6η Διάλεξη Διάσχιση Γράφων και Δέντρων
|
|
- Ευτέρπη Δοξαράς
- 7 χρόνια πριν
- Προβολές:
Transcript
1 ΘΕΩΡΙΑ ΓΡΑΦΩΝ 6 η Διάλεξη Διάσχιση Γράφων και Δέντρων Αλγόριθμος αναζήτησης σε Βαθος Αλγόριθμος αναζήτησης κατά Πλάτος Αλγόριθμοι για Δένδρα Εύρεση ελαχίστων Γεννητορικών (Επικαλύπτοντα) Δένδρων
2 Διάσχιση Γράφων Μέχρι τώρα οι αλγόριθμοι που εξετάσαμε για γράφους «επισκέπτονταν» τις κορυφές του γράφου με συγκεκριμένη σειρά: η «κοντινότερη» κορυφή, το «συντομότερο» μονοπάτι κ.ο.κ. Στο κεφάλαιο αυτό εισάγουμε κάποιες γενικές τεχνικές διάσχισης γράφων, που είναι χρήσιμες όταν δεν επιβάλλεται η επίσκεψη των κορυφών του γράφου με συγκεκριμένη σειρά. Ένας γράφος μπορεί να βρίσκεται αποθηκευμένος ως δομή στη μνήμη του υπολογιστή. Κάθε κορυφή αναπαριστάται από έναν αριθμό bytes και κάθε ακμή από ένα δείκτη.
3 Διάσχιση Γράφων Το να «σημειώσουμε» μία κορυφή σημαίνει ότι με κάποιο τρόπο επηρεάζουμε τα δεδομένα, που αντιστοιχούν σ αυτήν. Το να βρούμε μία γειτονική κορυφή σημαίνει να ακολουθήσουμε ένα δείκτη προς αυτήν. Μερικές φορές η ύπαρξη του γράφου δεν απεικονίζεται στη μνήμη, αλλά είναι μόνο ιδεατή. Μία τέτοια εφαρμογή είναι όταν για παράδειγμα χρησιμοποιείται ως μία αφαιρετική δομή για την αναπαράσταση παιγνίων. Τότε, κάθε κορυφή μπορεί να αντιστοιχεί σε μία συγκεκριμένη θέση που π.χ. έχουν τα πιόνια στο πεδίο και κάθε ακμή εκφράζει το γεγονός ότι μπορούμε να μετακινηθούμε από τη μία κορυφή στην άλλη με την εκτέλεση μιας επιτρεπτής κίνησης. Είτε ο γράφος είναι μία δομή δεδομένων, είτε απλά μία αφαιρετική αναπαράσταση οι τεχνικές διάσχισης είναι οι ίδιες.
4 Διάσχιση Γράφων Αν θέλουµε να επισκεφτούµε όλους τους κόµβους ενός γράφου µπορούµε να χρησιµοποιήσουµε έναν από πολλούς τρόπους, οι οποίοι διαφέρουν στη σειρά µε την οποία εξετάζουν τους κόµβους. ιαδικασίες διάσχισης χρησιµοποιούνται για τη διακρίβωση ύπαρξης µονοπατιού µεταξύ δύο κόµβων κ.α. Έχουν πολλές εφαρµογές. Depth-First Search Γενίκευση της προθεµατικής διάσχισης δένδρων: Ξεκινώντας από ένα κόµβο v, επισκεπτόµαστε πρώτα τον v και ύστερα καλούµε αναδροµικά τη διαδικασία στο καθένα από τα παιδιά του. Πως επηρεάζει η ύπαρξη κύκλων την πιο πάνω ιδέα; Θα διατηρήσουµε ένα πίνακα Visited ο οποίος θα κρατά πληροφορίες ως προς το ποιους κόµβους έχουµε επισκεφθεί ανά πάσα στιγµή.
5 Αναζήτηση προτεραιότητας βάθους σε μη κατευθυνόμενους γράφους Ι Έστω G=<N,A> ένας μη κατευθυνόμενος γράφος του οποίου πρέπει να επισκεφθούμε όλες τις κορυφές. Ας υποθέσουμε ότι με κάποιο τρόπο είναι πιθανό να «σημειώσουμε» μία κορυφή, έτσι ώστε να φαίνεται ότι την έχουμε επισκεφθεί. Για την εκτέλεση μιας διάσχισης με προτεραιότητα βάθους επιλέγουμε οποιαδήποτε κορυφή v N ως αφετηρία. Σημειώνουμε την κορυφή αυτή έτσι ώστε να φαίνεται ότι την έχουμε επισκεφθεί. Στη συνέχεια επιλέγουμε μια κορυφή που βρίσκεται στο άλλο άκρο ακμής που προσπίπτει στην v, η οποία όμως δεν είναι σημειωμένη. Αυτή επιλέγεται ως νέα αφετηρία και καλείται αναδρομικά η διαδικασία αναζήτησης προτεραιότητας βάθους. Στην επιστροφή της αναδρομικής κλήσης αν υπάρχει άλλη προσπίπτουσα ακμή στο v, έτσι ώστε δεν έχει γίνει επίσκεψη στην κορυφή που αυτή καταλήγει, τότε επιλέγουμε την κορυφή αυτή ως αφετηρία και καλούμε πάλι τη διαδικασία. Η διαδικασία ολοκληρώνεται όταν έχουν «σημειωθεί» όλες οι κορυφές, που βρίσκονται πλησίον της v.
6 Αναζήτηση προτεραιότητας βάθους σε μη κατευθυνόμενους γράφους ΙI procedure search(g) for each v N do mark[v] not-visited for each v N do if mark[v] visited then dfs(v) procedure dfs(v:node) {δεν έχουμε επισκεφθεί ακόμη την κορυφή v} mark[v] visited for each node w adjacent to v do if mark[w] visited then dfs(w)
7 Αναζήτηση προτεραιότητας βάθους σε μη κατευθυνόμενους γράφους ΙII ΠΑΡΑΔΕΙΓΜΑ Αν υποθέσουμε ότι οι γειτονικές κορυφές εξετάζονται κάθε φορά με αριθμητική σειρά και ότι η αφετηρία είναι η κορυφή 1, τότε μία διάσχιση με προτεραιότητα βάθους θα έχει ως εξής: dfs(1) dfs(2) dfs(4) dfs(3) dfs(7) dfs(6) dfs(8) dfs(5)
8 Παράδειγμα ΑσΒ Αρχικά όλες οι κορυφές θεωρούνται ως ανεξέταστες Μέχρι να εξερευνήσουμε όλες τις κορυφές,επαναληπτικά, κάνουμε τα ακόλουθα: Επιλέγουμε μία ανεξερεύνητη και την κηρύσσουμε εξερευνημένη Εάν υπάρχει γειτονική της ανεξέταστη, την επιλέγουμε ως επόμενη προς θεώρηση κορυφή
9 Παράδειγμα ΑσΒ (2)
10 Παράδειγμα ΑσΒ (3)
11 Κατηγορίες Ακμών ΑσΒ Κατηγορίες ακμών Ακμές δένδρου Οπισθοακμές (ακμή {v,w} στο G, που να μην υπάρχει αντίστοιχη στο δένδρο Τ ) Αριθμοί προδιατάξεως και μεταδιατάξεως ν απόγονος της w εάν έχει μεγαλύτερο αριθμό προδιατάξεως και μικρότερο αριθμό μεταδιατάξεως v πρόγονος της w εάν έχει μικρότερο αριθμό προδιατάξεως και μεγαλύτερο αριθμό μεταδιατάξεως σε κάθε άλλη περίπτωση δεν σχετίζονται... Κατασκευή ανάστροφου δένδρου ΑσΒ μέσω βοηθητικού πίνακα, όπου θα σημειώνεται ο πατέρας κάθε ανακαλυφθείσας κορυφής
12 Αναζήτηση προτεραιότητας βάθους σε μη κατευθυνόμενους γράφους ΙV Αποδοτικότητα αλγορίθμου: Πόσος χρόνος απαιτείται για την εξερεύνηση n κορυφών και α ακμών; Κάθε κορυφή την επισκεπτόμαστε ακριβώς μία φορά, άρα υπάρχουν n κλήσεις της διαδικασία dfs. Ακόμη όταν επισκεπτόμαστε μία κορυφή αναζητούμε ποιες από τις γειτονικές της κορυφές δεν είναι σημειωμένες. Αν ο γράφος αναπαριστάται με λίστες γειτνίασης, έτσι ώστε για κάθε κορυφή να έχουμε άμεση προσπέλαση στις γειτονικές της, τότε αυτό έχει πολυπλοκότητα της τάξης α. Άρα έχουμε O(n) κλήσεις διαδικασιών και O(α) για να ελεγχθούν οι σημειωμένες κορυφές, οπότε η συνολική πολυπλοκότητα του αλγορίθμου είναι O(max(α,n)).
