Αλγόριθμοι Γραφημάτων

Σχετικά έγγραφα
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

Αλγόριθμοι Γραφημάτων

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

Αλγόριθμοι Γραφημάτων

Συντομότερες Διαδρομές

Συντομότερες Διαδρομές

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

Συντομότερες ιαδρομές

Συντομότερες ιαδρομές

Αλγόριθμοι Γραφημάτων

Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 25)

Αλγόριθµοι και Πολυπλοκότητα

Δομές Δεδομένων Ενότητα 6

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ

Αλγόριθµοι και Πολυπλοκότητα

Δομές Δεδομένων και Αλγόριθμοι

Αλγόριθµοι και Πολυπλοκότητα

Συντομότερες ιαδρομές

Ελαφρύτατες διαδρομές

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 3: Δένδρα

Συντομότερα Μονοπάτια για Όλα τα Ζεύγη Κορυφών

Αλγόριθµοι και Πολυπλοκότητα

Αλγόριθμοι και Πολυπλοκότητα

Αλγόριθµοι και Πολυπλοκότητα

Εισαγωγή στους Αλγορίθμους Ενότητα 10η

Σχεδίαση & Ανάλυση Αλγορίθμων

Αλγόριθµοι και Πολυπλοκότητα

Άσκηση 1. Ψευδοκώδικας Kruskal. Παρακάτω βλέπουμε την εφαρμογή του στο παρακάτω συνδεδεμένο γράφημα.

Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 2: Εφαρμογές Δικτυωτής Ανάλυσης (1 ο Μέρος)

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 7

3η Σειρά Γραπτών Ασκήσεων

Σχεδιαση Αλγοριθμων -Τμημα Πληροφορικης ΑΠΘ - Κεφαλαιο 9ο

Αλγόριθμοι Eλάχιστα μονοπάτια

Κατ οίκον Εργασία 5 Σκελετοί Λύσεων

Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Γραφήματα. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Εισαγωγή στην Επιστήμη των Υπολογιστών

4η Γραπτή Ασκηση Αλγόριθμοι και Πολυπλοκότητα CoReLab ΣΗΜΜΥ 7 Φεβρουαρίου 2017 CoReLab (ΣΗΜΜΥ) 4η Γραπτή Ασκηση 7 Φεβρουαρίου / 38

Διάλεξη 21: Γράφοι II - Τοπολογική Ταξινόμηση

Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ

Αλγόριθµοι και Πολυπλοκότητα

Γράφημα. Συνδυαστικό αντικείμενο που αποτελείται από 2 σύνολα: Σύνολο κορυφών (vertex set) Σύνολο ακμών (edge set) 4 5 πλήθος κορυφών πλήθος ακμών

ΑΛΓΟΡΙΘΜΟΙ. Ενότητα 9: Άπληστοι Αλγόριθμοι. Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Τμήμα Πληροφορικής ΑΠΘ

Επίλυση Προβληµάτων µε Greedy Αλγόριθµους

Εισαγωγή στην Επιστήμη των Υπολογιστών

Δένδρα. Μαθηματικά (συνδυαστικά) αντικείμενα. Έχουν κεντρικό ρόλο στην επιστήμη των υπολογιστών :

Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα)

Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ

3η Σειρά Γραπτών Ασκήσεων

Διάλεξη 21: Γράφοι IV - Βραχύτερα Μονοπάτια σε Γράφους

Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ

Γράφοι (συνέχεια) Ο αλγόριθµος Dijkstra για εύρεση βραχυτέρων µονοπατιών Ta µονοπάτια Euler

Αλγόριθμοι και πολυπλοκότητα Τα συντομότερα μονοπάτια(shortest Paths)

Γράφοι: κατευθυνόμενοι και μη

Αναζήτηση Κατά Πλάτος

Ελάχιστο Γεννητικό Δένδρο. Παράδειγμα - Αλγόριθμος Prim. Γιατί δουλεύουν αυτοί οι αλγόριθμοι;

ΕΠΛ 231 Δοµές Δεδοµένων και Αλγόριθµοι 11-1

4η Γραπτή Ασκηση Αλγόριθμοι και Πολυπλοκότητα CoReLab ΣΗΜΜΥ 3/2/2019 CoReLab (ΣΗΜΜΥ) 4η Γραπτή Ασκηση 3/2/ / 37

