Εισαγωγή στην Επιστήμη των Υπολογιστών
|
|
- ebrew Αποστολίδης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Εισαγωγή στην Επιστήμη των Υπολογιστών 4 ο εξάμηνο ΣΗΜΜΥ 5 η ενότητα: Γράφοι: προβλήματα και αλγόριθμοι Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
2 Γράφοι: κατευθυνόμενοι και μη (V 1,E 1 ) (V 2,E 2 ) Γράφος (ή γράφημα): ζεύγος (V,E), V ένα μη κενό σύνολο, Ε διμελής σχέση πάνω στο V Μη κατευθυνόμενος γράφος: σχέση Ε συμμετρική V: κορυφές (vertices), κόμβοι (nodes) Ε: ακμές (edges) Ε 1 = {{1,2}, {1,3}, {2,3}, {3,4}, {3,5}, {4,6}} Ε 2 = {(1,3), (2,1), (2,4), (3,2), (3,4), (3,5), (4,2), (4,6), (5,6), (6,3)} Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 2
3 Γράφοι: ορολογία (V 1,E 1 ) (V 2,E 2 ) Γειτονικές (adjacent) κορυφές: συνδέονται με ακμή, π.χ. 4 και 6 Άκρα (endpoints) ακμής Προσπίπτουσα (incident) ακμή (σε κόμβο) Γειτονικές ακμές Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 3
4 Γράφοι: ορολογία 2-κανονικός γράφος Βαθμός (degree, valence) κορυφής v: οαριθμόςτων ακμών που προσπίπτουν στην v, deg(v) Ένας (μη κατευθυνόμενος) γράφος όπου deg(v) = k για κάθε κορυφή v, λέγεται k-κανονικός (k-regular) Σημαντική ιδιότητα: Σ deg(v) = 2 E Σε κατευθυνόμενο γράφο: in-deg(v), out-deg(v) Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 4
5 Διαδρομές σε γράφους κορυφές-ακμές Δρόμος: έγκυρη ακολουθία από Μονοπάτι: δρόμος χωρίς επαναλήψεις ακμών Απλό μονοπάτι: μονοπάτι χωρίς επαναλήψεις κορυφών Κύκλος: κλειστό μονοπάτι Απλός κύκλος: απλό κλειστό μονοπάτι του Μήκος δρόμου: το πλήθος των ακμών Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 5
6 Αναπαράσταση γράφων με πίνακα γειτνίασης: Αν έχουμε βάρη, Μη-κατευθυνόμενος: συμμετρικός πίνακας Χώρος: Θ(n 2 ) Προσπέλαση γειτόνων: Θ(n) Άμεσος έλεγχος ύπαρξης ακμής: Ο(1) Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 6
7 Αναπαράσταση γράφων με πίνακα γειτνίασης: Αν έχουμε βάρη, Κατευθυνόμενος: μη-συμμετρικός πίνακας Χώρος: Θ(n 2 ) Προσπέλαση γειτόνων: Θ(n) Άμεσος έλεγχος ύπαρξης ακμής: Ο(1) Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 7
8 Αναπαράσταση γράφων με λίστες γειτνίασης: γειτονικές κορυφές σε λίστες Αν έχουμε βάρη, τα αποθηκεύουμε στους κόμβους Χώρος: Θ(m) Προσπέλαση γειτόνων: Θ(deg(u)) Έλεγχος ύπαρξης ακμής: Ο(deg(u)) / / / / / 4 / Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 8
9 Αναπαράσταση γράφων με λίστες γειτνίασης: γειτονικές κορυφές σε λίστες Αν έχουμε βάρη, τα αποθηκεύουμε στους κόμβους Χώρος: Θ(m) Προσπέλαση γειτόνων: Θ(deg(u)) Έλεγχος ύπαρξης ακμής: Ο(deg(u)) Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 9
10 Γράφοι: συνεκτικοί και μη Ένας μη κατευθυνόμενος γράφος λέγεται συνεκτικός (connected) αν υπάρχει δρόμος μεταξύ οποιωνδήποτε δύο κορυφών του Σε συνεκτικό γράφο ισχύει: Ένας κατευθυνόμενος γράφος λέγεται ισχυρά συνεκτικός (strongly connected) αν υπάρχει δρόμος μεταξύ οποιωνδήποτε δύο κορυφών του ακολουθώντας τις κατευθύνσεις των ακμών ασθενώς συνεκτικός (weakly connected) αν υπάρχει δρόμος μεταξύ οποιωνδήποτε δύο κορυφών του αγνοώντας τιςκατευθύνσειςτωνακμών Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 10
11 Άλλες έννοιες Παράγων υπογράφος (spanning subgraph) Παραγόμενος υπογράφος (induced subgraph) Συνεκτικές συνιστώσες (connected components) Πλήρης γράφος (Κn), διμερής γράφος (πλήρης Kn,m) Επίπεδος γράφος: αν δεν περιέχει ως υπογράφους τα Κ5, Κ3,3 - ούτε γράφους που προκύπτουν από αυτά με υποδιαιρέσεις των ακμών τους Δένδρο (tree): συνεκτικός γράφος χωρίς κύκλους Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 11
12 Κλάσεις πολυπλοκότητας P: προβλήματα απόφασης επιλύσιμα σε πολυωνυμικό χρόνο ΝP: προβλήματα απόφασης με πιστοποιητικά επαληθεύσιμα σε πολυωνυμικό χρόνο Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 12
13 Προβλήματα Γράφων στην Κλάση P Κύκλος Euler Προσβασιμότητα (reachability) + Διάσχιση (traversal): DFS, BFS,... Συνεκτικές συνιστώσες (connected components) Συντομότερα μονοπάτια (shortest paths) Ελάχιστο συνδετικό δένδρο (minimum spanning tree) Μέγιστη ροή (maximum flow) Τέλειο ταίριασμα (perfect matching) Χρωματισμός ακμών διμερούς γράφου (bipartite edge ( coloring Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 13
14 Διάσχιση δένδρων Προδιατ/νη: καταγραφή κόμβου την 1 η φορά που τον συναντάμε Ενδοδιατ/νη: καταγραφή κόμβου την τελευταία φορά Μεταδιατ/νη: φύλλα 1 η φορά, λοιποί κόμβοι την 2 η Προδιατεταγμένη (preorder): Ενδοδιατεταγμένη (inorder): Μεταδιατεταγμένη (postorder): Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 14