13 Αναζήτηση προτεραιότητας βάθους σε μη κατευθυνόμενους γράφους V Σε ένα συνδεδεμένο γράφο μία διάσχιση με προτεραιότητα βάθους αντιστοιχεί στο γράφο ένα ζευγνύον δένδρο. Οι ακμές του δένδρου αντιστοιχούν στις ακμές που χρησιμοποιούνται στη διάσχιση του γράφου. Οι ακμές που δεν χρησιμοποιούνται στη διάσχιση του γράφου δεν απεικονίζονται στο δένδρο ή απεικονίζονται (αν θέλουμε) με διακεκομμένες γραμμές. Ρίζα του δένδρου είναι η αφετηρία. Αν ο γράφος δεν είναι συνδεδεμένος, τότε η αναζήτηση με προτεραιότητα βάθους δεν αντιστοιχεί ένα δένδρο αλλά ένα δάσος από δένδρα(πχ).
14 Αναζήτηση προτεραιότητας βάθους σε μη κατευθυνόμενους γράφους VΙ Επίσης, μία αναζήτηση με προτεραιότητα βάθους εκτός των άλλων μας παρέχει και μία σειρά αρίθμησης των κορυφών του γράφου ανάλογα με τη σειρά επίσκεψής τους. Σε σχέση με το αντίστοιχο ζευγνύον δένδρο η αρίθμηση αυτή των κόμβων είναι μία προδιατεταγμένη αρίθμηση. Πως όμως τροποποιείται ο αλγόριθμος έτσι ώστε να αποδίδει και αυτήν την αρίθμηση;
15 Αναζήτηση προτεραιότητας βάθους σε μη κατευθυνόμενους γράφους VΙΙ procedure search(g) pnum 0 for each v N do mark[v] not-visited for each v N do if mark[v] visited then dfs(v) procedure dfs(v:node) {δεν έχουμε επισκεφθεί ακόμη την κορυφή v} pnum pnum+1 prenum[v] pnum mark[v] visited for each node w adjacent to v do if mark[w] visited then dfs(w)
16 Αναζήτηση προτεραιότητας βάθους σε μη κατευθυνόμενους γράφους ΙII ΠΑΡΑΔΕΙΓΜΑ Αν υποθέσουμε ότι οι γειτονικές κορυφές εξετάζονται κάθε φορά με αριθμητική σειρά και ότι η αφετηρία είναι η κορυφή 1, τότε μία διάσχιση με προτεραιότητα βάθους θα έχει ως εξής: dfs(1) dfs(2) dfs(4) dfs(3) dfs(7) dfs(6) dfs(8) dfs(5)
17 Αναζήτηση προτεραιότητας βάθους σε μη κατευθυνόμενους γράφους VΙΙI Η εκτέλεση ενός αλγορίθμου προτεραιότητας βάθους δεν αποδίδει πάντα το ίδιο επικαλύπτον δένδρο, αλλά αυτό που σχηματίζεται εξαρτάται από την κορυφή που επιλέγεται ως αφετηρία της διάσχισης
18 Αναζήτηση προτεραιότητας βάθους σε μη κατευθυνόμενους γράφους Μία κορυφή v σε ένα συνδεδεμένο γράφο λέμε ότι είναι αποκόπτουσα αν μετά από τη διαγραφή της καθώς επίσης και τη διαγραφή των ακμών που προσπίπτουν σε αυτήν προκύπτει ένας μη συνδεδεμένος γράφος (με περισσότερες από μία συνιστώσες). ΠΑΡΑΔΕΙΓΜΑ 1 Στο γράφο η κορυφή 1 είναι αποκόπτουσα
19 Παράδειγμα μη Συνεκτικού μη Κατευθυνόμενου Γραφήματος
20 Παράδειγμα μη Συνεκτικού μη Κατευθυνόμενου Γραφήματος
21 Εφαρμογές Εντοπισμός Κύκλου: Αφ ης στιγμής ανακαλυφθεί οπισθοακμή Εύρεση Απλού Μονοπατιού μεταξύ v και w: Εκκίνηση ΑσΒ από την v (απόδειξη με επαγωγή στο μήκος του μονοπατιού) Επικαλύπτον Δένδρο ή Δάσος (απλή συνεκτικότητα): Εάν το γράφημα είναι συνεκτικό, τότε το δένδρο ΑσΒ είναι επικαλύπτον. Διαφορετικά, κάθε επανεκκίνηση της ΑσΒ ανακαλύπτει και μία συνεκτική συνιστώσα (ελάχιστες οι τροποποιήσεις των αλγορίθμων- μόνο ένας πίνακας και μία βοηθητική μεταβλητή)
22 Παράδειγµα Depth-First- Search 1 Depth-First-Search (G,A) A Β Γ Δ Ε Ζ 1 2 Α Β Γ 3 Δ 5 Ε 4 Ζ
23 Παράδειγµα Depth-First- Search 2 Α Β Γ Δ Ε Ζ 1 6 Α Β Γ 5 Δ Ε Ζ 2 3 4
24 Αναζήτηση με προτεραιότητα πλάτους Ι Σε κόμβο v φθάνει μία αναζήτηση με προτεραιότητα βάθους, τότε επισκέπτεται ένα γείτονα τη v, μετά ένα γείτονα του γείτονα κ.ο.κ. Στην αναζήτηση με προτεραιότητα πλάτους, όταν αυτή φθάνει σε έναν κόμβο v, τότε επισκεπτόμαστε ένα προς ένα όλους τους γείτονες και μετά ο αλγόριθμος συνεχίζει σε άλλους κόμβους. Σε αντίθεση με την αναζήτηση με προτεραιότητα βάθους, που είναι εξ ορισμού αναδρομική, η αναζήτηση με προτεραιότητα πλάτους δεν είναι αναδρομική. Για να φανεί αυτή η αντίθεση προχωράμε σε μία εναλλακτική διατύπωση της αναζήτησης με προτεραιότητα βάθους, όπου γίνεται χρήση στοίβας αντί για αναδρομή. Σημειώνουμε ότι η στοίβα είναι μία δομή LIFO.