Τ.Ε.Ι. Πελοπόννησου. Σχολή Τεχνολογικών Εφαρμογών Τμήμα Μηχανικών Πληροφορικής Τ.Ε. ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ. Δίκτυα και Δρομολόγηση Πακέτων

Ενότητα 5: Αλγόριθμοι γράφων και δικτύων

Αναζήτηση Κατά Πλάτος

Κατ οίκον Εργασία 4 Σκελετοί Λύσεων

ΔΙΑΣΧΙΣΗ ΓΡΑΦΗΜΑΤΩΝ 1

Διδάσκων: Παναγιώτης Ανδρέου

Διάλεξη 29: Γράφοι. Διδάσκων: Παναγιώτης Ανδρέου

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΑΣΚΗΣΗ 4 Σωροί, Γράφοι

Εισαγωγή στους Αλγορίθμους Φροντιστήριο 10

Κατ οίκον Εργασία 2 Σκελετοί Λύσεων

Προσεγγιστικοί Αλγόριθμοι

Αναζήτηση Κατά Βάθος. Επιμέλεια διαφανειών: Δ. Φωτάκης Συμπληρώσεις: Α. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Αναζήτηση Κατά Πλάτος

Διδάσκων: Παναγιώτης Ανδρέου

ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου,

Κατ οίκον Εργασία 5 Σκελετοί Λύσεων

Προηγµένα Θέµατα Τεχνολογιών Υλοποίησης Αλγορίθµων

Προσεγγιστικοί Αλγόριθμοι

Αναζήτηση Κατά Πλάτος

6η Διάλεξη Διάσχιση Γράφων και Δέντρων

Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ουρές Προτεραιότητας. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο

Δένδρα. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα:

Αφηρημένες Δομές Δεδομένων. Στοίβα (Stack) Υλοποίηση στοίβας

Διάλεξη 22: Δυαδικά Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου

Διδάσκων: Κωνσταντίνος Κώστα

Δοµές Δεδοµένων. Αλγόριθµοι & Πολυπλοκότητα (Χειµώνας 2011) Ουρές Προτεραιότητας 2

(elementary graph algorithms)

Στοιχεία Θεωρίας Γράφων (Graph Theory)

Ουρά Προτεραιότητας: Heap

Αναζήτηση Κατά Βάθος. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

1 Το πρόβλημα της συντομότερης διαδρομής

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Βασικές Ιδιότητες και Διάσχιση Κεφάλαιο 5 ( και ) Ε. Μαρκάκης Επίκουρος Καθηγητής

Κατανεμημένα Συστήματα Ι

Κατανεμημένα Συστήματα Ι

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές Δεδομένων. Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης

Δομές Δεδομένων και Αλγόριθμοι

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ

Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές

Ουρά Προτεραιότητας: Heap

Ελάχιστα Γεννητορικά ένδρα

Σχεδίαση Αλγορίθμων - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1

Διάλεξη 17: Δυαδικά Δέντρα. Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ

Transcript:

Αλγόριθμοι Γραφημάτων 1. Συντομότατα μονοπάτια 2. Αλγόριθμος Bellman-Ford 3. Αλγόριθμος Dijkstra 4. Floyd-Warshall Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη

Single-Source Shortest Path Πρόβλημα: Για δοθέν προσανατολισμένο γράφημα με βάρος G, να βρεθεί το ελάχιστο μονοπάτι από μια δοθείσα αρχική κορυφή (source) s προς μια άλλη κορυφή v Συντομότατο μονοπάτι = ελάχιστο βάρος Βάρος μονοπατιού είναι το άθροισμα των (βαρών) των ακμών πχ., δρόμος σε χάρτη: ποιο είναι το συντομότατο μονοπάτι από το Λευκό Πύργο μέχρι τoν Άγιο Δημήτριο? 2

Ιδιότητες συντομότατου μονοπατιού Εχουμε βέλτιστη υποδομή (substructure): το συντομότατο μονοπάτι αποτελείται από συντομότατα υπο-μονοπάτια Απόδειξη: ας υποθέσουμε ότι κάποιο από τα υπομονοπάτια δεν είναι συντομότατο μονοπάτι Θα πρέπει να υπάρχει ένα συντομότατο υπο-μονοπάτι Θα πρέπει να μπορούμε να αντικαταστήσουμε το συντομότατο υπομονοπάτι με ένα συντομότατο μονοπάτι Αλλά το συνολικό μονοπάτι δεν θα είναι το συντομότατο μονοπάτι Αντίφαση 3

