Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 25)
|
|
- Λεββαῖος Γερμανός
- 9 χρόνια πριν
- Προβολές:
Transcript
1 Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 25) Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Ο αλγόριθµος των BellmanFord Ο αλγόριθµος του Dijkstra ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 61
2 Βραχύτερα Μονοπάτια σε Γράφους Γενίκευση της αναζήτησης κατά βάθος ή πλάτος σε γράφους µε βάρη. Με δεδοµένο ένα κατευθυνόµενο γράφο µε βάρη G=(V,E) και µια συνάρτηση βαρών w: E R, θέλουµε να βρούµε µονοπάτια µε το ελάχιστο δυνατό βάρος. Υπενθύµιση: Το βάρος w(p) ενός µονοπατιού p δίνεται ως εξής: Aν τότε p = v o v k i... v w( p ) = = w( vi 1 1 1,v i k ) Ορισµός: Βραχύτερο µονοπάτι µεταξύ ενός συνόλου από µονοπάτια είναι το µονοπάτι µε το ελάχιστο βάρος. ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 62
3 Ηδοµή της βέλτιστης λύσης Λήµµα 1 Έστω κατευθυνόµενος γράφος µε βάρη G=(V,E) και έστω p = u v1... v k v το βραχύτερο µονοπάτι µεταξύ των κόµβων u και v. Τότε κάθε υποµονοπάτι του p είναι βραχύτερο. Απόδειξη u v i v j v... Ας υποθέσουµε ότι το πιο πάνω είναι το βραχύτερο µονοπάτι µεταξύ των κόµβων u και v και ότι το υποµονοπάτι v i v j δεν είναι βραχύτερο ανάµεσα στα µονοπάτια που συνδέουν τους κόµβους p και s. Τότε αν αντικαταστήσουµε το βραχύτερο τέτοιο υποµονοπάτι στο αρχικό µονοπάτι θα παίρναµε ένα βραχύτερο µονοπάτι µεταξύ των κόµβων u και v. Αντίφαση! ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 63
4 H δοµή της βέλτιστης λύσης Συµβολισµός: Θα γράφουµε δ(u,v) για το βάρος του βραχύτερου µονοπατιού από την κορυφή u στην κορυφή v. Λήµµα 2 (Tριγωνική ανισότητα) Για κάθε τριάδα κορυφών u, v, x, δ(u,v) δ(u,x) + δ(x,v) Απόδειξη Τo ελάχιστο µονοπάτι από τον u στον v u δεν είναι µακρύτερο από οποιοδήποτε άλλο µονοπάτι από τον u στο v εν προκειµένω, το µονοπάτι που παίρνει πρώτα το ελάχιστο µονοπάτι από τον u στον κόµβο x και στη συνέχεια από τον x στον v. x v Τι συµβαίνει σε γράφους µε αρνητικά βάρη; Τι συµβαίνει αν υπάρχει κύκλος µε αρνητικό βάρος; ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 64
5 Αλγόριθµος BellmanFord O αλγόριθµος βρίσκει τα βάρη των ελάχιστων µονοπατιών από µια δεδοµένη πηγή s προς κάθε κορυφή v V. for all v V d[v] = ; d[s]=0; for (i=1; i< V ; i++) for all edges (u,v) E if (d[v] > d[u]+w(u,v)) d[v]= d[u] + w(u,v); for all edges (u,v) E if (d[v] > d[u]+ w(u,v)) NO SOLUTION ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 65
6 Εξήγηση του αλγόριθµου 1. Στην πρώτη φάση του αλγόριθµου αποδίδονται οι αρχικές τιµές στα d. 2. Για V 1 φορές γίνεται χαλάρωση της κάθε ακµής, δηλαδή µικραίνει η απόσταση της κάθε ακµής από την πηγή s. 3. Τελικά γίνεται έλεγχος κατά πόσο οι τιµές που έχουν δοθεί είναι πράγµατι λύσεις (αυτό συµβαίνει εφόσον δεν υπάρχει κύκλος µε αρνητικό κόστος). Χρόνος Εκτέλεσης: Ο( V E ) ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 66
7 Παράδειγµα Α Β Ε 3 Έστω ότι ακµές τυγχάνουν επεξεργασία µε την εξής σειρά: (Α,Β), (Α,Γ), (Β,Γ), (Β, ), (,Γ), (Ε, ), (Β,Ε). Γ 5 φάση/κορυφή Α Β Γ Ε αρχικές τιµές 0 χαλάρωση χαλάρωση Οι τιµές για τα d που παίρνουµε σε κάθε φάση χαλάρωσης, καθώς και η ταχύτητα σύγκλισης (αριθµός χαλαρώσεων) είναι συνάρτηση της σειράς επεξεργασίας των ακµών. ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 67
8 Ορθότητα του Αλγόριθµου είχνουµε ότι d[v] =δ(s,v) µετά από V 1 χαλαρώσεις. Αρχικά έχουµε το πιο κάτω λήµµα. Λήµµα 3 Πάντοτε d[v] δ(s,v). Απόδειξη: Αρχικά αληθής. Υποθέτουµε (για να φθάσουµε σε αντίφαση) ότι υπάρχουν κορυφές για τις οποίες δεν ισχύει η πρόταση του λήµµατος. Έστω v η κορυφή για την οποία συµβαίνει για πρώτη φορά ότι d[v]< δ(s,v). Έστω u η κορυφή που προκάλεσε αλλαγή της d[v]: d[v] = d[u] + w(u,v). Τότε d[v] < δ(s,v) δ(s,u) + δ(u,v) δ(s,u) + w(u,v) d[u] + w(u,v) το οποίο αποτελεί αντίφαση στο ότι d[v] = d[u] + w(u,v). ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 68