25 Παράδειγμα ΑκΠ
26 Παράδειγμα ΑκΠ
27 Κατηγορίες ακμών ΑκΠ Κατηγορίες ακμών Ακμές δένδρου Διασταυρώσεως (μεταξύ επιπέδων που διαφέρουν κατά ένα) ΔΕΝ ΥΠΑΡΧΟΥΝ ΟΠΙΣΘΟΑΚΜΕΣ
28 Μερικά Σχόλια Η διαδικασία καλείται σε κάθε κόµβο το πολύ µια φορά. Χρόνος Εκτέλεσης: Ο( V + E ), δηλαδή γραµµικός ως προς τον αριθµό των ακµών και κορυφών. Αρίθµηση DFS των κορυφών ενός γράφου ονοµάζεται η σειρά µε την οποία επισκέπτεται η διαδικασία DepthFirstSearch τις κορυφές του γράφου. Η διαδικασία µπορεί να κληθεί και για µη-κατευθυνόµενους και για κατευθυνόµενους γράφους. Αντί µε αναδροµή η διαδικασία µπορεί να υλοποιηθεί, ως συνήθως, µε τη χρήση στοιβών.
29 Εφαρμογές ΑκΠ Εντοπισμός Κύκλου: Μέχρι να ανακαλυφθεί οπισθοακμή Εύρεση Απλού Μονοπατιού μεταξύ v και w: Εκκίνηση ΑκΠ από την v (απόδειξη με επαγωγή στο μήκος του μονοπατιού) Επικαλύπτον Δένδρο ή Δάσος (απλή συνεκτικότητα): Εάν το γράφημα είναι συνεκτικό, τότε το δένδρο ΑκΠ είναι επικαλύπτον. Διαφορετικά, κάθε επανεκκίνηση της ΑκΠ ανακαλύπτει και μία συνεκτική συνιστώσα (ελάχιστες οι τροποποιήσεις των αλγορίθμων- μόνο ένας πίνακας και μία βοηθητική μεταβλητή) Συντομότερα μονοπάτια από μία κορυφή-πηγή: Εκκίνηση ΑκΠ από την v
30 Αναζήτηση με προτεραιότητα πλάτους ΙΙΙ ΑΝΑΖΗΤΗΣΗ ΜΕ ΠΡΟΤΕΡΑΙΟΤΗΤΑ ΠΛΑΤΟΥΣ procedure bfs(v:node) Q empty-queue mark[v] visited enqueue v into Q while Q is not empty do u first(q) dequeue u from Q for each node w adjacent to u do if mark[w] visited then mark[v] visited enqueue w into Q
31 Αναζήτηση με προτεραιότητα πλάτους IV Στην αναζήτηση με προτεραιότητα πλάτους χρησιμοποιείται μία ουρά που είναι δομή FIFO. ΠΑΡΑΔΕΙΓΜΑ κόμβος επίσκεψης ουρά 1 2, 3, 4 2 3, 4, 5, 6 3 4, 5, 6 4 5, 6, 7, 8 5 6, 7, 8 6 7,
32 Αναζήτηση με προτεραιότητα πλάτους V Όπως και στην αναζήτηση με προτεραιότητα βάθους, έτσι και σ αυτή την περίπτωση αντιστοιχεί ένα δένδρο. ΠΑΡΑΔΕΙΓΜΑ (συνέχεια) Ο ίδιος αλγόριθμος εφαρμόζεται επίσης και σε κατευθυνόμενους γράφους χρησιμοποιώντας άλλη ερμηνεία για την έννοια γειτονικός κόμβος.
33 ιαδικασία Breadth-First Search BFSearch(graph G, vertex v){ Q=MakeEmptyQueue(); for each w in G Visited[w]=False; Visited[v]= True; Enqueue(v,Q); while (!IsEmpty(Q)){ w = Dequeue(Q); Visit(w); for each u adjacent to w if (Visited[u]=False) Visited[u]=True; Enqueue(u,Q); }
34 Αναζήτηση με προτεραιότητα πλάτους ΙΙ ΑΝΑΖΗΤΗΣΗ ΜΕ ΠΡΟΤΕΡΑΙΟΤΗΤΑ ΒΑΘΟΥΣ (εναλλακτική διατύπωση) procedure dfs (v:node) P empty-stack mark[v] visited push v on P while P is not empty do while there exists a node w adjacent to top(p) such that mark[w] visited do mark[w] visited push w on P pop top(p)
35 Αναζήτηση προτεραιότητας βάθους σε κατευθυνόμενους γράφους Ι Ο αλγόριθμος είναι βασικά ο ίδιος που εφαρμόζεται και σε μη κατευθυνόμενους γράφους, μόνο που αλλάζει η ερμηνεία του όρου «γειτονική κορυφή». Σε έναν κατευθυνόμενο γράφο η κορυφή w είναι γειτονική της κορυφής v αν υπάρχει το τόξο (v, w). Αν αυτό συμβαίνει αλλά δεν υπάρχει το τόξο (w,v), τότε η κορυφή w είναι της v αλλά η v δεν είναι γειτονική της w. Με αυτή τη διαφορετική ερμηνεία εφαρμόζουμε τον αλγόριθμο διάσχισης με προτεραιότητα βάθους στο παράδειγμα που ακολουθεί.
36 Αναζήτηση προτεραιότητας βάθους σε κατευθυνόμενους γράφους ΙΙ dfs(1) dfs(2) dfs(3) dfs(4) dfs(5) dfs(8) dfs(6) dfs(7)
37 Αναζήτηση προτεραιότητας βάθους σε κατευθυνόμενους γράφους ΙΙΙ Τα τόξα που χρησιμοποιούνται κατά τη διάσχιση των κορυφών του γράφου μπορεί να σχηματίζουν ένα δάσος από δένδρα και όχι μόνο ένα δένδρο
38 Breadth-First Search Ξεκινώντας από ένα κόµβο v, επισκεπτόµαστε πρώτα το v, ύστερα τους κόµβους που γειτνιάζουν µε τον v, ύστερα τους κόµβους που βρίσκονται σε απόσταση 2 από τον v, και ούτω καθεξής. Β Ε Α Δ Θ Ζ Γ Εξοδος: Α Β Δ Γ Ε Θ Ζ
ΕΠΛ 231 Δοµές Δεδοµένων και Αλγόριθµοι 11-1
Γράφοι Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Γράφοι - ορισµοί και υλοποίηση Διάσχιση Γράφων Τοπολογική Ταξινόµηση ΕΠΛ 23 Δοµές Δεδοµένων και Αλγόριθµοι - Γράφοι Η πιο γενική µορφή δοµής
Διαβάστε περισσότεραΕΠΛ 231 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου,
Γράφοι Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Γράφοι - ορισµοί και υλοποίηση Τοπολογική Ταξινόµηση ιάσχιση Γράφων ΕΠΛ 23 οµές εδοµένων και Αλγόριθµοι Άννα Φιλίππου, 26 - Γράφοι Ηπιο
Διαβάστε περισσότεραΔιδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 9: Εισαγωγή στους Γράφους Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Γράφοι - ορισμοί και υλοποίηση Διάσχιση Γράφων Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διαβάστε περισσότεραΔιάλεξη 29: Γράφοι. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 9: Γράφοι Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Γράφοι - ορισμοί και υλοποίηση - Διάσχιση Γράφων Διδάσκων: Παναγιώτης νδρέου ΕΠΛ035 Δομές Δεδομένων και λγόριθμοι για Ηλ. Μηχ.