15 Αναζήτηση Κατά Βάθος (DFS) Πολυπλοκότητα O( V + E ): σε κάθε κόμβο Ο(deg(v)) έλεγχοι και κλήσεις της dfs (με ποια αναπαράσταση;) Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 15
16 Παράδειγμα DFS Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 16
17 2 ο παράδειγμα DFS Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 17
18 2 ο παράδειγμα DFS Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 18
19 2 ο παράδειγμα DFS Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 19
20 2 ο παράδειγμα DFS Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 20
21 2 ο παράδειγμα DFS Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 21
22 2 ο παράδειγμα DFS Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 22
23 2 ο παράδειγμα DFS Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 23
24 2 ο παράδειγμα DFS Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 24
25 2 ο παράδειγμα DFS Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 25
26 2 ο παράδειγμα DFS Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 26
27 2 ο παράδειγμα DFS Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 27
28 2 ο παράδειγμα DFS Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 28
29 Αναζήτηση Κατά Πλάτος (BFS) Πολυπλοκότητα O( V + E ): σε κάθε κόμβο v, Ο(deg(v)) έλεγχοι και εισαγωγές στην ουρά Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 29
30 Παράδειγμα BFS Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 30
31 2 ο παράδειγμα BFS s Q 1 5 Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 31
32 2 ο παράδειγμα BFS s Q Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 32
33 2 ο παράδειγμα BFS s Q Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 33
34 2 ο παράδειγμα BFS s Q 7 8 Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 34
35 2 ο παράδειγμα BFS s Q 8 Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 35
36 2 ο παράδειγμα BFS s Q 3 9 Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 36
37 2 ο παράδειγμα BFS s Q 6 Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 37
38 2 ο παράδειγμα BFS Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 38
39 2 ο παράδειγμα BFS Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 39
40 Συντομότερα Μονοπάτια (Dijkstra) Πολυπλ/τα O( V 2 ): σε κάθε επανάληψη Ο( V ) για εύρεση ελαχίστου, Ο( V ) για ενημέρωση αποστάσεων Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 40
41 Παράδειγμα Dijkstra Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 41
42 2 ο παράδειγμα Dijkstra Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 42
43 2 ο παράδειγμα Dijkstra Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 43
44 2 ο παράδειγμα Dijkstra Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 44
45 2 ο παράδειγμα Dijkstra Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 45
46 2 ο παράδειγμα Dijkstra Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 46
47 2 ο παράδειγμα Dijkstra Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 47
48 2 ο παράδειγμα Dijkstra Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 48
49 2 ο παράδειγμα Dijkstra Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 49
50 Ελάχιστο Συνδετικό Δένδρο (MST) Κριτήριο Prim: Διαλέγουμε κάθε φορά την ακμή ελαχίστου κόστους έτσι ώστε ο νέος υπογράφος να παραμένει δένδρο Κριτήριο Kruskal: Διαλέγουμε κάθε φορά την ακμή ελαχίστου κόστους έτσι ώστε ο νέος υπογράφος να μην έχει κύκλους Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 50
51 Αλγόριθμος Prim Επιλέγεται ένας αρχικός κόμβος, π.χ. ο κόμβοςv. Η απόσταση του αρχικού κόμβου τίθεται στο 0, ενώ των υπόλοιπων κόμβων στο. Κάθε φορά επιλέγεται ο κόμβος, έστω w, με την ελάχιστη απόστασηαπότομέχριστιγμήςκατασκευασμένοδένδρο, και προστίθεται στο δένδρο. Ενημερώνονται οι αποστάσεις των υπόλοιπων κόμβων από το δένδρο με βάση το κόστος των ακμών (w,u i ): if cost(w,u i )<dist(u i ) then dist(u i ):=cost(w,u i ) Πολυπλοκότητα: O( V 2 ) Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 51
52 Αλγόριθμος Prim Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 52
53 Αλγόριθμος Prim Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 53
54 Αλγόριθμος Prim Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 54
55 Αλγόριθμος Prim Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 55
56 Αλγόριθμος Prim Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 56
57 Αλγόριθμος Prim Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 57
58 Αλγόριθμος Prim Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 58
59 Αλγόριθμος Prim Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 59
60 Αλγόριθμος Prim Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 60
