-order nonlinearity in poled fused silica[j]. Optics Letters, 1991, 16(22): 1732 1735. [5],,. [J]., 2006, 34(7): 831 835. GONG Yue-qiu, TAO Hai-zheng, ZHAO Xiu-jian. Second harmonic generation of new kind of chalcogenide glass induced by thermal/temperature poling[j]. Journal of the Chinese Ceramics Society, 2006, 34(7): 831 836. [6]. [M]. :, 1982: 146 148. GAN Fu-xi. Optical glasses[m]. Beijing: Science Press, 1982: 146 148. [7] LANNIN J S. Raman scattering properties of amorphous As and Sb[J]. Phys Rev B, 1977, 15(8): 3863 3871. [8] KOUDELKA L. Raman spectra of Ge-Sb-S system glasses in the S-rich region[j]. J Non-Cryst Solids, 1981, 41: 171 178. [9] TAO Hai-zheng, ZHAO Xiu-jian, TONG Wei. Raman spectroscopic study on the microstructure of GeS 2 -Ga 2 S 3 -KCl glasses[j]. Journal of Molecular Structure, 2004, 697(1): 23 27. [10]. [M]. :, 2005: 276 296. LUO Yu-ran. Handbook of chemical bonds[m]. Beijing: Science Press, 2005: 275 296. [11] HEO J, MIN Y J, RYOU S. Raman spectroscopic analysis on the solubility mechanism of La 3+ in GeS 2 -Ga 2 S 3 glasses[j]. J Non-Cryst Solids, 1998, 238(1/2): 115 123. [12] BLOEMBERGEN N, PERHAM P S. Light waves at the boundary of nonlinear media[j]. Phys Rev, 1962, 128: 606 624. [13] GONG Yue-qiu, GUO Hai-tao, ZHAO Xiu-jian. Structure and second-order nonlinearity of GeS 2 -Ga 2 S 3 -x 2 S 3 (x=p, As, Sb) chalcogenide glasses[j]. Trans Nonferrous Met Soc China, 2006, 16: s858 s860. [14] MAKER P D, TERHUME R W, SAVAGE C M. Effects of dispersion and focusing on the production of optical harmonics[j]. Physical Review Letters, 1962, 8(1): 21 23. [15] MARIE G, VIRGINIE N, ZHANG X H, ALAIN M, STANISLAS P, HASSINA Z, ALEXANDRE K, GILBERT M, YVES Q. Crystalline phase responsible for the permanent second-harmonic generation in chalcogenide glass-ceramics[j]. Optical Materials, 2007, 30(2): 338 345. ( )