Ιδιότητες συντομότατου μονοπατιού Ορίζουμε με δ(u,v) το βάρος του συντομότατου μονοπατιού από την u προς την v Τα συντομότατα μονοπάτια ικανοποιούν την τριγωνική ανισότητα (triangle inequality): δ(u,v) δ(u,x) + δ(x,v) x u v Αυτό το μονοπάτι δεν είναι μακρυτερο από οποιοδήποτε άλλο μονοπάτι 4

Ιδιότητες συντομότατου μονοπατιού Σε γραφήματα με κύκλους αρνητικού βάρους μερικά συντομότατα μονοπάτια δεν υπάρχουν < 0 5

Χαλάρωση Η τεχνική σε αλγόριθμους συντομότατου μονοπατιού είναι η τεχνική της χαλάρωσης (relaxation) ιδέα: για όλες τις v, τηρούμε ένα πεδίο d[v] που αντιπροσωπεύει ένα άνω φράγμα του βάρους της συντομότατης διαδρομής δ(s,v) από την αφετηρία s μέχρι τον κόμβο v Relax(u,v,w) { if (d[v] > d[u]+w) then d[v]=d[u]+w;} u 5 2 v 9 u 5 2 v 6 u 5 2 Relax(u,v,w) v u 7 5 2 Relax(u,v,w) 6 v 6

Bellman-Ford Αλγόριθμος BellmanFord() 1. for each v V 2. d[v] = ; 3. d[s] = 0; 4. for i=1 to V -1 5. for each edge (u,v) E 6. Relax(u,v, w(u,v)); 7. for each edge (u,v) E 8. if (d[v] > d[u] + w(u,v)) 9. return false; 10. return true Αρχικοποίηση d[], που θα συγκλίνει προς τη συντομότερη τιμή δ Χαλάρωση: κάνε V -1 περάσματα, «χαλαρώνοντας» κάθε κορυφή Έλεγχος της λύσης κάτω από ποιες συνθήκες βρίσκουμε τη λύση? Relax(u,v,w): if (d[v] > d[u]+w) then d[v]=d[u]+w 7

Bellman-Ford Algorithm BellmanFord() for each v V d[v] = ; d[s] = 0; for i=1 to V -1 for each edge (u,v) E Relax(u,v, w(u,v)); for each edge (u,v) E if (d[v] > d[u] + w(u,v)) return false return true Ποιος είναι ο χρόνος εκτέλεσης? Relax(u,v,w): if (d[v] > d[u]+w) then d[v]=d[u]+w 8

Bellman-Ford Ανάλυση BellmanFord() 1. for each v V 2. d[v] = ; 3. d[s] = 0; 4. for i=1 to V -1 5. for each edge (u,v) E 6. Relax(u,v, w(u,v)); 7. for each edge (u,v) E 8. if (d[v] > d[u] + w(u,v)) 9. return return false; 10. return true Εντολές 1-3: Αρχικοποίηση Θ(V) Εντολές 4-6: για κάθε μια από τις V -1 διελεύσεις όλων των ακμών: χρόνος Θ(E) Εντολές 7-9: απαιτεί χρόνο Ο(Ε) Συνολικός χρόνος O(VE) Relax(u,v,w): if (d[v] > d[u]+w) then d[v]=d[u]+w 9

Bellman-Ford Algorithm BellmanFord() for each v V d[v] = ; d[s] = 0; for i=1 to V -1 for each edge (u,v) E Relax(u,v, w(u,v)); for each edge (u,v) E if (d[v] > d[u] + w(u,v)) return false; else true Ποιος είναι ο χρόνος εκτέλεσης? A: O(VE) Relax(u,v,w): if (d[v] > d[u]+w) then d[v]=d[u]+w 10