9 Ορθότητα του Αλγόριθµου Θεώρηµα 1 Ο αλγόριθµος BellmanFord είναι ορθός, δηλ. µετά από V 1 χαλαρώσεις όλες οι τιµές του d είναι σωστές (εφόσον τα ελάχιστα µονοπάτια υπάρχουν). Απόδειξη Έστω vµια κορυφή, και θεωρήστε το ελάχιστο µονοπάτι από την πηγή s στη v(υποθέτοντας ότι δεν περνά κύκλος αρνητικού κόστους από κάποια κορυφή πάνω σε κάποιο µονοπάτι από την s στη v): s v... v v 1 k Αρχικά, d[s]=0, το οποίο είναι ορθό και δεν µεταβάλλεται στη συνέχεια (ο κώδικάς µπορεί µόνο να µειώσει το d, ενώ από το Λήµµα 3, πάντοτε d[s] δ(s,s) = 0.) Μετά από την πρώτη χαλάρωση (πρώτο πέρασµα µέσα από τις ακµές), η τιµή d[v 1 ] είναι ορθή και δεν µεταβάλλεται στη συνέχεια, διότι: ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 69
10 Ορθότητα του Αλγόριθµου Όπως ήδη δείξαµε, η τιµήτηςd[s] είναι ορθή και, από τη δοµήτης βέλτιστης λύσης, η ελάχιστη απόσταση από το s στο v 1 είναι ίση µε w(s, v 1 ). Tο πρώτο πέρασµα θέτει d[v 1 ] = d[s] + w(s, v 1 ) που είναι η σωστή απάντηση, και η τιµή αυτή δεν µεταβάλλεται στη συνέχεια, γιατί, γράφοντας d [v 1 ] για τη τιµή που παίρνει η d[v 1 ] σε οποιαδήποτε επόµενη στιγµή της εκτέλεσης, τότε d [v 1 ] δ(s, v 1 ) d [v 1 ] d[v 1 ] = δ(s, v 1 ) Παρόµοια, ισχύει ότι, µετά από τη δεύτερη χαλάρωση, η τιµή d[v 2 ] είναι ορθή και δεν µεταβάλλεται στη συνέχεια ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 610
11 Ανάλυση Ο αλγόριθµος τερµατίζει µετά από V 1 χαλαρώσεις διότι Αν δεν υπάρχουν κύκλοι µε αρνητικό κόστος, κάθε ελάχιστο µονοπάτι είναι απλό και το µακρύτερο απλό µονοπάτι έχει µήκος V 1. Έτσι αν δεν υπάρχει κύκλος αρνητικού κόστους, τότε όλα τα d συγκλίνουν στη σωστή τους τιµή µετά από V 1 χαλαρώσεις. Ισοδύναµα, αν µια τιµή d αποτύχει να συγκλίνει µετά από V 1 χαλαρώσεις, τότε υπάρχει κύκλος αρνητικού βάρους. Επίσης ισχύει το αντίστροφο: αν υπάρχει κύκλος αρνητικού βάρους πάνω σε κάποιο µονοπάτι από την s στη v, τότε η d[v] αποτυγχάνει να συγκλίνει στη σωστή τιµή µετά από V 1 χαλαρώσεις. ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 611
12 Αλγόριθµος του Dijkstra ουλεύει όταν όλα τα βάρη είναι µηαρνητικά. Έστω ότι θέλουµε να βρούµε τα βραχύτερα µονοπάτια από κάποιο κόµβο s προς όλους τους υπόλοιπους κόµβους σε κάποιο γράφο G. Ο αλγόριθµος αυτός διατηρεί ένα πίνακα S από κορυφές όπου αποθηκεύει τις κορυφές του G, για τις οποίες το µήκος του βραχύτερου µονοπατιού έχει υπολογισθεί. Eπίσης διατηρεί ένα πίνακα d όπου για κάθε κόµβο Β του γράφου φυλάει την ανά πάσα στιγµή µικρότερη απόσταση του κόµβου B από τον κόµβο s την οποία γνωρίζει. Αρχικά S= και d [ V ] =. Ο αλγόριθµος επανεληµένα διαλέγει την κοντινότερη κορυφή B προς τον s, που δεν έχει µέχρι στιγµής επεξεργασθεί (δηλαδή Β VS), και ελέγχει αν για οποιοδήποτε γείτονα Γ της Β χρήση της ακµής (Β,Γ) µπορεί να δηµιουργήσει βραχύτερο µονοπάτι προς την Γ. ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 612
13 Αλγόριθµος του Dijkstra Χρησιµοποιεί ουρά προτεραιότητας, Q, για αποθήκευση κορυφών, όπου η προτεραιότητα δίνεται από το d[v]. S είναι το σύνολο των κορυφών i για τα οποία d[i]=δ(s,i). heap Q; for all v V d[v]=; d[s]=0; S= ; Q=V; while (Q ){ u=deletemin(q); S=S {u}; για κάθε γείτονα v του u if d[v]>d[u]+w(u,v) d[v]=d[u]+w(u,v); } ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 613
14 Παρατηρήσεις 1. Η χαλάρωση είναι η ίδια µε τη χαλάρωση στον αλγόριθµο Bellman Ford. 2. Kάθε χαλάρωση ισοδυναµεί µε µείωση κλειδιού στη δοµή δεδοµένων που υλοποιεί την ουρά προτεραιότητας. 3. Οµοιότητα µε τον αλγόριθµο του Prim; ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 614
15 Παράδειγµα A 8 5 B Γ Ε Ζ S d(a) d(b) d(γ) d( ) d(ε) d(ζ) S= 0 S={A} S={A,E} S={A,E,B} S={A,E,B, } S={A,E,B,,Ζ} S={A,E,B,,Ζ, Γ} ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 615
