(a) Individually finned tubes (b) flat (continuous) fins on an array of tubes

Σχετικά έγγραφα
(b) flat (continuous) fins on an array of tubes

Rektangulär fläns, Rectangular fin

Homework 8 Model Solution Section

Areas and Lengths in Polar Coordinates

Chapter 7 Transformations of Stress and Strain

Lecture 26: Circular domains

Areas and Lengths in Polar Coordinates

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

4.6 Autoregressive Moving Average Model ARMA(1,1)

3.5 - Boundary Conditions for Potential Flow

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

STUDY OF FINS SHAPES' EFFECT ON NATURAL THERMAL CONVECTION

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Review Exercises for Chapter 7

CRASH COURSE IN PRECALCULUS

Example Sheet 3 Solutions

Linearized Lifting Surface Theory Thin-Wing Theory

Thi=Τ1. Thο=Τ2. Tci=Τ3. Tco=Τ4. Thm=Τ5. Tcm=Τ6

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

[1] P Q. Fig. 3.1

Spherical Coordinates

Finite Field Problems: Solutions

Matrices and Determinants

Other Test Constructions: Likelihood Ratio & Bayes Tests

Monetary Policy Design in the Basic New Keynesian Model

derivation of the Laplacian from rectangular to spherical coordinates

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

D Alembert s Solution to the Wave Equation

Homework 3 Solutions

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

2 Composition. Invertible Mappings

Exercises to Statistics of Material Fatigue No. 5

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Graded Refractive-Index

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

ST5224: Advanced Statistical Theory II

is like multiplying by the conversion factor of. Dividing by 2π gives you the

CYLINDRICAL & SPHERICAL COORDINATES

6.4 Superposition of Linear Plane Progressive Waves

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is


Parametrized Surfaces

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

C.S. 430 Assignment 6, Sample Solutions

Uniform Convergence of Fourier Series Michael Taylor

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

Durbin-Levinson recursive method

List MF20. List of Formulae and Statistical Tables. Cambridge Pre-U Mathematics (9794) and Further Mathematics (9795)

Solution Series 9. i=1 x i and i=1 x i.

Section 8.3 Trigonometric Equations

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

Statistical Inference I Locally most powerful tests

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Second Order RLC Filters

Finite difference method for 2-D heat equation

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

EE512: Error Control Coding

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Solutions to Exercise Sheet 5

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Strain gauge and rosettes

the total number of electrons passing through the lamp.

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

Forced Pendulum Numerical approach

2. Chemical Thermodynamics and Energetics - I

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Numerical Analysis FMN011

5. Choice under Uncertainty

Notes on the Open Economy

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

If we restrict the domain of y = sin x to [ π 2, π 2

The Nottingham eprints service makes this work by researchers of the University of Nottingham available open access under the following conditions.

5.4 The Poisson Distribution.

MOTROL. COMMISSION OF MOTORIZATION AND ENERGETICS IN AGRICULTURE 2014, Vol. 16, No. 5,

ZLW Series. Single-stage Monoblock Centrifugal Pump ZL PUMP GROUP.,LTD

w o = R 1 p. (1) R = p =. = 1

Υδραυλική Εργαστήριο 4. Χρίστος Α. Καραβίτης Διαχείριση Υδατικών Πόρων Τμήμα ΑΦΠ & ΓΜ, Γ.Π.Α.

Approximation of distance between locations on earth given by latitude and longitude

Supplementary information to The Kepler problem from a differential geometry point of view

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Supporting Information

( y) Partial Differential Equations

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Lecture 2. Soundness and completeness of propositional logic

Transcript:

(a) Individually finned tues () flat (continuous) fins on an array of tues

Eample Fins

Fins on Stegosaurus 3

Rektangulär fläns, Rectangular fin. Z t d t f 4

Rektangulär fläns, Rectangular fin. Z t d t f d ϑ αc ϑ d λ t t ( ϑ f ) (3 3) m αc λ α Z λz α λ Randvillkor, Boundary conditions: : t t ϑ ϑ t tf dt : λ α (t tf ) d tunn och lång fläns, long and thin fin dt d 5