Bellman-Ford Algorithm BellmanFord() for each v V s d[v] = ; d[s] = 0; for i=1 to V -1 for each edge (u,v) E Relax(u,v, w(u,v)); for each edge (u,v) E if (d[v] > d[u] + w(u,v)) return false; return true; A 4-1 B 2 3 2 1 C 5 D παράδειγμα -3 E Relax(u,v,w): if (d[v] > d[u]+w) then d[v]=d[u]+w 11

Bellman-Ford Algorithm Πριν τη 1 η επανάληψη Η s είναι η κορυφή αφετηρία. Οι σκιασμένες ακμές δηλώνουν προηγούμενες τιμές: Αν η ακμή (u, v) είναι σκιασμένη τότε ο πρόγονος της v είναι η u. 12

Dijkstra s Algorithm Αν δεν υπάρχουν αρνητικά βάρη στις ακμές και με καλή υλοποίηση μπορεί να επιτυχεθεί χρόνος μικρότερος του BF Παρόμοιος με τον breadth-first search Αυξάνουμε ένα δένδρο σταδιακά, προωθώντας κορυφές από ουρά Επίσης παρόμοιος με τον Prim s για το MST Χρήση ουράς προτεραιότητας ελαχίστου με κλειδιά τις τιμές d[v] 15

Dijkstra s Algorithm Dijkstra(G) 1. for each v V 2. d[v] = ; 3. d[s] = 0; S = ; Q = V; 4. while (Q ) 5. u = ExtractMin(Q); 6. S = S U {u}; 7. for each v Adj[u] 8. if (d[v] > d[u]+w(u,v)) 9. d[v] = d[u]+w(u,v); Σημείωση: κλήση της Q->DecreaseKey() A 10 5 B 4 3 C 1 2 D Relaxation Step 16

Dijkstra s Algorithm Πριν τη 1 η επανάληψη Η s είναι η κορυφή αφετηρία. Οι σκιασμένες ακμές δηλώνουν προηγούμενες τιμές: Αν η ακμή (u, v) είναι σκιασμένη τότε ο πρόγονος της v είναι η u. Οι μαύρες κορυφές ανήκουν στο σύνολο S, και άσπρες ανήκουν στη ελάχιστη ουρά προτεραιότητας Q=V-S. Η σκιασμένη κορυφή είναι η u της γραμμής 5. Tα γραφήματα b-f μετά την ολοκλήρωση του while 17

Dijkstra s Algorithm Dijkstra(G) for each v V d[v] = ; d[s] = 0; S = ; Q = V; while (Q ) u = ExtractMin(Q); S = S U {u}; for each v Adj[u] if (d[v] > d[u]+w(u,v)) d[v] = d[u]+w(u,v); Ποιος είναι ο συνολικός χρόνος? Πόσες φορές καλείται η ExtractMin()? Πόσες φορές καλείται η DecraseKey()? 18

Dijkstra s Algorithm Dijkstra(G) 1. for each v V 2. d[v] = ; Πόσες φορές καλείται η ExtractMin()? 3. d[s] = 0; S = ; Q = V; 4. while (Q ) Πόσες φορές καλείται η DecraseKey()? 5. u = ExtractMin(Q); 6. S = S U {u}; 7. for each v Adj[u] 8. if (d[v] > d[u]+w(u,v)) 9. d[v] = d[u]+w(u,v); A: O(E lg V) χρησιμοποιώντας binary heap για Q Μπορεί να επιτευχθεί O(V lg V + E) με Fibonacci heaps 19

Ανάλυση του αλγόριθμου του Dijkstra -1- Ο αλγόριθμος διατηρεί μια ουρά προτεραιότητας ελαχίστου καλώντας 3 πράξεις ουράς προτεραιότητας: Insert (εμπεριέχεται στη γραμ. 3) ExtractMin(Q) γραμ.5, DecraseKey (εμπεριέχεται στη ΧΑΛΑΡΩΣΗ γραμ. 9). Η πράξη της Insert εκτελείται μια φορά για κάθε κορυφή όπως και η ExtractMin. Καθώς κάθε κορυφή προστίθεται στο σύνολο S μια μόνο φορά, κάθε ακμή από τη λίστα γειτνίασης Adj[] εξετάζεται μέσα στο βρόχο ακριβώς μια φορά. Το συνολικό πλήθος των ακμών είναι Ε έχουν Ε επαναλήψεις του βρόχου και άρα Ε το πολύ πράξεις DecraseKey. Ο χρόνος εκτέλεσης εξαρτάται από την υλοποίηση της ουράς προτεραιότητας ελαχίστου. 20