16 Αλγόριθµος του Dijkstra Εύρεση ΒΜ Αν εκτός από το µήκος του µονοπατιού µας ενδιαφέρει και το ακριβές µονοπάτι (οι κόµβοι του) τότε θα πρέπει σε ένα πίνακα, έστω P, να φυλάγουµε και κορυφές ως εξής: κάθε φορά που χρήση µιας κορυφής Χ διευκολύνει την εύρεση βραχύτερου µονοπατιού προς µια κορυφή Υ, τότε φυλάσουµε το όνοµα της κορυφής: P[Y] = X. Σε αυτή την περίπτωση, πως µπορούµε µε τον τερµατισµό του αλγόριθµου να κατασκευάσουµε από τον πίνακα P το µέγιστο µονοπάτι από τον κόµβο εκκίνησης προς κάποιον άλλο κόµβο Χ; ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 616
17 Αλγόριθµος του Dijkstra µε εύρεση ΒΜ heap Q; for all v V d[v]=; P[v]= ; d[s]=0; S= ; Q=V; while (Q ){ u=deletemin(q); S=S {u}; για κάθε γείτονα v του u if d[v]>d[u]+w(u,v) d[v]=d[u]+w(u,v); P[v] = u; } ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 617
18 Παράδειγµα A 8 5 B Γ Ε Ζ S P(A) P(B) P(Γ) P( ) P(Ε) P(Ζ) S= S={A} Α Α Α S={A,E} Ε Ε Α Ε S={A,E,B} E B E A B S={A,E,B, } E B E A B S={A,E,B,,Ζ} E Z E A B S={A,E,B,,Ζ, Γ} E Z E A B ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 618
19 Απόδειξη ορθότητας Θεώρηµα 2 Όταν µια κορυφή u µπαίνει στο S, τότε d[u] = δ(s,u). Απόδειξη Υποθέτουµε, για να φτάσουµε σε αντίφαση, ότι η u είναι η πρώτη κορυφή η οποία, κατά την εκτέλεση του αλγόριθµου, µπαίνοντας στο S έχει d[u] µεγαλύτερο (προσέξτε Λήµµα 4) από το βάρος του βραχύτερου µονοπατιού µεταξύ της u και της s. Έστω y η `πρώτη κορυφή στο VS που ανήκει στο βραχύτερο µονοπάτι από την s στη u. s S x y u V Aφού η xµπήκε στο S πριν από την u, d[x]=δ(s,x). Επίσης, µε την εισαγωγή του x στο S, ετέθει d[y]=d[x]+w(x,y), το οποίο είναι το κόστος του υποµονοπατιού στο σχήµα. ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 619
20 Απόδειξη ορθότητας Αφού το µονοπάτι από τo s στο u, είναι βραχύτερο, τότε από τη δοµή βέλτιστης λύσης συνεπάγεται ότι το υποµονοπάτι s x y από το s στο y είναι επίσης βραχύτερο. Άρα d[y] = δ(s,y). Έτσι: d[u] > δ(s,u) (αρχική υπόθεση) = δ(s,y) + δ(y,u) (δοµή βέλτιστης λύσης) = d[y] + δ(y,u) (d[y] = δ(s,y)) d[y] (τα κόστα είναι 0) Αφού d[u]>d[y], ο αλγόριθµος θα διάλεγε και θα εισήγαγε τη y στο S και όχι τη u. Αντίφαση! Λήµµα 4 Καθ όλη τη διάρκεια του αλγόριθµου d[u] δ(s,u). Η απόδειξη είναι παρόµοια µε αυτή του Λήµµατος 3. Χρόνος Εκτέλεσης: V log V + E ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 620
21 Αλγόριθµος του Dijkstra Υλοποίηση heap Q; for all v V d[v]=; P[v]= ; Insert(Q, (v,d[v])); d[s]=0; DecreaseKey(Q,s,0); Μείωσε την τιµή του ζεύγους που αφορά το στοιχείο s στη σωρό Q έτσι ώστε να γίνει (s,0) S= ; while (!IsEmpty(Q)){ u=deletemin(q); S=S {u}; για κάθε v γείτονα του u if d[v]>d[u]+w(u,v) d[v]=d[u]+w(u,v); DecreaseKey(Q,v, d[v]); P[v] = u; } ΕΠΛ 232 Αλγόριθµοι και Πολυπλοκότητα 621
Γράφοι (συνέχεια) Ο αλγόριθµος Dijkstra για εύρεση βραχυτέρων µονοπατιών Ta µονοπάτια Euler
Γράφοι (συνέχεια) Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Ο αλγόριθµος Dijkstra για εύρεση βραχυτέρων µονοπατιών Ta µονοπάτια Euler ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου,
Διάλεξη 21: Γράφοι IV - Βραχύτερα Μονοπάτια σε Γράφους
Διάλεξη 2: Γράφοι IV - Βραχύτερα Μονοπάτια σε Γράφους Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Βραχύτερα Μονοπάτια σε γράφους - Ο αλγόριθμος Dijkstra για εύρεση της βραχύτερης απόστασης
Άσκηση 1. Ψευδοκώδικας Kruskal. Παρακάτω βλέπουμε την εφαρμογή του στο παρακάτω συνδεδεμένο γράφημα.
Άσκηση 1 Ψευδοκώδικας Kruskal Παρακάτω βλέπουμε την εφαρμογή του στο παρακάτω συνδεδεμένο γράφημα. Αντιστοιχίζω τους κόμβους με αριθμούς από το 0 έως το 4. 2Η ΕΡΓΑΣΙΑ ΑΛΓΟΡΙΘΜΟΙ & ΠΟΛΥΠΛΟΚΟΤΗΤΑ - MAY 2018
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 23: Βραχύτερα Μονοπάτια σε Γράφους Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Βραχύτερα Μονοπάτια σε γράφους Ο αλγόριθμος Dijkstra για εύρεση της βραχύτερης απόστασης Ο αλγόριθμος
Κατ οίκον Εργασία 2 Σκελετοί Λύσεων
Κατ οίκον Εργασία 2 Σκελετοί Λύσεων 1. Ο αλγόριθµος κτίζει όλες τις δυνατές αναθέσεις εργασιών στους φοιτητές (υπάρχουν n! διαφορετικές αναθέσεις) και επιστρέφει εκείνη µε το µέγιστο βαθµό καταλληλότητας.