61 Αλγόριθμος Kruskal Οι ακμές ταξινομούνται σε αύξουσα σειρά κόστους. Κάθε φορά επιλέγεται η ακμή ελαχίστου κόστους και αν δε δημιουργεί κύκλο στο μέχρι στιγμής δάσος προστίθεται σε αυτό, αλλιώς απορρίπτεται. Για αποδοτική υλοποίηση, η ύπαρξηκύκλουελέγχεταιμε χρήση πράξεων συνόλων (UNION-FIND). Πολυπλοκότητα: O( E log E ) Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 61
62 Αλγόριθμος Kruskal Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 62
63 Αλγόριθμος Kruskal Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 63
64 Αλγόριθμος Kruskal Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 64
65 Αλγόριθμος Kruskal Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 65
66 Αλγόριθμος Kruskal Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 66
67 Αλγόριθμος Kruskal Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 67
68 Αλγόριθμος Kruskal Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 68
69 Αλγόριθμος Kruskal Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 69
70 Αλγόριθμος Kruskal Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 70
71 NP-πλήρη Προβλήματα Γράφων VERTEX COVER CLIQUE HAMILTON CIRCUIT (HC) TRAVELING SALESMAN (TSP) 3-COLORABILITY SUBGRAPH ISOMORPHISM 3-DIMENSIONAL MATCHING (3DM) Εισαγωγή στην Επιστήμη των Υπολογιστών Γράφοι: Προβλήματα και Αλγόριθμοι 71
Εισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών 4 ο εξάμηνο ΣΗΜΜΥ 4 η ενότητα: Γράφοι: προβλήματα και αλγόριθμοι Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών
Ενότητα 5: Αλγόριθμοι γράφων και δικτύων
Εισαγωγή στην Επιστήμη των Υπολογιστών ο εξάμηνο ΣΗΜΜΥ Ενότητα : Αλγόριθμοι γράφων και δικτύων Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών
Γράφοι: κατευθυνόμενοι και μη
Γράφοι: κατευθυνόμενοι και μη (V,E ) (V,E ) Γράφος (ή γράφημα): ζεύγος (V,E), V ένα μη κενό σύνολο, Ε διμελής σχέση πάνω στο V Μη κατευθυνόμενος γράφος: σχέση Ε συμμετρική V: κορυφές (vertices), κόμβοι
Αναζήτηση Κατά Πλάτος
Αναζήτηση Κατά Πλάτος Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων (π.χ. δίκτυα
Αναζήτηση Κατά Πλάτος
Αναζήτηση Κατά Πλάτος Επιµέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήµατα Μοντελοποίηση πολλών σηµαντικών προβληµάτων (π.χ. δίκτυα
Αναζήτηση Κατά Πλάτος
Αναζήτηση Κατά Πλάτος ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων (π.χ. δίκτυα συνεκτικότητα,
Αναζήτηση Κατά Πλάτος
Αναζήτηση Κατά Πλάτος ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Βασικές Έννοιες Θεωρίας Γραφημάτων
Βασικές Έννοιες Θεωρίας Γραφημάτων ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση
Γράφοι. Αλγόριθμοι και πολυπλοκότητα. Στάθης Ζάχος, Δημήτρης Φωτάκης
Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αλγόριθμοι και πολυπλοκότητα Στάθης Ζάχος, Δημήτρης Φωτάκης Γράφοι Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Βασικές Έννοιες Θεωρίας Γραφημάτων
Βασικές Έννοιες Θεωρίας Γραφημάτων Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων
Γράφοι. Ένας γράφος ή αλλιώς γράφηµα αποτελείται απο. Εφαρµογές: Τηλεπικοινωνιακά και Οδικά ίκτυα, Ηλεκτρονικά Κυκλώµατα, Β.. κ.ά.
Γράφοι Ένας γράφος ή αλλιώς γράφηµα αποτελείται απο πλευρές (ακµές) και κορυφές (κόµβους). Εφαρµογές: Τηλεπικοινωνιακά και Οδικά ίκτυα, Ηλεκτρονικά Κυκλώµατα, Β.. κ.ά. Graph Drawing 4 πιθανές αναπαραστάσεις
έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο έντρα έντρο: πρότυπο ιεραρχικής δομής. Αναπαράσταση
Κεφάλαιο 3. Γραφήµατα v1.0 ( ) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.
Κεφάλαιο 3 Γραφήµατα v1.0 (2010-05-25) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισµοί και Εφαρµογές γραφήµατα γράφηµα G: ένας τρόπος κωδικοποίησης των σχέσεων
ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
έντρα ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο έντρα έντρο: πρότυπο ιεραρχικής δομής.
Κεφάλαιο 3. Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.
Κεφάλαιο 3 Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισµοί και Εφαρµογές γραφήµατα γράφηµα G: ένας τρόπος κωδικοποίησης των σχέσεων
Αλγόριθµοι Γραφηµάτων
Αλγόριθµοι Γραφηµάτων Παύλος Σπυράκης Πανεπιστήµιο Πατρών Τοµέας Θεµελιώσεων και Εφαρµογών της Επιστήµης των Υπολογιστών Ερευνητικό Ακαδηµαϊκό Ινστιτούτο Τεχνολογίας Υπολογιστών Γραφήµατα Μοντελοποίηση
Στοιχεία Θεωρίας Γράφων (Graph Theory)
Στοιχεία Θεωρίας Γράφων (Graph Theory) Ε Εξάμηνο, Τμήμα Πληροφορικής & Τεχνολογίας Υπολογιστών ΤΕΙ Λαμίας plam@inf.teilam.gr, Οι διαφάνειες βασίζονται στα βιβλία:. Αλγόριθμοι, Σχεδιασμός & Ανάλυση, η έκδοση,
Κεφάλαιο 3. Γραφήματα. v1.3 ( ) Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.