Διαβάστε περισσότερα1 Διάσχιση κατευθυνόμενων γραφημάτων
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 2010 11 Ιστοσελίδα μαθήματος: http://eclass.teilam.gr/di288 5ο ΕΡΓΑΣΤΗΡΙΟ
Διαβάστε περισσότεραΑλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα)
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής Εισαγωγή στην Επιστήμη των Υπολογιστών 2016-17 Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα) http://mixstef.github.io/courses/csintro/ Μ.Στεφανιδάκης Αφηρημένες
Διαβάστε περισσότεραΑλγόριθµοι Γραφηµάτων
Αλγόριθµοι Γραφηµάτων Παύλος Σπυράκης Πανεπιστήµιο Πατρών Τοµέας Θεµελιώσεων και Εφαρµογών της Επιστήµης των Υπολογιστών Ερευνητικό Ακαδηµαϊκό Ινστιτούτο Τεχνολογίας Υπολογιστών Γραφήµατα Μοντελοποίηση
Διαβάστε περισσότεραΑναζήτηση Κατά Πλάτος
Αναζήτηση Κατά Πλάτος Επιμέλεια διαφανειών: Δ. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων (π.χ. δίκτυα
Διαβάστε περισσότεραΔιαπεράσεις Μη Κατευθυνόμενων Γραφημάτων
Διαπεράσεις Μη Κατευθυνόμενων Γραφημάτων Κάθε διαδικασία συστηματικής και εξαντλητικής εξερευνήσεως ενός γραφήματος, με την εξέταση των κορυφών και ακμών του Παρ όλη την απλότητά τους, οι διαπεράσεις είναι
Διαβάστε περισσότεραΑναζήτηση Κατά Πλάτος
Αναζήτηση Κατά Πλάτος Επιµέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήµατα Μοντελοποίηση πολλών σηµαντικών προβληµάτων (π.χ. δίκτυα
Διαβάστε περισσότεραΑναζήτηση Κατά Πλάτος
Αναζήτηση Κατά Πλάτος ημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Γραφήματα Μοντελοποίηση πολλών σημαντικών προβλημάτων (π.χ. δίκτυα συνεκτικότητα,
Διαβάστε περισσότεραΚατ οίκον Εργασία 5 Σκελετοί Λύσεων
Κατ οίκον Εργασία 5 Σκελετοί Λύσεων Άσκηση 1 (α) Ο αλγόριθµος χρησιµοποιεί τη διαδικασία DFS(v) η οποία, ως γνωστό, επισκέπτεται όλους τους κόµβους που είναι συνδεδεµένοι µε τον κόµβο v. Για να µετρήσουµε
Διαβάστε περισσότεραΑναζήτηση Κατά Πλάτος
Αναζήτηση Κατά Πλάτος ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΔιάλεξη 18: Γράφοι I Εισαγωγή
Διάλεξη 18: Γράφοι I Εισαγωγή Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Γράφοι ορισμοί και υλοποίηση Διάσχιση Γράφων ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Εισαγωγή στους Γράφους Η πιο
Διαβάστε περισσότεραΔιάλεξη 21: Γράφοι II - Τοπολογική Ταξινόμηση
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 21: Γράφοι II - Τοπολογική Ταξινόμηση Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Τοπολογική Ταξινόμηση - Εφαρμογές, Παραδείγματα, Αλγόριθμοι
Διαβάστε περισσότεραΔΙΑΣΧΙΣΗ ΓΡΑΦΗΜΑΤΩΝ 1
ΔΙΑΣΧΙΣΗ ΓΡΑΦΗΜΑΤΩΝ 1 Θέματα μελέτης Πρόβλημα αναζήτησης σε γραφήματα Αναζήτηση κατά βάθος (Depth-first search DFS) Αναζήτηση κατά πλάτος (Breadth-first search BFS) 2 Γράφημα (graph) Αναπαράσταση συνόλου
Διαβάστε περισσότεραΑναζήτηση στους γράφους. - Αναζήτηση η κατά βάθος Συνεκτικές Συνιστώσες - Αλγόριθμος εύρεσης συνεκτικών συνιστωσών
Αναζήτηση στους γράφους Βασικός αλγόριθμος λό - Αναζήτηση κατά πλάτος - Αναζήτηση η κατά βάθος Συνεκτικές Συνιστώσες - Αλγόριθμος εύρεσης συνεκτικών συνιστωσών Διάσχιση (αναζήτηση ) στους γράφους Φεύγοντας
Διαβάστε περισσότεραΑναζήτηση Κατά Βάθος. Επιμέλεια διαφανειών: Δ. Φωτάκης Συμπληρώσεις: Α. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Αναζήτηση Κατά Βάθος Επιμέλεια διαφανειών: Δ. Φωτάκης Συμπληρώσεις: Α. Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναζήτηση Κατά Βάθος (DFS) Εξερεύνηση
Διαβάστε περισσότεραΣτοιχεία Θεωρίας Γράφων (Graph Theory)
Στοιχεία Θεωρίας Γράφων (Graph Theory) Ε Εξάμηνο, Τμήμα Πληροφορικής & Τεχνολογίας Υπολογιστών ΤΕΙ Λαμίας plam@inf.teilam.gr, Οι διαφάνειες βασίζονται στα βιβλία:. Αλγόριθμοι, Σχεδιασμός & Ανάλυση, η έκδοση,
Διαβάστε περισσότεραΔιάλεξη 18: Γράφοι I - Εισαγωγή
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 18: Γράφοι I - Εισαγωγή Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Γράφοι - ορισμοί και υλοποίηση - Διάσχιση Γράφων Εισαγωγή στους Γράφους
Διαβάστε περισσότεραΑναζήτηση Κατά Βάθος. Επιµέλεια διαφανειών:. Φωτάκης διαφάνειες για SCC: A. Παγουρτζής. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Αναζήτηση Κατά Βάθος Επιµέλεια διαφανειών:. Φωτάκης διαφάνειες για SCC: A. Παγουρτζής Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναζήτηση Κατά Βάθος (DFS) Εξερεύνηση
Διαβάστε περισσότεραΠΛΗ111. Ανοιξη 2005. Μάθηµα 10 ο. Γράφοι. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης
ΠΛΗ111 οµηµένος Προγραµµατισµός Ανοιξη 2005 Μάθηµα 10 ο Γράφοι Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης Γράφοι Ορισµός Αφηρηµένος τύπος δεδοµένων Υλοποίηση Αναζήτηση έντρο
Διαβάστε περισσότεραΑναζήτηση Κατά Βάθος. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Αναζήτηση Κατά Βάθος ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Αναζήτηση Κατά Βάθος (DFS) Εξερεύνηση
Διαβάστε περισσότεραΑναζήτηση Κατά Βάθος. ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης. Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών
Αναζήτηση Κατά Βάθος ιδάσκοντες: Σ. Ζάχος,. Φωτάκης Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο Άδεια Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΔιάλεξη 20: Γράφοι I - Εισαγωγή
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 1 Διάλεξη 20: Γράφοι I - Εισαγωγή Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Γράφοι - ορισμοί και υλοποίηση - Διάσχιση Γράφων Εισαγωγή στους Γράφους