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 6 Μαΐου 2015 1 / 42 Εύρεση Ελάχιστου Μονοπατιού
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 3: Βραχύτερα Μονοπάτια σε Γράφους Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Βραχύτερα Μονοπάτια σε γράφους -Ο αλγόριθμος ijkstraγια εύρεση της βραχύτερης απόστασης -Ο αλγόριθμος
Αλγόριθμοι Γραφημάτων
Αλγόριθμοι Γραφημάτων 1. Συντομότατα μονοπάτια 2. Αλγόριθμος Bellman-Ford 3. Αλγόριθμος Dijkstra 4. Floyd-Warshall Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Single-Source Shortest Path Πρόβλημα:
Αλγόριθµοι Ροής σε Γράφους (CLR, κεφάλαιο 27)
Αλγόριθµοι Ροής σε Γράφους (CLR, κεφάλαιο 27) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: ίκτυα ροής και το πρόβληµα της µέγιστης ροής Η µεθοδολογία Ford-Fulkerson Ο αλγόριθµος Edmonds-Karps ΕΠΛ 232
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ενότητα 3 Αλγόριθµοι Γραφηµάτων Dijkstra Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αλγόριθµοι και Πολυπλοκότητα - Ενότητα 3 Dijkstra
Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 25)
Βραχύτερα Μονοπάτια σε Γράφους (CLR, κεφάλαιο 5) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Βραχύτερα Μονοπάτια για όλα τα Ζεύγη Λύση υναµικού Προγραµµατισµού Ο αλγόριθµος των Floyd-Warshal ΕΠΛ 3
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 12: Αλγόριθμοι Γραφημάτων/Συντομότατα μονοπάτια/αλγόριθμος Bellman-Ford/Αλγόριθμος Dijkstra/Floyd-Warshall Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες
Σχεδίαση & Ανάλυση Αλγορίθμων
Σχεδίαση & Ανάλυση Αλγορίθμων Ενότητα 4.2 Διαδρομές σε Γραφήματα Σταύρος Δ. Νικολόπουλος Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Ιωαννίνων Webpage: www.cs.uoi.gr/~stavros Πρόβλημα Οδικό Δίκτυο
Συντομότερες Διαδρομές
Συντομότερες Διαδρομές Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συντομότερη Διαδρομή Κατευθυνόμενο G(V, E, w) με μήκη Μήκος διαδρομής
Συντομότερες ιαδρομές
Συντομότερες ιαδρομές ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Κατ οίκον Εργασία 4 Σκελετοί Λύσεων
Κατ οίκον Εργασία Σκελετοί Λύσεων Άσκηση Αναδρομική διαδικασία Η αναδρομική διαδικασία RecIsheap παίρνει ως παραμέτρους τον πίνακα, το μέγεθός του καθώς και το στοιχείο το οποίο θα τύχει επεξεργασίας.
Κατ οίκον Εργασία 5 Σκελετοί Λύσεων
Κατ οίκον Εργασία 5 Σκελετοί Λύσεων Άσκηση 1 (α) Ο αλγόριθµος χρησιµοποιεί τη διαδικασία DFS(v) η οποία, ως γνωστό, επισκέπτεται όλους τους κόµβους που είναι συνδεδεµένοι µε τον κόµβο v. Για να µετρήσουµε
Συντομότερες ιαδρομές
Συντομότερες ιαδρομές ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συντομότερη ιαδρομή Κατευθυνόμενο G(V, E, w) με μήκη Μήκος διαδρομής Απόσταση d(u,
Ελάχιστα Γεννητορικά ένδρα
λάχιστα Γεννητορικά ένδρα Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Ο αλγόριθµος του Prim και ο αλγόριθµος του Kruskal για εύρεση λάχιστων Γεννητορικών ένδρων ΠΛ 23 οµές εδοµένων και Αλγόριθµοι
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΕΠΛ231: Δομές Δεδομένων και Αλγόριθμοι. Εαρινό Εξάμηνο Φροντιστήριο 10 ΛΥΣΕΙΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ31: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 013 Φροντιστήριο 10 ΛΥΣΕΙΣ Άσκηση 1 Να δείξετε όλα τα στάδια της εκτέλεσης του αλγορίθμου του Dijkstra για εύρεση
Συντομότερες ιαδρομές
Συντομότερες ιαδρομές ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Συντομότερες Διαδρομές
Συντομότερη Διαδρομή Συντομότερες Διαδρομές Διδάσκοντες: Σ Ζάχος, Δ Φωτάκης Επιμέλεια διαφανειών: Δ Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Κατευθυνόμενο G(V, E, w) με μήκη Μήκος
Ελαφρύτατες διαδρομές
Ελαφρύτατες διαδρομές Ελαφρύτατες διαδρομές Κατευθυνόμενο γράφημα Συνάρτηση βάρους Ελαφρύτατη διαδρομή από το u στο v : διαδρομή με και ελάχιστο βάρος s 3 t 7 x 5 3 y z Βάρος ελαφρύτατης διαδρομής εάν
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 30 Απριλίου 2015 1 / 48 Εύρεση Ελάχιστου
Ελάχιστο Γεννητικό Δένδρο. Παράδειγμα - Αλγόριθμος Prim. Γιατί δουλεύουν αυτοί οι αλγόριθμοι;
Άπληστοι Αλγόριθμοι ΙΙI Αλγόριθμοι γραφημάτων Ελάχιστο Γεννητικό Δένδρο Παράδειγμα Κατασκευή δικτύων Οδικά, επικοινωνίας Έχουμε ένα συνεκτικό γράφημα (V,E) και ένας βάρος we σε κάθε ακμή e. Να βρεθεί υποσύνολο
Δομές Δεδομένων και Αλγόριθμοι
Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 18 Dijkstra s Shortest Path Algorithm 1 / 12 Ο αλγόριθμος εύρεσης της συντομότερης διαδρομής του Dijkstra