Κεφάλαιο 3 Γραφήματα v1.3 (2014-01-30) Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισμοί και Εφαρμογές γραφήματα γράφημα G: ένας τρόπος κωδικοποίησης των σχέσεων
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 9: Εισαγωγή στους Γράφους Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Γράφοι - ορισμοί και υλοποίηση Διάσχιση Γράφων Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
3η Σειρά Γραπτών Ασκήσεων
1/48 3η Σειρά Γραπτών Ασκήσεων Αλγόριθμοι και Πολυπλοκότητα ΣΗΜΜΥ, Εθνικό Μετσόβιο Πολυτεχνείο 2/48 1 Άσκηση 1: Πομποί και Δέκτες 2 Άσκηση 2: Διακοπές στην Ικαρία 3 Άσκηση 3: Επιστροφή στη Γη 4 Άσκηση
Αλγόριθμοι Δικτύων και Πολυπλοκότητα
Αλγόριθμοι Δικτύων και Πολυπλοκότητα Εισαγωγή σε βασικές έννοιες αλγορίθμων και πολυπλοκότητας και γραφοθεωρητικών προβλημάτων Άρης Παγουρτζής ΕΜΠ ΑΛΜΑ Ευχαριστίες: μέρος των διαφανειών αυτών προέρχεται
ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ Φεβρουάριος 2005 Σύνολο μονάδων: 91
Ε.Μ.Πoλυτεχνείο ΣΗΜΜΥ, ΣΕΜΦΕ Τομέας Τεχνολογίας Πληροφορικής & Υπολογιστών Διδάσκων: Ε.Ζαχος Ονοματεπώνυμο:... Αριθμός Μητρώου:... Σχολή:... εξάμηνο:... ΑΛΓΟΡΙΘΜΟΙ ΚΑΙ ΠΟΛΥΠΛΟΚΟΤΗΤΑ Φεβρουάριος 005 Σύνολο
Σχεδιαση Αλγοριθμων -Τμημα Πληροφορικης ΑΠΘ - Κεφαλαιο 9ο
Σχεδίαση Αλγορίθμων Άπληστοι Αλγόριθμοι http://delab.csd.auth.gr/~gounaris/courses/ad 1 Άπληστοι αλγόριθμοι Προβλήματα βελτιστοποίησης ηςλύνονται με μια σειρά επιλογών που είναι: εφικτές τοπικά βέλτιστες
Υπολογιστική Πολυπλοκότητα
Υπολογιστική Πολυπλοκότητα ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Αλγόριθμοι και Πολυπλοκότητα
7ο εξάμηνο Σ.Η.Μ.Μ.Υ. & Σ.Ε.Μ.Φ.Ε. http://www.corelab.ece.ntua.gr/courses/ 4η εβδομάδα: Εύρεση k-οστού Μικρότερου Στοιχείου, Master Theorem, Τεχνική Greedy: Knapsack, Minimum Spanning Tree, Shortest Paths
Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα)
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2016-17 Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα) http://mixstef.github.io/courses/csintro/ Μ.Στεφανιδάκης Αφηρημένες
Γράφοι. Ορολογία. Ορισµός: G = (V, E) όπου. Ορολογία (συνέχεια) γράφος ή γράφηµα (graph) V:ένα σύνολο E:µια διµελής σχέση στο V
Γράφοι Ορολογία γράφος ή γράφηµα (graph) Ορισµός: G = (V, E) όπου V:ένα σύνολο E:µια διµελής σχέση στο V Ορολογία (συνέχεια) κάθε v V ονοµάζεται κορυφή (vertex) ή κόµβος (node) κάθε (v 1, v 2 ) Ε ονοµάζεται
Υπολογιστική Πολυπλοκότητα
Υπολογιστική Πολυπλοκότητα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα Γιατί κάποια (επιλύσιμα) προβλήματα είναι δύσκολο
Αλγόριθμοι και Πολυπλοκότητα
Αλγόριθμοι και Πολυπλοκότητα 7ο εξάμηνο ΣHMΜY Εισαγωγή Διδάσκοντες: Άρης Παγουρτζής, Δώρα Σούλιου Στάθης Ζάχος, Δημήτρης Σακαβάλας Επιμέλεια διαφανειών: Άρης Παγουρτζής www.corelab.ntua.gr/courses/algorithms
ΠΛΗ 20, 6 η ΟΣΣ: Δέντρα Εξετάσεις
ΠΛΗ 20, 6 η ΟΣΣ: Δέντρα Εξετάσεις Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο Δέντρα Δέντρο: πρότυπο ιεραρχικής δομής. Αναπαράσταση (ιεραρχικών)
Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα
Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα και 12 26 20 10 9 7 17 14 4 Τομές Γραφήματος Γράφημα (μη κατευθυνόμενο)
Κεφάλαιο 3. Γραφήματα. ver. 21/12/2014. Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.