Ανάλυση του αλγόριθμου του Dijkstra -2- Αν θεωρήσουμε ότι η ουρά τηρείται με βάση την αρίθμηση των κόμβων, από 1 έως V οπότε καταχωρίζουμε την τιμή d[v] στο v-ιστό στοιχείο του πίνακα. Κάθε πράξη Insert και DecraseKey απαιτεί χρόνο Ο(1) ενώ κάθε πράξη ExtractMin απαιτεί Ο(V) (αφού θα πρέπει να εξεταστεί όλος ο πίνακας). Αρα ο συνολικός χρόνος είναι Ο(V 2 + E)= O(V 2 ) 21

Ανάλυση του αλγόριθμου του Dijkstra -3- Αν το γράφημα είναι αραιό είναι προτιμότερο να υλοποιήσουμε την ουρά προτεραιότητας ελαχίστου μέσω ενός δυαδικού σωρού ελαχίστου. Στην περίπτωση αυτή κάθε πράξη ExtractMin απαιτεί χρόνο Ο(lgV), και υπάρχουν V πράξεις. Ο χρόνος που απαιτείται για την κατασκευή του δυαδικού σωρού ελαχίστου είναι Ο(V). Κάθε πράξη DecraseKey απαιτεί χρόνο O(lgV) και υπάρχουν Ε τέτοιες πράξεις. Αρα ο συνολικός χρόνος είναι Ο(V+E)lgV) ή O(ElgV) αν όλοι οι κόμβοι είναι προσπελάσιμοι από την αφετηρία. Αυτός ο χρόνος αποτελεί βελτίωση σε σχέση με την απλή υλοποίηση που απαιτεί χρόνο O(V 2 ) 22

Ανάλυση του αλγόριθμου του Dijkstra -4- Μπορούμε να πετύχουμε χρόνο Ο(VlgV+E) αν υλοποιήσουμε την ουρά προτεραιότητας ελαχίστου με ένα σωρό Fibonacci. Το λογιστικό κόστος κάθε μιας από της V πράξεις ExtractMin είναι O(lgV) ενώ κάθε κλήση της DecraseKey (το συνολικό πλήθος των οποίων είναι Ε ) απαιτεί χρόνο μόλις Ο(1). Το αρχικό κίνητρο για την ανάπτυξη των σωρών Fibonacci ήταν ακριβώς ο αλγόριθμος του Dijkstra όπου παρατήρησαν ότι κατά κανόνα ήταν πολύ περισσότερες οι κλήσεις μείωσης κλειδιού από της εξαγωγής ελαχίστου οπότε οποιαδήποτε μέθοδος μειώνει το χρόνο της μείωσης κλειδιού χωρίς να αυξάνει της εξαγωγής κλειδιού δίνει ασυμπτωτικά ταχύτερη υλοποίηση από το δυαδικό σωρό. 23

Ομοιότητα αλγόριθμου Dijkstra με BFS & Prim Ο αλγόριθμος του Dijkstra έχει κάποια ομοιότητα με τον αλγόριθμό BFS και Prim. Η ομοιότητα με τον BFS έγκειται στην αντιστοιχία του συνόλου S με το σύνολο των μαύρων κορυφών σε μια BFS διερεύνηση όπως τα βάρη των συντομότερων διαδρομών έχουν πάρει τις τελικές τιμές τους έτσι και στις οριζόντιες αποστάσεις των μαύρων κορυφών σε μια BFS διερεύνηση έχουν τις σωστές τιμές. 24

Dijkstra - Prim Dijkstra(G) for each v V d[v] = ; d[s] = 0; S = ; Q = V; while (Q ) u = ExtractMin(Q); S = S U {u}; for each v Adj[u] if (d[v] > d[u]+w(u,v)) d[v] = d[u]+w(u,v); MST-Prim(G, w, r) Q = V[G]; for each u Q key[u] = ; key[r] = 0;p[r] = NULL; while (Q not empty) u = ExtractMin(Q); for each v Adj[u] if (v Q and w(u,v) < key[v]) p[v] = u; DecreaseKey(v, w(u,v)); 25