(CLR, κεφάλαιο 32) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Παραστάσεις πολυωνύµων Πολυωνυµική Παρεµβολή ιακριτός Μετασχηµατισµός Fourier
Ταχύς Μετασχηµατισµός Fourier CLR, κεφάλαιο 3 Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Παραστάσεις πολυωνύµων Πολυωνυµική Παρεµβολή ιακριτός Μετασχηµατισµός Fourier Ταχύς Μετασχηµατισµός Fourier
Άπληστοι Αλγόριθµοι (CLR, κεφάλαιο 17)
Άπληστοι Αλγόριθµοι (CLR, κεφάλαιο 17) Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Σχεδιασµός αλγορίθµων µε Άπληστους Αλγόριθµους Στοιχεία άπληστων αλγορίθµων Το πρόβληµα επιλογής εργασιών ΕΠΛ 232
Εισαγωγή στους Αλγορίθμους Ενότητα 10η
Εισαγωγή στους Αλγορίθμους Ενότητα 10η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Κατ οίκον Εργασία 5 Σκελετοί Λύσεων
Κατ οίκον Εργασία 5 Σκελετοί Λύσεων Άσκηση 1 Χρησιμοποιούμε τις δομές: struct hashtable { struct node array[maxsize]; int maxsize; int size; struct node{ int data; int status; Στο πεδίο status σημειώνουμε
Αλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα Άπληστοι Αλγόριθμοι Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Άπληστοι Αλγόριθμοι Είναι δύσκολο να ορίσουμε ακριβώς την έννοια του άπληστου
Αναζήτηση Κατά Πλάτος
Αναζήτηση Κατά Πλάτος Επιµέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήµατα Μοντελοποίηση πολλών σηµαντικών προβληµάτων (π.χ. δίκτυα
Αναζήτηση Κατά Πλάτος
Αναζήτηση Κατά Πλάτος Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων (π.χ. δίκτυα
ΕΠΛ 232: Αλγόριθµοι και Πολυπλοκότητα. Κατ οίκον Εργασία 2A Σκελετοί Λύσεων
ΕΠΛ 232: λγόριθµοι και Πολυπλοκότητα Κατ οίκον Εργασία 2A Σκελετοί Λύσεων 1. ια τη σαφή διατύπωση του αλγόριθµου απαιτούνται τα εξής: ιατήρηση της ροής που κτίζεται από τον αλγόριθµο. ιατήρηση της περίσσειας
Κατανεμημένα Συστήματα Ι
Κατανεμημένα Συστήματα Ι Παναγιώτα Παναγοπούλου Χριστίνα Σπυροπούλου 8η Διάλεξη 8 Δεκεμβρίου 2016 1 Ασύγχρονη κατασκευή BFS δέντρου Στα σύγχρονα συστήματα ο αλγόριθμος της πλημμύρας είναι ένας απλός αλλά
Αλγόριθμοι Γραφημάτων
Αλγόριθμοι Γραφημάτων 1. Minimum Spanning Trees 2. Αλγόριθμος Prim 3. Αλγόριθμος Kruskal Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Minimum Spanning Tree Πρόβλημα: Για δοσμένο συνεκτικό, μη προσανατολισμένο,
Επίλυση Προβληµάτων µε Greedy Αλγόριθµους
Επίλυση Προβληµάτων µε Greedy Αλγόριθµους Περίληψη Επίλυση προβληµάτων χρησιµοποιώντας Greedy Αλγόριθµους Ελάχιστα Δέντρα Επικάλυψης Αλγόριθµος του Prim Αλγόριθµος του Kruskal Πρόβληµα Ελάχιστης Απόστασης
Αναζήτηση Κατά Πλάτος
Αναζήτηση Κατά Πλάτος ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων (π.χ. δίκτυα συνεκτικότητα,
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ενότητα 3 Αλγόριθµοι Γραφηµάτων Bellman Ford Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αλγόριθµοι και Πολυπλοκότητα - Ενότητα 3 Bellman
Αλγόριθµοι Γραφηµάτων
Αλγόριθµοι Γραφηµάτων Παύλος Σπυράκης Πανεπιστήµιο Πατρών Τοµέας Θεµελιώσεων και Εφαρµογών της Επιστήµης των Υπολογιστών Ερευνητικό Ακαδηµαϊκό Ινστιτούτο Τεχνολογίας Υπολογιστών Γραφήµατα Μοντελοποίηση
4η Γραπτή Ασκηση Αλγόριθμοι και Πολυπλοκότητα CoReLab ΣΗΜΜΥ 7 Φεβρουαρίου 2017 CoReLab (ΣΗΜΜΥ) 4η Γραπτή Ασκηση 7 Φεβρουαρίου / 38
4η Γραπτή Άσκηση Αλγόριθμοι και Πολυπλοκότητα CoReLab ΣΗΜΜΥ 7 Φεβρουαρίου 2017 CoReLab (ΣΗΜΜΥ) 4η Γραπτή Άσκηση 7 Φεβρουαρίου 2017 1 / 38 Άσκηση 1 Πρέπει να βρούμε όλες τις καλές προτάσεις φίλων για τον
Αλγόριθµοι Οπισθοδρόµησης
Αλγόριθµοι Οπισθοδρόµησης Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Η οπισθοδρόµηση στο σχεδιασµό αλγορίθµων Το πρόβληµα των σταθερών γάµων και ο αλγόριθµος των Gale-Shapley Το πρόβληµα
4η Γραπτή Ασκηση Αλγόριθμοι και Πολυπλοκότητα CoReLab ΣΗΜΜΥ 3/2/2019 CoReLab (ΣΗΜΜΥ) 4η Γραπτή Ασκηση 3/2/ / 37
4η Γραπτή Άσκηση Αλγόριθμοι και Πολυπλοκότητα CoReLab ΣΗΜΜΥ 3/2/2019 CoReLab (ΣΗΜΜΥ) 4η Γραπτή Άσκηση 3/2/2019 1 / 37 Άσκηση 1 Πρέπει να βρούμε όλες τις καλές προτάσεις φίλων για τον i ανάμεσα σε όλους
Εισαγωγή στους Αλγορίθμους Φροντιστήριο 7
Εισαγωγή στους Αλγορίθμους Φροντιστήριο 7 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 2: Εφαρμογές Δικτυωτής Ανάλυσης (1 ο Μέρος)
Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 2: Εφαρμογές Δικτυωτής Ανάλυσης (1 ο Μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #: Εύρεση Ελαχίστων Μονοπατιών σε Γραφήματα που Περιλαμβάνουν και Αρνητικά Βάρη: Αλγόριθμος
ΑΛΓΟΡΙΘΜΟΙ. Ενότητα 9: Άπληστοι Αλγόριθμοι. Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Τμήμα Πληροφορικής ΑΠΘ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΛΓΟΡΙΘΜΟΙ Ενότητα 9: Άπληστοι Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3