Κεφάλαιο 3 Γραφήματα ver. 21/12/2014 Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισμοί και Εφαρμογές γραφήματα γράφημα G: ένας τρόπος κωδικοποίησης των σχέσεων ανά
3η Σειρά Γραπτών Ασκήσεων
1/55 3η Σειρά Γραπτών Ασκήσεων Αλγόριθμοι και Πολυπλοκότητα ΣΗΜΜΥ, Εθνικό Μετσόβιο Πολυτεχνείο 2/55 1 Άσκηση 1: Πομποί και Δέκτες 2 Άσκηση 2: Διακοπές στην Ικαρία 3 Άσκηση 3: Επιστροφή στη Γη 4 Άσκηση
Μέγιστη Ροή Ελάχιστη Τομή
Μέγιστη Ροή Ελάχιστη Τομή Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Δίκτυα και Ροές Δίκτυο : κατευθυνόμενο γράφημα G(V, E). Πηγή,
ΔΙΑΣΧΙΣΗ ΓΡΑΦΗΜΑΤΩΝ 1
ΔΙΑΣΧΙΣΗ ΓΡΑΦΗΜΑΤΩΝ 1 Θέματα μελέτης Πρόβλημα αναζήτησης σε γραφήματα Αναζήτηση κατά βάθος (Depth-first search DFS) Αναζήτηση κατά πλάτος (Breadth-first search BFS) 2 Γράφημα (graph) Αναπαράσταση συνόλου
Ασυμπτωτικός Συμβολισμός
Ασυμπτωτικός Συμβολισμός Επιμέλεια διαφανειών: Δημήτρης Φωτάκης (λίγες προσθήκες: Άρης Παγουρτζής) Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Υπολογιστική Πολυπλοκότητα
Αλγόριθμοι Γράφων. Κεφάλαιο Διάσχιση γράφων Γενικά Αναζήτηση κατά πλάτος (Breadth First Search)
Κεφάλαιο Αλγόριθμοι Γράφων. Διάσχιση γράφων.. Γενικά Οι τεχνικές διάσχισης γράφων μας βοηθούν στο να επισκεπτόμαστε συστηματικά τους κόμβους ενός γράφου G(V,E) έτσι ώστε να δίνουμε γρήγορα απαντήσεις σε
Άσκηση 3 (ανακοινώθηκε στις 24 Απριλίου 2017, προθεσμία παράδοσης: 2 Ιουνίου 2017, 12 τα μεσάνυχτα).
Κ08 Δομές Δεδομένων και Τεχνικές Προγραμματισμού Διδάσκων: Μανόλης Κουμπαράκης Εαρινό Εξάμηνο 2016-2017. Άσκηση 3 (ανακοινώθηκε στις 24 Απριλίου 2017, προθεσμία παράδοσης: 2 Ιουνίου 2017, 12 τα μεσάνυχτα).
Ελάχιστο Συνδετικό Δέντρο
Ελάχιστο Συνδετικό Δέντρο Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Ελάχιστο Συνδετικό Δέντρο
Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων)
Πληροφοριακά Συστήματα Διοίκησης (ΜΒΑ) Ενότητα 1: Δικτυωτή Ανάλυση (Θεωρία Γράφων) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων
Μέγιστη Ροή Ελάχιστη Τομή
Μέγιστη Ροή Ελάχιστη Τομή Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Δίκτυα και Ροές Δίκτυο : κατευθυνόμενο γράφημα G(V, E). Πηγή, προορισμός, χωρητικότητα ακμής b e. ροή μεγέθους
Ελάχιστο Συνδετικό Δέντρο
Ελάχιστο Συνδετικό Δέντρο Διδάσκοντες: Σ. Ζάχος, Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Ελάχιστο Συνδετικό Δέντρο
Αλγόριθμοι Προσέγγισης για NP-Δύσκολα Προβλήματα
Αλγόριθμοι Προσέγγισης για NP-Δύσκολα Προβλήματα Διδάσκοντες: E. Ζάχος, Α. Παγουρτζής Δ. Φωτάκης Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο
Συντομότερες Διαδρομές
Συντομότερες Διαδρομές Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συντομότερη Διαδρομή Κατευθυνόμενο G(V, E, w) με μήκη Μήκος διαδρομής
βασικές έννοιες (τόμος Β)
θεωρία γραφημάτων Παύλος Εφραιμίδης 1 περιεχόμενα βασικές έννοιες (τόμος Α) βασικές έννοιες (τόμος Β) 2 Θεωρία Γραφημάτων Βασική Ορολογία Τόμος Α, Ενότητα 4.1 Βασική Ορολογία Γραφημάτων Γράφημα Γ = (E,V)
Διάλεξη 29: Γράφοι. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 9: Γράφοι Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Γράφοι - ορισμοί και υλοποίηση - Διάσχιση Γράφων Διδάσκων: Παναγιώτης νδρέου ΕΠΛ035 Δομές Δεδομένων και λγόριθμοι για Ηλ. Μηχ.
Μετασχηματισμοί, Αναπαράσταση και Ισομορφισμός Γραφημάτων
Μετασχηματισμοί, Αναπαράσταση και Ισομορφισμός Γραφημάτων ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Μαΐου 201 1 / Απληστοι (Greedy) Αλγόριθµοι
Αλγόριθμοι Γραφημάτων
Αλγόριθμοι Γραφημάτων 1. Minimum Spanning Trees 2. Αλγόριθμος Prim 3. Αλγόριθμος Kruskal Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Minimum Spanning Tree Πρόβλημα: Για δοσμένο συνεκτικό, μη προσανατολισμένο,
Αναζήτηση Κατά Βάθος. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Αναζήτηση Κατά Βάθος ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναζήτηση Κατά Βάθος (DFS) Εξερεύνηση
Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες
Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο
Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες
Θεωρία Γραφημάτων: Ορολογία και Βασικές Έννοιες Διδάσκοντες: Δ. Φωτάκης, Δ. Σούλιου Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα
Γραφήματα. Κεφάλαιο Εισαγωγικές έννοιες Ορισμός
Κεφάλαιο 3 Γραφήματα 3.1 Εισαγωγικές έννοιες Ορισμός Ορισμός 3.1. Γράφος (ή γράφημα) G, ονομάζεται ένα διατεταγμένο ζεύγος συνόλων (V, E), όπου V είναι μη κενό σύνολο στοιχείων και E ένα σύνολο μη διατεταγμένων
Αναζήτηση Κατά Βάθος. Επιμέλεια διαφανειών: Δ. Φωτάκης Συμπληρώσεις: Α. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Αναζήτηση Κατά Βάθος Επιμέλεια διαφανειών: Δ. Φωτάκης Συμπληρώσεις: Α. Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναζήτηση Κατά Βάθος (DFS) Εξερεύνηση
Ελάχιστο Συνδετικό έντρο
Ελάχιστο Συνδετικό έντρο ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων ΣΗΜΜΥ - Ε.Μ.Π.