DAG Shortest Paths Πρόβλημα: εύρεση συντομότατων μονοπατιών σε DAG Ο αλγόριθμος Bellman-Ford απαιτεί O(VE) χρόνο. Μπορούμε να πετύχουμε καλύτερο χρόνο? 26

DAG Shortest Paths ιδέα: topological sort Αν είμαστε τυχεροί και επεξεργαστούμε τις κορυφές στο συντομότατο μονοπάτι από αριστερά προς τα δεξιά, τότε αυτό μπορεί να γίνει με ένα πέρασμα. Κάθε μονοπάτι σε ένα dag είναι μια υπο-ακολουθία από τοπολογικά διατεταγμένες κορυφές, έτσι η επεξεργασία των κορυφών μ αυτή τη σειρά, θα δημιουργήσει κάθε μονοπάτι με την προς τα μπρος διάσχιση (δε θα χαλαρώσουμε ποτέ ακμές εξερχόμενες από κορυφές πριν ολοκληρώσουμε με όλες τις ακμές που συντρέχουν στις κορυφές). Ετσι χρειάζεται μόνο ένα πέρασμα: Ποιος θα είναι ο χρόνος εκτέλεσης? 27

DAG Shortest Paths Algorithm DAG_shortest_path() 1. Topological_Sort(); 2. for each v V d[v] = ; d[s] = 0; 3. for each vertex u, taken in topologically sorted order 4. for each vertex v Adj(u) 5. RELAX(u, v, w); Relax(u,v,w): if (d[v] > d[u]+w) then d[v]=d[u]+w 28

DAG Shortest Paths Algorithm (a) Από την 1 η επανάληψη του βρόχου γραμμές 3-5 (b)-(g) η κατάσταση μετά από κάθε επανάληψη του βρόχου για τις γραμμές 3-5. Ο καινούργιος μαύρος κόμβος σε κάθε επανάληψη είναι ο αντίστοιχος κόμβος u της επανάληψης αυτής. Οι τιμές στο σχήμα (g) είναι οι τελικές. 29

Αλγόριθμος Floyd-Warshall Θεωρούμε γράφημα G(V, E, w) με βάρη στις ακμές. Καθορισμένη (αυθαίρετη) αρίθμηση κορυφών v 1, v 2,, v n. Αναπαράσταση γραφήματος με πίνακα γειτνίασης: Υπολογισμός απόστασης d(v i, v j ) από d(v i, v k ), d(v k, v j ) για όλα τα k V \ {v i, v j }: Φαύλος κύκλος(;): d(v i, v k ) d(v i, v j ) και d(v i, v j ) d(v i, v k ) 30

Αλγόριθμος Floyd-Warshall D k [v i, v j ]: μήκος συντομότερου v i - v j μονοπατιού με ενδιάμεσες κορυφές μόνο από V k = {v 1,, v k } Αρχικά D 0 [v i, v j ] = w(v i, v j ) γιατί V 0 =. Έστω ότι γνωρίζουμε D k 1 [v i, v j ] για όλα τα ζεύγη v i, v j D k [v i, v j ] διέρχεται από v k καμία ή μία φορά (μονοπάτι!): Αναδρομική σχέση για D 0, D 1,, D n : Υπολογισμός D n με δυναμικό προγραμματισμό. Κύκλος αρνητικού μήκους αν D n [v i, v j ] < 0. 31

Αλγόριθμος Floyd-Warshall Τυπικός δυναμικός προγραμματισμός: Θ(n 3 ) 32

33

P k [v i, ] : ΔΣΜ(v i ) με ενδιάμεσες κορυφές μόνο από V k. Αποστάσεις D k [v i, ] αντιστοιχούν σε μονοπάτια P k [v i, ]. P k [v i, v j ]: προηγούμενη κορυφή της v j στο συντομότατο v i v j μονοπάτι με ενδιάμεσες κορυφές μόνο από V k. P 0 καθορίζεται από πίνακα γειτνίασης: Υπολογισμός Συντομότατων Μονοπατιών Αναδρομική σχέση για P 0, P 1,, P n : Υπολογισμός P n ταυτόχρονα με υπολογισμό D n. Εύκολη τροποποίηση προηγούμενης υλοποίησης. 34

35