ΘΕΩΡΙΑ ΑΡΙΘΜΩΝ Ασκησεις - Φυλλαδιο 3 ιδασκοντες: Α. Μπεληγιάννης - Σ. Παπαδάκης Ιστοσελιδα Μαθηµατος : http://users.uoi.gr/abeligia/numbertheory/nt.html Τετάρτη 13 Μαρτίου 2013 Ασκηση 1. Αφού ϐρείτε την
Αναζήτηση Κατά Πλάτος
Αναζήτηση Κατά Πλάτος ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Γράφοι. κόµβοι) και ένα σύνολο από γραµµές (που λέγονται ακµές) οι οποίες
Ενότητα 11 Γράφοι (ή γραφήµατα) ΗΥ240 - Παναγιώτα Φατούρου 1 Γράφοι Ένας γράφος αποτελείται από ένα σύνολο από σηµεία (που λέγονται κόµβοι) και ένα σύνολο από γραµµές (που λέγονται ακµές) οι οποίες συνδέουν
Αναζήτηση Κατά Βάθος. Επιµέλεια διαφανειών:. Φωτάκης διαφάνειες για SCC: A. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Αναζήτηση Κατά Βάθος Επιµέλεια διαφανειών:. Φωτάκης διαφάνειες για SCC: A. Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναζήτηση Κατά Βάθος (DFS) Εξερεύνηση
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 9: Εισαγωγή στους Γράφους Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Γράφοι - ορισμοί και υλοποίηση Διάσχιση Γράφων Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο
Θεωρία Υπολογισμού και Πολυπλοκότητα Μαθηματικό Υπόβαθρο Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Σύνολα Συναρτήσεις και Σχέσεις Γραφήματα Λέξεις και Γλώσσες Αποδείξεις ΕΠΛ 211 Θεωρία
Αναζήτηση Κατά Βάθος. Επιμέλεια διαφανειών: Δ. Φωτάκης Συμπληρώσεις: Α. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Αναζήτηση Κατά Βάθος Επιμέλεια διαφανειών: Δ. Φωτάκης Συμπληρώσεις: Α. Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναζήτηση Κατά Βάθος (DFS) Εξερεύνηση
Κατανεμημένα Συστήματα Ι
Κατανεμημένα Συστήματα Ι Εκλογή αρχηγού και κατασκευή BFS δένδρου σε σύγχρονο γενικό δίκτυο Παναγιώτα Παναγοπούλου Περίληψη Εκλογή αρχηγού σε γενικά δίκτυα Ορισμός του προβλήματος Ο αλγόριθμος FloodMax
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 / ένδρα Ενα δένδρο είναι
Γράφοι. Ένας γράφος ή αλλιώς γράφηµα αποτελείται απο. Εφαρµογές: Τηλεπικοινωνιακά και Οδικά ίκτυα, Ηλεκτρονικά Κυκλώµατα, Β.. κ.ά.
Γράφοι Ένας γράφος ή αλλιώς γράφηµα αποτελείται απο πλευρές (ακµές) και κορυφές (κόµβους). Εφαρµογές: Τηλεπικοινωνιακά και Οδικά ίκτυα, Ηλεκτρονικά Κυκλώµατα, Β.. κ.ά. Graph Drawing 4 πιθανές αναπαραστάσεις
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Μαΐου 201 1 / Απληστοι (Greedy) Αλγόριθµοι
Σχεδιαση Αλγοριθμων -Τμημα Πληροφορικης ΑΠΘ - Κεφαλαιο 9ο
Σχεδίαση Αλγορίθμων Άπληστοι Αλγόριθμοι http://delab.csd.auth.gr/~gounaris/courses/ad 1 Άπληστοι αλγόριθμοι Προβλήματα βελτιστοποίησης ηςλύνονται με μια σειρά επιλογών που είναι: εφικτές τοπικά βέλτιστες
Μέγιστη ροή. Κατευθυνόμενο γράφημα. Συνάρτηση χωρητικότητας. αφετηρίακός κόμβος. τερματικός κόμβος. Ροή δικτύου. με τις ακόλουθες ιδιότητες
Κατευθυνόμενο γράφημα Συνάρτηση χωρητικότητας 2 6 20 Ροή δικτύου Συνάρτηση αφετηρίακός κόμβος 0 με τις ακόλουθες ιδιότητες 9 7 τερματικός κόμβος Περιορισμός χωρητικότητας: Αντισυμμετρία: Διατήρηση ροής:
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ, ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 422: ΣΥΣΤΗΜΑΤΑ ΠΟΛΥΜΕΣΩΝ Ακαδηµαϊκό Έτος 2004 2005, Χειµερινό Εξάµηνο Φροντιστηριακή Άσκηση 3: Εντροπία, κωδικοποίηση Quadtree 1. Εντροπία 22 Σεπτεµβρίου 2004
Γράφοι: κατευθυνόμενοι και μη
Γράφοι: κατευθυνόμενοι και μη (V,E ) (V,E ) Γράφος (ή γράφημα): ζεύγος (V,E), V ένα μη κενό σύνολο, Ε διμελής σχέση πάνω στο V Μη κατευθυνόμενος γράφος: σχέση Ε συμμετρική V: κορυφές (vertices), κόμβοι
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 11: Minimum Spanning Trees Αλγόριθμος Prim Αλγόριθμος Kruskal Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε
Μάθηµα Θεωρίας Αριθµών Ε.Μ.Ε 1. Να αποδειχθεί ότι κάθε ϑετικός ακέραιος αριθµός n 6, µπορεί να γραφεί στη µορφή όπου οι a, b, c είναι ϑετικοί ακέραιοι. n = a + b c,. Να αποδειχθεί ότι για κάθε ακέραιο
Συντομότερα Μονοπάτια για Όλα τα Ζεύγη Κορυφών
Συντομότερα Μονοπάτια για Όλα τα Ζεύγη Κορυφών Αλγόριθμοι και πολυπλοκότητα Στάθης Ζάχος, Δημήτρης Φωτάκης Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
ΣΗΜΕΙΩΣΕΙΣ. η τιμή της συνάρτησης είναι μεγαλύτερη από την τιμή της σε κάθε γειτονικό σημείο του x. . Γενικά έχουμε τον ακόλουθο ορισμό:
ΚΕΦΑΛΑΙΟ 3ο: ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ ΕΝΟΤΗΤΑ 9: ΤΟΠΙΚΑ ΑΚΡΟΤΑΤΑ ΣΥΝΑΡΤΗΣΗΣ ΘΕΩΡΗΜΑ FERMAT [Ενότητες Η Έννοια του Τοπικού Ακροτάτου Προσδιορισμός των τοπικών Ακροτάτων πλην του Θεωρήματος Εύρεση Τοπικών Ακροτάτων