Διαβάστε περισσότεραιαφάνειες παρουσίασης #11
ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ http://www.corelab.ece.ntua.gr/courses/programming/ ιδάσκοντες: Στάθης Ζάχος (zachos@cs.ntua.gr) Νίκος Παπασπύρου (nickie@softlab.ntua.gr) ιαφάνειες παρουσίασης
Διαβάστε περισσότεραΣχεδίαση Αλγορίθμων - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1
Σχεδίαση Αλγορίθμων Μείωσε και Βασίλευε http://delab.csd.auth.gr/~gounaris/courses/ad auth gounaris/courses/ad Σχεδίαση Αλγορίθμων - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1 Μείωσε και Βασίλευε 1. Μειώνουμε
Διαβάστε περισσότεραΑφηρημένες Δομές Δεδομένων. Στοίβα (Stack) Υλοποίηση στοίβας
Ιόνιο Πανεπιστήμιο Τμήμα Πληροφορικής ισαγωγή στην πιστήμη των Υπολογιστών 2015-16 λγόριθμοι και ομές εδομένων (IΙ) (γράφοι και δένδρα) http://di.ionio.gr/~mistral/tp/csintro/ Μ.Στεφανιδάκης φηρημένες
Διαβάστε περισσότεραΚατ οίκον Εργασία 5 Σκελετοί Λύσεων
Κατ οίκον Εργασία 5 Σκελετοί Λύσεων Άσκηση 1 Χρησιμοποιούμε τις δομές: struct hashtable { struct node array[maxsize]; int maxsize; int size; struct node{ int data; int status; Στο πεδίο status σημειώνουμε
Διαβάστε περισσότεραΑλγόριθμοι Γραφημάτων
Αλγόριθμοι Γραφημάτων 1. Διερεύνηση Πρώτα σε Βάθος (DFS) 2. Τοπολογική Ταξινόμηση Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Depth-First Search Πρώτα σε Βάθος διερεύνηση (Depth-First Search) είναι
Διαβάστε περισσότεραΤΕΙ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ
ÌïëëÜ Ì. Á μýô Á.Ì. : 5 moll@moll.r ΤΕΙ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑ ΥΠΟΛΟΓΙΣΤΩΝ ΜΑΘΗΜΑ : ΕΙΣΑΓΩΓΗ ΣΤΟ ΔΙΑΔΙΚΤΥΟ (ΕΡΓΑΣΤΗΡΙΟ) Ε ΕΞΑΜΗΝΟ ΕΙΣΗΓΗΤΕΣ: Χαϊδόγιαννος Χαράλαμπος ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ
Διαβάστε περισσότεραΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. ΑΣΚΗΣΗ 4 Σωροί, Γράφοι
ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΕΠΛ 231: Δομές Δεδομένων και Αλγόριθμοι Εαρινό Εξάμηνο 2013 ΑΣΚΗΣΗ 4 Σωροί, Γράφοι Διδάσκων Καθηγητής: Παναγιώτης Ανδρέου Ημερομηνία Υποβολής: 05/04/2013 Ημερομηνία
Διαβάστε περισσότεραΔομές Δεδομένων. Δημήτρης Μιχαήλ. Γραφήματα. Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο
Δομές Δεδομένων Γραφήματα Δημήτρης Μιχαήλ Τμήμα Πληροφορικής και Τηλεματικής Χαροκόπειο Πανεπιστήμιο Γραφήματα Κατευθυνόμενο Γράφημα Ένα κατευθυνόμενο γράφημα G είναι ένα ζευγάρι (V, E) όπου V είναι ένα
Διαβάστε περισσότεραΕνότητα 10 Γράφοι (ή Γραφήµατα)
Ενότητα 10 Γράφοι (ή γραφήµατα) ΗΥ240 - Παναγιώτα Φατούρου 1 Γράφοι (ή Γραφήµατα) Ένας γράφος αποτελείται από ένα σύνολο από σηµεία (που λέγονται κόµβοι) και ένα σύνολο από γραµµές (που λέγονται ακµές)
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 10γ: Αλγόριθμοι Γραφημάτων- Διερεύνηση Πρώτα σε Βάθος (DFS)- Τοπολογική Ταξινόμηση Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
Διαβάστε περισσότεραΔιδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 19: ΓράφοιII -ΤοπολογικήΤαξινόμηση Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Τοπολογική Ταξινόμηση - Εφαρμογές, Παραδείγματα, Αλγόριθμοι Διδάσκων: Παναγιώτης Ανδρέου ΕΠΛ231 Δομές
Διαβάστε περισσότεραΔομές Δεδομένων (Data Structures)
Δομές Δεδομένων (Data Structures) Στοίβες Ουρές Στοίβες: Βασικές Έννοιες. Ουρές: Βασικές Έννοιες. Βασικές Λειτουργίες. Παραδείγματα. Στοίβες Δομή τύπου LIFO: Last In - First Out (τελευταία εισαγωγή πρώτη
Διαβάστε περισσότερα(elementary graph algorithms)
(elementary graph algorithms) Παύλος Εφραιμίδης περιεχόμενα αναπαραστάσεις οριζόντια διερεύνηση καθοδική διερεύνηση αναπαράσταση δύο καθιερωμένοι τρόποι: πίνακας γειτνίασης συλλογή από καταλόγους γειτνίασης
Διαβάστε περισσότεραΚεφάλαιο 3. Γραφήματα. v1.3 ( ) Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.
Κεφάλαιο 3 Γραφήματα v1.3 (2014-01-30) Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισμοί και Εφαρμογές γραφήματα γράφημα G: ένας τρόπος κωδικοποίησης των σχέσεων
Διαβάστε περισσότεραΕισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών 4 ο εξάμηνο ΣΗΜΜΥ 4 η ενότητα: Γράφοι: προβλήματα και αλγόριθμοι Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών
Διαβάστε περισσότεραΕισαγωγή στους Αλγόριθμους
Εισαγωγή στους Αλγόριθμους Εύη Παπαϊωάννου Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών Σκοποί ενότητας Παρουσίαση και μελέτη αλγορίθμων
Διαβάστε περισσότεραInitialize each person to be free. while (some man is free and hasn't proposed to every woman) { Choose such a man m w = 1 st woman on m's list to
Κεφάλαιο 2 Δοµές Δεδοµένων Ι Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 Δοµές Δεδοµένων Ι Στην ενότητα αυτή θα γνωρίσουµε ορισµένες Δοµές Δεδοµένων και θα τις χρησιµοποιήσουµε
Διαβάστε περισσότεραΑλγόριθμοι Γραφημάτων
Αλγόριθμοι Γραφημάτων. Γραφήματα. Αναπαράσταση Γραφημάτων 3. Διερεύνηση σε Πρώτα σε Πλάτος (BFS) Εισαγωγή στην Ανάλυση Αλγορίθμων Μάγια Σατρατζέμη Γράφημα Ορισμός: Ένα γράφημα G είναι το διατεταγμένο ζεύγος
Διαβάστε περισσότεραΚεφάλαιο 4 Γραφήματα και Δένδρα
Κεφάλαιο 4 Γραφήματα και Δένδρα Περιεχόμενα 4.1 Γραφήματα... 60 4.2 Δομές δεδομένων για την αναπαράσταση γραφημάτων... 64 4.2.1 Υλοποίηση σε Java... 66 4.3 Διερεύνηση γραφήματος... 69 4.4 Δένδρα... 86
Διαβάστε περισσότεραΚεφάλαιο 3. Γραφήµατα v1.0 ( ) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.