Αλγόριθμοι και πολυπλοκότητα: 4 η σειρά ασκήσεων CO.RE.LAB. ΣΗΜΜΥ - Ε.Μ.Π. Άσκηση 1 η : Παιχνίδι επιλογής ακμών Έχουμε ένα ακυκλικό κατευθυνόμενο γράφο, μια αρχική κορυφή και δυο παίκτες. Οι παίκτες διαδοχικά
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 11: Minimum Spanning Trees Αλγόριθμος Prim Αλγόριθμος Kruskal Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
(elementary graph algorithms)
(elementary graph algorithms) Παύλος Εφραιμίδης 1 περιεχόμενα γραφήματα αναπαραστάσεις οριζόντια διερεύνηση καθοδική διερεύνηση 2 ΓΡΑΦΉΜΑΤΑ 3 αναπαράσταση δύο καθιερωμένοι τρόποι: πίνακας γειτνίασης συλλογή
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα 26 Ιουνίου 201 1 / Απληστοι (Greedy) Αλγόριθµοι
ΠΛΗ111. Ανοιξη 2005. Μάθηµα 10 ο. Γράφοι. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης
ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 10 ο Γράφοι Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης Γράφοι Ορισµός Αφηρηµένος τύπος δεδοµένων Υλοποίηση Αναζήτηση έντρο
Αναζήτηση Κατά Βάθος. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Αναζήτηση Κατά Βάθος ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Κλάσεις Πολυπλοκότητας
Κλάσεις Πολυπλοκότητας Παύλος Εφραιμίδης pefraimi ee.duth.gr Κλάσεις Πολυπλοκότητας 1 Οι κλάσεις πολυπλοκότητας P και NP P: Polynomial ΗκλάσηP περιλαμβάνει όλα τα υπολογιστικά προβλήματα που μπορούν
Ελάχιστο Συνδετικό Δέντρο
Ελάχιστο Συνδετικό Δέντρο Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Ελάχιστο Συνδετικό Δέντρο (MST) Συνεκτικό μη-κατευθ. G(V, E, w) με βάρη Βάρος
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 6. Δυαδικά Δέντρα 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 18/11/2016 Εισαγωγή Τα
Συντομότερες Διαδρομές
Συντομότερη Διαδρομή Συντομότερες Διαδρομές Διδάσκοντες: Σ Ζάχος, Δ Φωτάκης Επιμέλεια διαφανειών: Δ Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Κατευθυνόμενο G(V, E, w) με μήκη Μήκος
Αναζήτηση στους γράφους. - Αναζήτηση η κατά βάθος Συνεκτικές Συνιστώσες - Αλγόριθμος εύρεσης συνεκτικών συνιστωσών
Αναζήτηση στους γράφους Βασικός αλγόριθμος λό - Αναζήτηση κατά πλάτος - Αναζήτηση η κατά βάθος Συνεκτικές Συνιστώσες - Αλγόριθμος εύρεσης συνεκτικών συνιστωσών Διάσχιση (αναζήτηση ) στους γράφους Φεύγοντας
ΑΛΓΟΡΙΘΜΟΙ. Ενότητα 9: Άπληστοι Αλγόριθμοι. Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Τμήμα Πληροφορικής ΑΠΘ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΑΛΓΟΡΙΘΜΟΙ Ενότητα 9: Άπληστοι Ιωάννης Μανωλόπουλος, Καθηγητής Αναστάσιος Γούναρης, Επίκουρος Καθηγητής Άδειες Χρήσης Το παρόν εκπαιδευτικό
ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων
ΠΛΗ 20, 4 η ΟΣΣ: Βασικές Έννοιες Θεωρίας Γραφημάτων Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο 3 η Εργασία: Γενική Εικόνα Αρκετά απαιτητικά ερωτήματα,
Εισαγωγή στους Αλγόριθμους
Εισαγωγή στους Αλγόριθμους Εύη Παπαϊωάννου Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών Σκοποί ενότητας Παρουσίαση και μελέτη αλγορίθμων
Συντομότερες ιαδρομές
Συντομότερες ιαδρομές ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Προηγμένα Θέματα Αλγορίθμων (ΣΗΜΜΥ ΕΜΠ) Αλγόριθμοι Δικτύων και Πολυπλοκότητα (ΕΜΠ - ΑΛΜΑ) Προσεγγιστικοί Αλγόριθμοι.