Ενότητα 5: Αλγόριθμοι γράφων και δικτύων
Εισαγωγή στην Επιστήμη των Υπολογιστών ο εξάμηνο ΣΗΜΜΥ Ενότητα : Αλγόριθμοι γράφων και δικτύων Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 26 Ιουνίου 201 1 / Απληστοι (Greedy) Αλγόριθµοι
Αναζήτηση Κατά Βάθος. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Αναζήτηση Κατά Βάθος ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναζήτηση Κατά Βάθος (DFS) Εξερεύνηση
Αλγόριθμοι και Πολυπλοκότητα
7ο εξάμηνο Σ.Η.Μ.Μ.Υ. & Σ.Ε.Μ.Φ.Ε. http://www.corelab.ece.ntua.gr/courses/ 4η εβδομάδα: Εύρεση k-οστού Μικρότερου Στοιχείου, Master Theorem, Τεχνική Greedy: Knapsack, Minimum Spanning Tree, Shortest Paths
Αλγόριθμοι και πολυπλοκότητα Τα συντομότερα μονοπάτια(shortest Paths)
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα Τα συντομότερα μονοπάτια(shortest Paths) Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών Τα συντομότερα Μονοπάτια(Shortest Paths) A 2 7 2
Outline 1 Άσκηση 1: Εφαρμογές BFS DFS 2 Άσκηση 2: Μια Συνάρτηση Κόστους σε Κατευθυνόμενα Γραφήματα 3 Άσκηση 3: Ανάλυση Ασφάλειας 4 Άσκηση 4: Το Σύνολο
Αλγόριθμοι και Πολυπλοκότητα 3η σειρά γραπτών και προγραμματιστικών ασκήσεων CoReLab ΣΗΜΜΥ ΕΜΠ Ιανουάριος 2017 CoReLab ΣΗΜΜΥ ΕΜΠ Αλγόριθμοι και Πολυπλοκότητα Ιανουάριος 2017 1 / 53 Outline 1 Άσκηση 1:
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
ιάλεξη : λάχιστα εννητορικά ένδρα Αλγόριθμος Prim Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: λάχιστα εννητορικά ένδρα () Minimum Spanning Trees Ο αλγόριθμος του Prim για εύρεση σε γράφους
Θέματα Μεταγλωττιστών
Γιώργος Δημητρίου Ενότητα 7 η : Περιοχές: Εναλλακτική Μέθοδος Ανάλυσης Ροής Δεδομένων Περιοχές (Regions) Σε κάποιες περιπτώσεις βρόχων η ανάλυση ροής δεδομένων με τον επαναληπτικό αλγόριθμο συγκλίνει αργά
Αναζήτηση Κατά Βάθος. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Αναζήτηση Κατά Βάθος ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα:
υναµικός Προγραµµατισµός Στην ενότητα αυτή θα µελετηθούν τα εξής θέµατα: Σχεδιασµός αλγορίθµων µε υναµικό Προγραµµατισµό Το πρόβληµα του πολλαπλασιασµού πινάκων ΕΠΛ 3 Αλγόριθµοι και Πολυπλοκότητα 3- υναµικός
Κατανεμημένα Συστήματα Ι
Εκλογή αρχηγού σε γενικά δίκτυα 20 Οκτωβρίου 2016 Παναγιώτα Παναγοπούλου Εκλογή αρχηγού σε γενικά δίκτυα Προηγούμενη διάλεξη Σύγχρονα Κατανεμημένα Συστήματα Μοντελοποίηση συστήματος Πρόβλημα εκλογής αρχηγού
ΕΥΡΕΣΗ ΕΛΑΧΙΣΤΩΝ ΜΟΝΟΠΑΤΙΩΝ & ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΩΝ
ΕΥΡΕΣΗ ΕΛΑΧΙΣΤΩΝ ΜΟΝΟΠΑΤΙΩΝ & ΚΑΤΗΓΟΡΙΕΣ ΑΛΓΟΡΙΘΜΩΝ (ΑΛΓΟΡΙΘΜΟΙ, Sanjoy Dasgupta, Christos Papadimitriou, Umesh Vazirani, Κεφάλαιο 4 ΣΧΕΔΙΑΣΜΟΣ ΑΛΓΟΡΙΘΜΩΝ, Jon Kleinberg, Eva Tardos, Κεφάλαιο 4) 1 Θέματα
Προηγµένα Θέµατα Τεχνολογιών Υλοποίησης Αλγορίθµων
Προηγµένα Θέµατα Τεχνολογιών Υλοποίησης Αλγορίθµων Χρήστος Ζαρολιάγκης Καθηγητής Τµήµα Μηχ/κων Η/Υ & Πληροφορικής Πανεπιστήµιο Πατρών email: zaro@ceid.upatras.gr Ενότητα 6 1 / 35 Ενότητα 6 - Συντοµότερες
Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα)
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2016-17 Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα) http://mixstef.github.io/courses/csintro/ Μ.Στεφανιδάκης Αφηρημένες
Γ. Κορίλη Αλγόριθµοι ροµολόγησης
- Γ. Κορίλη Αλγόριθµοι ροµολόγησης http://www.seas.upenn.edu/~tcom50/lectures/lecture.pdf ροµολόγηση σε ίκτυα εδοµένων Αναπαράσταση ικτύου µε Γράφο Μη Κατευθυνόµενοι Γράφοι Εκτεταµένα έντρα Κατευθυνόµενοι
Πελάτες φθάνουν στο ταμείο μιας τράπεζας Eνα μόνο ταμείο είναι ανοικτό Κάθε πελάτης παρουσιάζεται με ένα νούμερο - αριθμός προτεραιότητας Όσο ο
Ουρές προτεραιότητας Πελάτες φθάνουν στο ταμείο μιας τράπεζας Eνα μόνο ταμείο είναι ανοικτό Κάθε πελάτης παρουσιάζεται με ένα νούμερο - αριθμός προτεραιότητας Όσο ο αριθμός είναι μεγάλος, τόσο οι πελάτες
Αλγόριθμοι Eλάχιστα μονοπάτια
Αλγόριθμοι Eλάχιστα μονοπάτια Μάρθα Σιδέρη Προτεινόμενη βιβλιογραφία: S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani «Αλγόριθμοι» Κλειδάριθμος 009 Κεφάλαιο. http://www.cs.berkeley.edu/~vazirani/algorithms/chap.pdf
ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 3η Θεωρία Γραφηµάτων
ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ Ε ρ γ α σ ί α η Θεωρία Γραφηµάτων Α π α ν τ ή σ ε ι ς Ε ρ ω τ η µ ά τ ω ν Ερώτηµα. Στο παρακάτω γράφηµα µε βάρη, να βρεθεί το µήκος του µικρότερου µονοπατιού
όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 10: Η γραφική παράσταση της συνάρτησης f (x) = 1/x.