Κεφάλαιο 3 Γραφήµατα v1.0 (2010-05-25) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισµοί και Εφαρµογές γραφήµατα γράφηµα G: ένας τρόπος κωδικοποίησης των σχέσεων
Διαβάστε περισσότεραΓέφυρες σε Δίκτυα. Μας δίνεται ένα δίκτυο (κατευθυνόμενο γράφημα) αφετηριακός κόμβος. Γέφυρα του (με αφετηρία τον ) :
Μας δίνεται ένα δίκτυο (κατευθυνόμενο γράφημα) αφετηριακός κόμβος και Γέφυρα του (με αφετηρία τον ) : Ακμή που περιέχεται σε κάθε μονοπάτι από το στο s a b c d e f g h i j k l Μας δίνεται ένα δίκτυο (κατευθυνόμενο
Διαβάστε περισσότεραΔιδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 8: Αφηρημένοι Τύποι Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Αφηρημένοι Τύποι Δεδομένων (ΑΤΔ) Οι ΑΤΔ Στοίβα και Ουρά Υλοποίηση των ΑΤΔ Στοίβα και Ουρά με Στατική Δέσμευση
Διαβάστε περισσότεραΑΛΓΟΡΙΘΜΟΙ Άνοιξη I. ΜΗΛΗΣ
ΑΛΓΟΡΙΘΜΟΙ http://eclass.aueb.gr/courses/inf161/ Άνοιξη 2017 - I. ΜΗΛΗΣ AΛΓΟΡΙΘΜΟΙ ΓΡΑΦΩΝ Ι ΕΞΕΡΕΥΝΗΣΗ 1 Graphs Ανά ζεύγη (pairwise) σχέσεις μεταξύ των στοιχείων ενός συνόλου 2 Graphs Εφαρμογές Χάρτες,
Διαβάστε περισσότεραΠανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 3: Δένδρα
Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών Διακριτά Μαθηματικά Ενότητα 3: Δένδρα Αν. Καθηγητής Κ. Στεργίου e-mail: kstergiou@uowm.gr Τμήμα Μηχανικών Πληροφορικής και Τηλεπικοινωνιών Άδειες Χρήσης Το
Διαβάστε περισσότερα(elementary graph algorithms)
(elementary graph algorithms) Παύλος Εφραιμίδης 1 περιεχόμενα γραφήματα αναπαραστάσεις οριζόντια διερεύνηση καθοδική διερεύνηση 2 ΓΡΑΦΉΜΑΤΑ 3 αναπαράσταση δύο καθιερωμένοι τρόποι: πίνακας γειτνίασης συλλογή
Διαβάστε περισσότεραΑναζήτηση σε Γράφους. Μανόλης Κουμπαράκης. ΥΣ02 Τεχνητή Νοημοσύνη 1
Αναζήτηση σε Γράφους Μανόλης Κουμπαράκης ΥΣ02 Τεχνητή Νοημοσύνη 1 Πρόλογος Μέχρι τώρα έχουμε δει αλγόριθμους αναζήτησης για την περίπτωση που ο χώρος καταστάσεων είναι δένδρο (υπάρχει μία μόνο διαδρομή
Διαβάστε περισσότεραΟι βασικές λειτουργίες (ή πράξεις) που γίνονται σε μια δομή δεδομένων είναι:
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Μια δομή δεδομένων στην πληροφορική, συχνά αναπαριστά οντότητες του φυσικού κόσμου στον υπολογιστή. Για την αναπαράσταση αυτή, δημιουργούμε πρώτα ένα αφηρημένο μοντέλο στο οποίο προσδιορίζονται
Διαβάστε περισσότεραΠΛΗ 20, 6 η ΟΣΣ: Δέντρα Εξετάσεις
ΠΛΗ 20, 6 η ΟΣΣ: Δέντρα Εξετάσεις Δημήτρης Φωτάκης Διακριτά Μαθηματικά και Μαθηματική Λογική Πληροφορική Ελληνικό Ανοικτό Πανεπιστήμιο Δέντρα Δέντρο: πρότυπο ιεραρχικής δομής. Αναπαράσταση (ιεραρχικών)
Διαβάστε περισσότεραΕισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 6η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Γραφήματα Βασικές Έννοιες και Εφαρμογές Βασικοί
Διαβάστε περισσότερα1 Το πρόβλημα της συντομότερης διαδρομής
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΛΑΜΙΑΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΣΧΕΔΙΑΣΜΟΣ ΚΑΙ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ ΑΚΑΔΗΜΑΪΚΟ ΕΤΟΣ 00 Ιστοσελίδα μαθήματος: http://eclass.teilam.gr/di88 6ο ΕΡΓΑΣΤΗΡΙΟ
Διαβάστε περισσότεραΒασικές Δομές Δεδομένων
Βασικές Δομές Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Αφηρημένοι Τύποι Δεδομένων Οι ΑΤΔ Στοίβα και Ουρά Υλοποίηση των ΑΤΔ Στοίβα και Ουρά με Διαδοχική και Δυναμική Χορήγηση
Διαβάστε περισσότεραΔένδρα. Μαθηματικά (συνδυαστικά) αντικείμενα. Έχουν κεντρικό ρόλο στην επιστήμη των υπολογιστών :
Δένδρα Μαθηματικά (συνδυαστικά) αντικείμενα. Έχουν κεντρικό ρόλο στην επιστήμη των υπολογιστών : Ανάλυση αλγορίθμων (π.χ. δένδρα αναδρομής) Δομές δεδομένων (π.χ. δένδρα αναζήτησης) ακμή Κατηγορίες (αύξουσα
Διαβάστε περισσότεραΕισαγωγή στους Αλγορίθμους Φροντιστήριο 3
Εισαγωγή στους Αλγορίθμους Φροντιστήριο 3 Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Διαβάστε περισσότεραΒασικές Έννοιες Δοµών Δεδοµένων
Δοµές Δεδοµένων Δοµές Δεδοµένων Στην ενότητα αυτή θα γνωρίσουµε ορισµένες Δοµές Δεδοµένων και θα τις χρησιµοποιήσουµε για την αποδοτική επίλυση του προβλήµατος του ευσταθούς ταιριάσµατος Βασικές Έννοιες
Διαβάστε περισσότεραΕισαγωγή στην Επιστήμη των Υπολογιστών
Εισαγωγή στην Επιστήμη των Υπολογιστών 4 ο εξάμηνο ΣΗΜΜΥ 5 η ενότητα: Γράφοι: προβλήματα και αλγόριθμοι Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών
Διαβάστε περισσότεραΔιερεύνηση γραφήματος
Διερεύνηση γραφήματος Διερεύνηση γραφήματος Ένας αλγόριθμος διερεύνησης γραφήματος επισκέπτεται τους κόμβους του γραφήματος με μια καθορισμένη στρατηγική, π.χ. κατά εύρος ή κατά βάθος. Καθοδική διερεύνηση
Διαβάστε περισσότεραΚεφάλαιο 3. Γραφήματα. ver. 21/12/2014. Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.