Προηγμένα Θέματα Αλγορίθμων (ΣΗΜΜΥ ΕΜΠ) Αλγόριθμοι Δικτύων και Πολυπλοκότητα (ΕΜΠ - ΑΛΜΑ) Προσεγγιστικοί Αλγόριθμοι Άρης Παγουρτζής Άνοιξη 2018 Προσεγγιστικοί Αλγόριθμοι Αφορούν κυρίως σε προβλήματα βελτιστοποίησης:
Αναζήτηση Κατά Βάθος. Επιµέλεια διαφανειών:. Φωτάκης διαφάνειες για SCC: A. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Αναζήτηση Κατά Βάθος Επιµέλεια διαφανειών:. Φωτάκης διαφάνειες για SCC: A. Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναζήτηση Κατά Βάθος (DFS) Εξερεύνηση
ΕΠΛ 231 Δοµές Δεδοµένων και Αλγόριθµοι 11-1
Γράφοι Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Γράφοι - ορισµοί και υλοποίηση Διάσχιση Γράφων Τοπολογική Ταξινόµηση ΕΠΛ 23 Δοµές Δεδοµένων και Αλγόριθµοι - Γράφοι Η πιο γενική µορφή δοµής
ΑΝΤΙΣΤΟΙΧΗΣΕΙΣ ΟΡΩΝ ΠΟΥ ΧΡΗΣΙΜΟΠΟΙOΥΝΤΑΙ ΣΤΟΥΣ ΤΟΜΟΥΣ Α ΚΑΙ Β ΤΗΣ ΘΕ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» Ένα γράφημα αποτελείται από ένα σύνολο 94.
ΑΝΤΙΣΤΟΙΧΗΣΕΙΣ ΟΡΩΝ ΠΟΥ ΧΡΗΣΙΜΟΠΟΙOΥΝΤΑΙ ΣΤΟΥΣ ΤΟΜΟΥΣ Α ΚΑΙ Β ΤΗΣ ΘΕ «ΔΙΑΚΡΙΤΑ ΜΑΘΗΜΑΤΙΚΑ» ΤΟΜΟΣ Α ΤΟΜΟΣ Β ΑΓΓΛΙΚΗ Γράφημα, Γράφος, Ένα γράφημα αποτελείται από ένα σύνολο 94 11 κορυφών και ένα σύνολο ακμών.
Κατανεμημένα Συστήματα Ι
Κατανεμημένα Συστήματα Ι Παναγιώτα Παναγοπούλου Χριστίνα Σπυροπούλου 8η Διάλεξη 8 Δεκεμβρίου 2016 1 Ασύγχρονη κατασκευή BFS δέντρου Στα σύγχρονα συστήματα ο αλγόριθμος της πλημμύρας είναι ένας απλός αλλά
Γράφοι. κόµβοι) και ένα σύνολο από γραµµές (που λέγονται ακµές) οι οποίες
Ενότητα 11 Γράφοι (ή γραφήµατα) ΗΥ240 - Παναγιώτα Φατούρου 1 Γράφοι Ένας γράφος αποτελείται από ένα σύνολο από σηµεία (που λέγονται κόµβοι) και ένα σύνολο από γραµµές (που λέγονται ακµές) οι οποίες συνδέουν
Ελάχιστο Συνδετικό έντρο
Ελάχιστο Συνδετικό έντρο ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Ελάχιστο Συνδετικό έντρο (MST) Συνεκτικό μη-κατευθ. G(V, E, w) με βάρη Βάρος
Αλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ενότητα 3 Αλγόριθµοι Γραφηµάτων Prim-Kruskal Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Καθηγητής: Ν. Μ. Μισυρλής Αλγόριθµοι και Πολυπλοκότητα - Ενότητα 3 Prim-Kruskal
Αφηρημένες Δομές Δεδομένων. Στοίβα (Stack) Υλοποίηση στοίβας
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής ισαγωγή στην πιστήμη των Υπολογιστών 2015-16 λγόριθμοι και ομές εδομένων (IΙ) (γράφοι και δένδρα) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης φηρημένες
u v 4 w G 2 G 1 u v w x y z 4
Διάλεξη :.0.06 Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος. Εισαγωγικοί ορισμοί Ορισμός. Γράφημα G καλείται ένα ζεύγος G = (V, E) όπου V είναι το σύνολο των κορυφών (ή κόμβων) και E
Μη Ντετερμινισμός και NP-Πληρότητα
Μη Ντετερμινισμός και NP-Πληρότητα Διδάσκοντες: Σ Ζάχος, Δ Φωτάκης Επιμέλεια διαφανειών: Δ Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μη Ντετερμινιστικές
Ενότητα 10 Γράφοι (ή Γραφήµατα)
Ενότητα 10 Γράφοι (ή γραφήµατα) ΗΥ240 - Παναγιώτα Φατούρου 1 Γράφοι (ή Γραφήµατα) Ένας γράφος αποτελείται από ένα σύνολο από σηµεία (που λέγονται κόµβοι) και ένα σύνολο από γραµµές (που λέγονται ακµές)
Μη Ντετερμινισμός και NP-Πληρότητα
Μη Ντετερμινισμός και NP-Πληρότητα Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μη Ντετερμινιστικές Μηχανές Turing Μη ντετερμινιστική
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Βασικές Ιδιότητες και Διάσχιση Κεφάλαιο 5 ( και ) Ε. Μαρκάκης Επίκουρος Καθηγητής
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Βασικές Ιδιότητες και Διάσχιση Κεφάλαιο 5 (5.1-5.2 και 5.4-5.6) Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Δέντρα Βασικοί ορισµοί Μαθηµατικές ιδιότητες Διάσχιση δέντρων Preorder, postorder,
ΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου,