3 Ορια συναρτήσεων 3. Εισαγωγικές έννοιες. Ας ϑεωρήσουµε την συνάρτηση f () = όπου D(f ) = (, 0) (0, + ) = R {0}. Είναι Σχήµα 0: Η γραφική παράσταση της συνάρτησης f () = /. ϕυσικό να αναζητήσουµε την
Θεωρία Γράφων Αλγόριθμοι BFS, Prim, Dijkstra, Bellman-Ford
Θεωρία ράφων λγόριθμοι BFS, Prim, Dijkstra, Bellman-Ford Θεωρία γράφων Υπογράφοι και spanning trees Ένας γράφος G =(V,E ) είναι υπογράφος (subgraph) ενός γράφου G=(V,E) αν V ' V και E' E Ένας υπογράφος
Αλγόριθμοι Γραφημάτων
Αλγόριθμοι Γραφημάτων. Γραφήματα. Αναπαράσταση Γραφημάτων 3. Διερεύνηση σε Πρώτα σε Πλάτος (BFS) Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Γράφημα Ορισμός: Ένα γράφημα G είναι το διατεταγμένο ζεύγος
Δομές Δεδομένων. Δημήτρης Μιχαήλ. Ουρές Προτεραιότητας. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
Δομές Δεδομένων Ουρές Προτεραιότητας Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Ουρά Προτεραιότητας Το πρόβλημα Έχουμε αντικείμενα με κλειδιά και θέλουμε ανά πάσα στιγμή
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 20: Τοπολογική Ταξινόμηση Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ολοκλήρωση Αλγορίθμων Διάσχισης Γράφων (Από Διάλεξη 19) Τοπολογική Ταξινόμηση Εφαρμογές, Παραδείγματα, Αλγόριθμοι
1 Το πρόβλημα της συντομότερης διαδρομής
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 00 Ιστοσελίδα μαθήματος: http://eclass.teilam.gr/di88 6ο ΕΡΓΑΣΤΗΡΙΟ
< 1 για κάθε k N, τότε η σειρά a k συγκλίνει. +, τότε η η σειρά a k αποκλίνει.
Ασκήσεις για το µάθηµα «Ανάλυση Ι και Εφαρµογές» Κεφάλαιο 3: Σειρές πραγµατικών αριθµών Α Οµάδα. Εστω ( ) µια ακολουθία πραγµατικών αριθµών. Εξετάστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς (αιτιολογήστε
ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ Φεβρουάριος 2005 Σύνολο μονάδων: 91
Ε.Μ.Πoλυτεχνείο ΣΗΜΜΥ, ΣΕΜΦΕ Τομέας Τεχνολογίας Πληροφορικής & Υπολογιστών Διδάσκων: Ε.Ζαχος Ονοματεπώνυμο:... Αριθμός Μητρώου:... Σχολή:... εξάμηνο:... ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ Φεβρουάριος 005 Σύνολο
Διάλεξη 23: Γράφοι IV - Βραχύτερα Μονοπάτια σε Γράφους
Διάλεξη 23: Γράφοι IV - Βραχύτερα Μονοπάτια σε Γράφους Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Βραχύτερα Μονοπάτια σε γράφους - Ο αλγόριθμος Dijkstra για εύρεση της βραχύτερης απόστασης
ΕΠΛ 231 Δοµές Δεδοµένων και Αλγόριθµοι 11-1
Γράφοι Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Γράφοι - ορισµοί και υλοποίηση Διάσχιση Γράφων Τοπολογική Ταξινόµηση ΕΠΛ 23 Δοµές Δεδοµένων και Αλγόριθµοι - Γράφοι Η πιο γενική µορφή δοµής
Σημειωματάριο Δευτέρας 4 Δεκ. 2017
Σημειωματάριο Δευτέρας 4 Δεκ. 2017 Ο αλγόριθμος Floyd-Warshall για την έυρεση όλων των αποστάσεων σε ένα γράφημα με βάρη στις ακμές Συνεχίσαμε σήμερα το θέμα της προηγούμενης Τετάρτης. Έχουμε ένα γράφημα
HY380 Αλγόριθμοι και πολυπλοκότητα Hard Problems
HY380 Αλγόριθμοι και πολυπλοκότητα Hard Problems Ημερομηνία Παράδοσης: 0/1/017 την ώρα του μαθήματος ή με email: mkarabin@csd.uoc.gr Γενικές Οδηγίες α) Επιτρέπεται η αναζήτηση στο Internet και στην βιβλιοθήκη
Chapter 7, 8 : Completeness
CSC 314: Switching Theory Chapter 7, 8 : Completeness 19 December 2008 1 1 Αναγωγές Πολυωνυμικού Χρόνου Ορισμός. f: Σ * Σ * ονομάζεται υπολογίσιμη σε πολυνωνυμικό χρόνο αν υπάρχει μια πολυωνυμικά φραγμένη
Διάλεξη 21: Γράφοι II - Τοπολογική Ταξινόμηση
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 21: Γράφοι II - Τοπολογική Ταξινόμηση Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Τοπολογική Ταξινόμηση - Εφαρμογές, Παραδείγματα, Αλγόριθμοι
Θεωρία και Αλγόριθμοι Γράφων
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 13: Προβλήματα Ροών σε Δίκτυα Ιωάννης Μανωλόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creaive
Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 3: Ελάχιστα Γεννητορικά Δέντρα Ο λγόριθμος Prim Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Ελάχιστα Γεννητορικά Δένδρα (ΕΓΔ) Minimum Spanning Trees -Ο αλγόριθμος του Primγια εύρεση