Κεφάλαιο 3 Γραφήματα ver. 21/12/2014 Χρησιμοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισμοί και Εφαρμογές γραφήματα γράφημα G: ένας τρόπος κωδικοποίησης των σχέσεων ανά
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ
ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΑΝΑΛΥΣΗ ΑΛΓΟΡΙΘΜΩΝ Ενότητα 10β: Αλγόριθμοι Γραφημάτων-Γραφήματα- Αναπαράσταση Γραφημάτων- Διερεύνηση Πρώτα σε Πλάτος (BFS) Μαρία Σατρατζέμη Τμήμα Εφαρμοσμένης Πληροφορικής Άδειες Χρήσης Το
Διαβάστε περισσότεραΔιάλεξη 05: Αφηρημένοι Τύποι Δεδομένων
Διάλεξη 05: Αφηρημένοι Τύποι Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Αφηρημένοι Τύποι Δεδομένων (ΑΤΔ) Οι ΑΤΔ Στοίβα και Ουρά Υλοποίηση των ΑΤΔ Στοίβα και Ουρά ΕΠΛ231 Δομές Δεδομένων
Διαβάστε περισσότεραΓράφοι. Ορολογία. Ορισµός: G = (V, E) όπου. Ορολογία (συνέχεια) γράφος ή γράφηµα (graph) V:ένα σύνολο E:µια διµελής σχέση στο V
Γράφοι Ορολογία γράφος ή γράφηµα (graph) Ορισµός: G = (V, E) όπου V:ένα σύνολο E:µια διµελής σχέση στο V Ορολογία (συνέχεια) κάθε v V ονοµάζεται κορυφή (vertex) ή κόµβος (node) κάθε (v 1, v 2 ) Ε ονοµάζεται
Διαβάστε περισσότεραΔιδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 12: Δέντρα ΙΙ -Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης(ΔΔΑ) - Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου - Εισαγωγή
Διαβάστε περισσότεραΑλγόριθµοι Τύπου Μείωσης Προβλήµατος
Αλγόριθµοι Τύπου Μείωσης Προβλήµατος Περίληψη Αλγόριθµοι Τύπου Μείωσης Προβλήµατος ( Decrease and Conquer ) Μείωση κατά µια σταθερά (decrease by a constant) Μείωση κατά ένα ποσοστό (decrease by a constant
Διαβάστε περισσότεραΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 5. Αφηρημένοι Τύποι Δεδομένων / Στοίβες και Ουρές
ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 5. Αφηρημένοι Τύποι Δεδομένων / Στοίβες και Ουρές ΕΠΛ231 Δομές Δεδομένων και Αλγόριθμοι 2 Διάλεξη 05: Αφηρημένοι Τύποι Δεδομένων Στην ενότητα αυτή θα μελετηθούν τα
Διαβάστε περισσότεραΣτοιχεία Θεωρίας Γραφηµάτων (4) - έντρα
Στοιχεία Θεωρίας Γραφηµάτων (4) - έντρα Ορέστης Τελέλης tllis@unipi.r Τµήµα Ψηφιακών Συστηµάτων, Πανεπιστήµιο Πειραιώς Ο. Τελέλης Πανεπιστήµιο Πειραιώς έντρα 1 / 27 έντρα έντρο είναι απλό συνδεδεµένο µη
Διαβάστε περισσότεραΓράφημα. Συνδυαστικό αντικείμενο που αποτελείται από 2 σύνολα: Σύνολο κορυφών (vertex set) Σύνολο ακμών (edge set) 4 5 πλήθος κορυφών πλήθος ακμών
Γράφημα Συνδυαστικό αντικείμενο που αποτελείται από 2 σύνολα: Σύνολο κορυφών (vertex set) Σύνολο ακμών (edge set) 1 2 3 4 5 πλήθος κορυφών πλήθος ακμών Γράφημα Συνδυαστικό αντικείμενο που αποτελείται από
Διαβάστε περισσότεραΠΑΡΑΡΤΗΜΑ: QUIZ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ
ΠΑΡΑΡΤΗΜΑ: QUIZ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ (Οι ερωτήσεις µε κίτρινη υπογράµµιση είναι εκτός ύλης για φέτος) ΕΙΣΑΓΩΓΗ Q1. Οι Πρωταρχικοί τύποι (primitive types) στη Java 1. Είναι όλοι οι ακέραιοι και όλοι οι πραγµατικοί
Διαβάστε περισσότεραΑΣΚΗΣΗ 1 Για τις ερωτήσεις 1-4 θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι;
ΘΕΜΑΤΑ ΔΕΝΔΡΩΝ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ ΠΛΗ0 ΑΣΚΗΣΗ Για τις ερωτήσεις - θεωρήσατε τον ακόλουθο γράφο. Ποιές από τις παρακάτω προτάσεις αληθεύουν και ποιές όχι; Β Ε Α 6 Δ 5 9 8 0 Γ 7 Ζ Η. Σ/Λ Δυο από τα συνδετικά
Διαβάστε περισσότεραΕιδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων
Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων Άσκηση 1 α) Η δομή σταθμισμένης ένωσης με συμπίεση διαδρομής μπορεί να τροποποιηθεί πολύ εύκολα ώστε να υποστηρίζει τις
Διαβάστε περισσότεραΔιδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ
Διάλεξη 20: Τοπολογική Ταξινόμηση Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Ολοκλήρωση Αλγορίθμων Διάσχισης Γράφων (Από Διάλεξη 19) Τοπολογική Ταξινόμηση Εφαρμογές, Παραδείγματα, Αλγόριθμοι
Διαβάστε περισσότεραΒασικές οµές εδοµένων
Βασικές οµές εδοµένων Στην ενότητα αυτή θα µελετηθούν τα εξής επιµέρους θέµατα: Αφηρηµένοι Τύποι εδοµένων Οι ΑΤ Στοίβα και Ουρά Υλοποίηση των ΑΤ Στοίβα και Ουρά µε ιαδοχική και υναµική Χορήγηση Μνήµης
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές δεδομένων. Ενότητα 10η: Γράφοι Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Ενότητα 10η: Γράφοι Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών Ενότητα 10 Γράφοι ΗΥ240 - Παναγιώτα Φατούρου 2 Γράφοι (ή Γραφήματα) Ένας γράφος
Διαβάστε περισσότεραΓράφοι: κατευθυνόμενοι και μη
Γράφοι: κατευθυνόμενοι και μη (V,E ) (V,E ) Γράφος (ή γράφημα): ζεύγος (V,E), V ένα μη κενό σύνολο, Ε διμελής σχέση πάνω στο V Μη κατευθυνόμενος γράφος: σχέση Ε συμμετρική V: κορυφές (vertices), κόμβοι
Διαβάστε περισσότεραΕνότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις
Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις Άσκηση 1 Γράψτε μία αναδρομική συνάρτηση που θα παίρνει ως παράμετρο ένα δείκτη στη ρίζα ενός δυαδικού δένδρου και θα επιστρέφει το βαθμό του
Διαβάστε περισσότεραΑλγόριθμοι Γραφημάτων
11 Αλγόριθμοι Γραφημάτων Περιεχόμενα Κεφαλαίου 11.1 Βασικές Έννοιες....................... 330 11.2 Εσωτερική Παράσταση Γράφων.............. 333 11.3 Μέθοδοι Διάσχισης...................... 336 11.4 Τοπολογική
Διαβάστε περισσότεραΔιακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Διαβάστε περισσότεραΔομές Δεδομένων και Αλγόριθμοι
Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 14 Στοίβες 1 / 14 Στοίβες Η στοίβα είναι μια ειδική περίπτωση γραμμικής λίστας στην οποία οι εισαγωγές
Διαβάστε περισσότεραΘέματα Υπολογισμού στον Πολιτισμό - Δένδρα. Δένδρα
Δένδρα Δένδρα Ειδική κατηγορία γραφημάτων: συνεκτικά γραφήματα που δεν περιέχουν απλά κυκλώματα [1857] Arthur Cayley: για απαρίθμηση ορισμένων ειδών χημικών ενώσεων Χρησιμοποιούνται σε πληθώρα προβλημάτων,
Διαβάστε περισσότεραΚεφάλαιο 3. Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne.