Γράφοι Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Γράφοι - ορισµοί και υλοποίηση Τοπολογική Ταξινόµηση ιάσχιση Γράφων ΕΠΛ 23 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 26 - Γράφοι Ηπιο
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων
Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων 11. Γράφοι 2 ομές εδομένων 4 5 Χρήστος ουλκερίδης Τμήμα Ψηφιακών Συστημάτων 23/12/2016 Εισαγωγή Οι γράφοι
Αλγόριθμοι εύρεσης ελάχιστων γεννητικών δέντρων (MST)
Αλγόριθμοι εύρεσης ελάχιστων γεννητικών δέντρων (MST) Γεννητικό δέντρο (Spanning Tree) Ένα γεννητικό δέντρο για ένα γράφημα G είναι ένα υπογράφημα του G που είναι δέντρο (δηλ., είναι συνεκτικό και δεν
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ
ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΦΡΟΝΤΙΣΤΗΡΙΟ ΑΛΓΟΡΙΘΜΩΝ ΒΟΗΘΟΣ: ΒΑΓΓΕΛΗΣ ΔΟΥΡΟΣ Φροντιστήριο #: Εύρεση Ελαχίστων Μονοπατιών σε Γραφήματα που Περιλαμβάνουν και Αρνητικά Βάρη: Αλγόριθμος
Αλγόριθμοι για Ασύρματα Δίκτυα. Θεωρία Γραφημάτων
Αλγόριθμοι για Ασύρματα Δίκτυα Θεωρία Γραφημάτων Ασύρματα Δίκτυα Ιδιότητες Χρησιμότητα Προκλήσεις Τεχνικές για την αντιμετώπιση των προκλήσεων αυτών Ασύρματες συσκευές υπάρχουν παντού γύρω μας Τι συμβαίνει
Outline 1 Άσκηση 1 2 Άσκηση 2 3 Άσκηση 3 4 Άσκηση 4 5 Άσκηση 5 6 Προγραμματιστική Άσκηση 1 7 Προγραμματιστική Άσκηση 2 (CoReLab - NTUA) Αλγόριθμοι - 3
Αλγόριθμοι και Πολυπλοκότητα 3η Σειρά Γραπτών και Προγραμματιστικών Ασκήσεων CoReLab ΣΗΜΜΥ - Ε.Μ.Π. Ιανουάριος 2019 (CoReLab - NTUA) Αλγόριθμοι - 3η σειρά ασκήσεων Ιανουάριος 2019 1 / 54 Outline 1 Άσκηση
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές Δεδομένων. Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές Δεδομένων Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού
Αλγόριθμοι και πολυπλοκότητα Περιήγηση Πανεπιστημίων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Αλγόριθμοι και πολυπλοκότητα Περιήγηση Πανεπιστημίων Ιωάννης Τόλλης Τμήμα Επιστήμης Υπολογιστών Περιήγηση Πανεπιστημίων 5/8/008 :46 AM Campus Tour Περίληψη και ανάγνωση
Συντομότερες ιαδρομές
Συντομότερες ιαδρομές ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Συντομότερη ιαδρομή Κατευθυνόμενο G(V, E, w) με μήκη Μήκος διαδρομής Απόσταση d(u,
6η Διάλεξη Διάσχιση Γράφων και Δέντρων
ΘΕΩΡΙΑ ΓΡΑΦΩΝ 6 η Διάλεξη Διάσχιση Γράφων και Δέντρων Αλγόριθμος αναζήτησης σε Βαθος Αλγόριθμος αναζήτησης κατά Πλάτος Αλγόριθμοι για Δένδρα Εύρεση ελαχίστων Γεννητορικών (Επικαλύπτοντα) Δένδρων Διάσχιση
Άσκηση 3 (ανακοινώθηκε στις 14 Μαΐου 2018, προθεσμία παράδοσης: 8 Ιουνίου 2018, 12 τα μεσάνυχτα).
Κ08 Δομές Δεδομένων και Τεχνικές Προγραμματισμού Διδάσκων: Μανόλης Κουμπαράκης Εαρινό Εξάμηνο 2017-2018. Άσκηση 3 (ανακοινώθηκε στις 14 Μαΐου 2018, προθεσμία παράδοσης: 8 Ιουνίου 2018, 12 τα μεσάνυχτα).
Μη Ντετερμινισμός και NP-Πληρότητα
Μη Ντετερμινισμός και P-Πληρότητα ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Μη Ντετερμινιστικές Μηχανές Turing Μη ντετερμινιστική Μηχ. Turing (ΝTM)
Ασυμπτωτικός Συμβολισμός
Ασυμπτωτικός Συμβολισμός ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές δεδομένων. Ενότητα 10η: Γράφοι Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Ενότητα 10η: Γράφοι Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών Ενότητα 10 Γράφοι ΗΥ240 - Παναγιώτα Φατούρου 2 Γράφοι (ή Γραφήματα) Ένας γράφος
Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
ιάλεξη : λάχιστα εννητορικά ένδρα Αλγόριθμος Prim Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: λάχιστα εννητορικά ένδρα () Minimum Spanning Trees Ο αλγόριθμος του Prim για εύρεση σε γράφους
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Ενότητα 5 ΣΥΝΕΚΤΙΚΟΤΗΤΑ Σταύρος Δ. Νικολόπουλος 2017-18 www.cs.uoi.gr/~stavros Συνεκτικότητα Έννοια της συνδεσμικότητας: «Ποσότητα συνδεσμικότητας»...