Κεφάλαιο 3 Γραφήµατα v1.1 (2012-01-12) Χρησιµοποιήθηκε υλικό από τις αγγλικές διαφάνειες του Kevin Wayne. 1 3.1 Βασικοί Ορισµοί και Εφαρµογές γραφήµατα γράφηµα G: ένας τρόπος κωδικοποίησης των σχέσεων
Διαβάστε περισσότεραένδρα u o Κόµβοι (nodes) o Ακµές (edges) o Ουρά και κεφαλή ακµής (tail, head) o Γονέας Παιδί Αδελφικός κόµβος (parent, child, sibling) o Μονοπάτι (pat
ΕΝΟΤΗΤΑ 4 ΕΝ ΡΑ ένδρα u o Κόµβοι (nodes) o Ακµές (edges) o Ουρά και κεφαλή ακµής (tail, head) o Γονέας Παιδί Αδελφικός κόµβος (parent, child, sibling) o Μονοπάτι (path) o Πρόγονος απόγονος (ancestor, descendant)
Διαβάστε περισσότεραΕισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 7η Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Αλγόριθμοι Γραφημάτων Τοπολογική Διάταξη
Διαβάστε περισσότεραΔιακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά
Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά και Πληροφορικής Μαθηματικά Πανεπιστήμιο ΙΙ Ιωαννίνων
Διαβάστε περισσότεραu v 4 w G 2 G 1 u v w x y z 4
Διάλεξη :.0.06 Θεωρία Γραφημάτων Γραφέας: Σ. Κ. Διδάσκων: Σταύρος Κολλιόπουλος. Εισαγωγικοί ορισμοί Ορισμός. Γράφημα G καλείται ένα ζεύγος G = (V, E) όπου V είναι το σύνολο των κορυφών (ή κόμβων) και E
Διαβάστε περισσότεραΕνότητα 5: Αλγόριθμοι γράφων και δικτύων
Εισαγωγή στην Επιστήμη των Υπολογιστών ο εξάμηνο ΣΗΜΜΥ Ενότητα : Αλγόριθμοι γράφων και δικτύων Επιμέλεια διαφανειών: Στάθης Ζάχος, Άρης Παγουρτζής, Δημήτρης Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών
Διαβάστε περισσότεραΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Βασικές Ιδιότητες και Διάσχιση Κεφάλαιο 5 ( και ) Ε. Μαρκάκης Επίκουρος Καθηγητής
ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Βασικές Ιδιότητες και Διάσχιση Κεφάλαιο 5 (5.1-5.2 και 5.4-5.6) Ε. Μαρκάκης Επίκουρος Καθηγητής Περίληψη Δέντρα Βασικοί ορισµοί Μαθηµατικές ιδιότητες Διάσχιση δέντρων Preorder, postorder,
Διαβάστε περισσότεραΔιάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα
Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: Δυαδικά Δένδρα Δυαδικά Δένδρα Αναζήτησης (ΔΔΑ) Εύρεση Τυχαίου, Μέγιστου, Μικρότερου στοιχείου Εισαγωγή στοιχείου
Διαβάστε περισσότεραΔομές Δεδομένων και Αλγόριθμοι
Δομές Δεδομένων και Αλγόριθμοι Χρήστος Γκόγκος ΤΕΙ Ηπείρου Χειμερινό Εξάμηνο 2014-2015 Παρουσίαση 18 Dijkstra s Shortest Path Algorithm 1 / 12 Ο αλγόριθμος εύρεσης της συντομότερης διαδρομής του Dijkstra
Διαβάστε περισσότεραΑλγόριθµοι και Πολυπλοκότητα
Αλγόριθµοι και Πολυπλοκότητα Ν. Μ. Μισυρλής Τµήµα Πληροφορικής και Τηλεπικοινωνιών, Πανεπιστήµιο Αθηνών Καθηγητής: Ν. Μ. Μισυρλής () Αλγόριθµοι και Πολυπλοκότητα Φεβρουαρίου 0 / ένδρα Ενα δένδρο είναι
Διαβάστε περισσότεραΔιάλεξη 22: Δυαδικά Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου
Διάλεξη 22: Δυαδικά Δέντρα Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα: - Δυαδικά Δένδρα - Δυαδικά Δένδρα Αναζήτησης - Πράξεις Εισαγωγής, Εύρεσης Στοιχείου, Διαγραφής Μικρότερου Στοιχείου
Διαβάστε περισσότεραΚατανεμημένα Συστήματα Ι
Κατανεμημένα Συστήματα Ι Εκλογή αρχηγού και κατασκευή BFS δένδρου σε σύγχρονο γενικό δίκτυο Παναγιώτα Παναγοπούλου Περίληψη Εκλογή αρχηγού σε γενικά δίκτυα Ορισμός του προβλήματος Ο αλγόριθμος FloodMax
Διαβάστε περισσότεραΘεωρία Γραφημάτων 5η Διάλεξη
Θεωρία Γραφημάτων 5η Διάλεξη Α. Συμβώνης Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών Τομέας Μαθηματικών Φεβρουάριος 2017 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 5η Διάλεξη
Διαβάστε περισσότεραΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Δομές Δεδομένων. Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές Δεδομένων Ιωάννης Γ. Τόλλης Τμήμα Επιστήμης Υπολογιστών Πανεπιστήμιο Κρήτης Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στα πλαίσια του εκπαιδευτικού
Διαβάστε περισσότεραΘεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές
Θεωρία Γραφημάτων Θεμελιώσεις-Αλγόριθμοι-Εφαρμογές Ενότητα 5 ΣΥΝΕΚΤΙΚΟΤΗΤΑ Σταύρος Δ. Νικολόπουλος 2017-18 www.cs.uoi.gr/~stavros Συνεκτικότητα Έννοια της συνδεσμικότητας: «Ποσότητα συνδεσμικότητας»...
Διαβάστε περισσότεραΘΕΩΡΙΑ ΓΡΑΦΩΝ. 10 η Διάλεξη Κατευθυνόμενοι Γράφοι Βασικά χαρακτηριστικά Αλγόριθμοι διάσχισης κατευθυνόμενων γράφων Λίγα Λόγια για Αλυσίδες Markov
Πανεπιστήμιο Στερεάς Ελλάδας Τμήμα Πληροφορικής ΘΕΩΡΙΑ ΓΡΑΦΩΝ 10 η Διάλεξη Κατευθυνόμενοι Γράφοι Βασικά χαρακτηριστικά Αλγόριθμοι διάσχισης κατευθυνόμενων γράφων Λίγα Λόγια για Αλυσίδες Markov Βασικά Χαρακτηριστικά
Διαβάστε περισσότεραauth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1
Σχεδίαση Αλγορίθμων Μείωσε και Βασίλευε http://delab.csd.auth.gr/courses/algorithms/ auth Αλγόριθμοι - Τμήμα Πληροφορικής ΑΠΘ -4ο εξάμηνο 1 Μείωσε και Βασίλευε 1. Μειώνουμε το στιγμιότυπο του προβλήματος
Διαβάστε περισσότεραΘεωρία Γραφημάτων 5η Διάλεξη
Θεωρία Γραφημάτων 5η Διάλεξη Α. Συμβώνης Εθνικο Μετσοβειο Πολυτεχνειο Σχολη Εφαρμοσμενων Μαθηματικων και Φυσικων Επιστημων Τομεασ Μαθηματικων Φεβρουάριος 2016 Α. Συμβώνης (ΕΜΠ) Θεωρία Γραφημάτων 5η Διάλεξη
Διαβάστε περισσότερα