Rektangulär fläns, rectangular fin ösning, Solution: ϑ C e m + C e m C 3 cosh m + C 4 sinh m e (cosh m e sinh m m m + e e m m ) 6

Rektangulär fläns, rectangular fin ϑ ϑ t t t t f f cosh m( ) cosh m (3 38) För, for ϑ ϑ ϑ ϑ cosh m från flänsen, from the fin? m dϑ λ d λϑ αc λ sinh m ( m) cosh m αcλ ϑ αλ Zϑ tanh m tanh m (3 4) 7

Rektangulär fläns, rectangular fin Cu, λ 385 W/m K ϑ ϑ.8.6 Rostfritt stål, λ 7 W/m K Stainless steel.4. Glas, λ.8 W/m K 4 6 8 [cm] Glass α 5 W/m K, cm, cm 8

Rektangulär fläns, rectangular fin Om vi använder villkoret, If the condition elow is used dϑ λ α ϑ d fås istället, one has cosh m( ) + ϑ ϑ cosh m + och, and α sinh m( ) mλ α sinh m mλ (3 4) ϑ (3 4) ϑ α cosh m + sinh m mλ och, and α + tanh m m mλϑ λ (3 43) α + tanh m mλ 9

Rektangulär fläns, rectangular fin funktion function ( ) ( ). t Z lönsamt, preferale if d d > Fig. 3-3. rrangemang av rektangulära flänsar. arrangement of rectangular fins

önsamhetskrav, criterion for enefit: d > d mλϑ α + tanh m mλ α + tanh m mλ d d d d + eller, or m α ( + tanh m) cosh m mλ mλϑ N α m α tanh m m + λ cosh m mλ N > α tanh m mλ α m λ m α > λ α tanh m > mλ

Rektangulär fläns, rectangular fin m αc λ α λ ntag, assume α α eller, or α λ α λ α > λ λ > α > (3 46) Tumregel, rule of thum: λ α > 5 (3 47)

Flänsverkningsgrader, fin effectiveness, fin efficiency : η η från flänsen från asytan utan fläns from the fin from the asearea without the fin : ϕ ϕ från flänsen från en likadan fläns med λ from the fin from a similar fin ut with λ 3

Optimal fläns, optimal fin Kriterium, Criterion: Ma. värmeflöde vid given vikt, maimum heat flow at a given weight Z M ρ Z ρ Z, Z, ρ givna, are given. Sök ma, find maimum constant. för, for konstant, (3-4): αcλ ϑ tanh m C Z, Z m αc λ α λ α αλ Zϑ tanh λ 4

Optimal rektangulär fläns, optimal rectangular fin Villkor, condition d d ger optimum, gives optimum några mellan räkningar ger; after some algera one otains /.49 λ α (3 55) 5

Flänsarrangemang, Fin arrangement mλϑ αλ Zϑ tanh m tanh α λ (3 5) { α u (3 58) λ tanh u 3u cosh (3 54) u ( 3 54) ur villkoret, from the condition d / d } Efter lite räknearete finner man; after some algera one finds: 3 u (3 6a) 3 3 ϑ Z tanh u 4α λ 6

7 Flänsens vikt, Weight of the fin M ρ Z ρ Z ρ/λ materialparameter, is the material parameter se taell 3-, see Tale 3-. λ ρ α ϑ 3 3 4 u tanh u Z

Rak triangulär fläns, Straight triangular fin t f δ d t ϑ t t f Värmealans, Heat alance d ϑ + d dϑ d α β λ ösning, Solution: ϑ I β + BK( K då α ϑ λ ( ) ) β (3 6) Z B ty, as ϑ ändlig, finite för, for ϑ ϑ ( ) ϑ I β 8

9 triangulär fläns, triangular fin ) ( I β ϑ 65) (3 ) ( I ) ( I β β ϑ ϑ d dt λ d ) ( di ) ( I Z β β ϑ λ

triangulär fläns, triangular fin. ξ β ξ ξ β ξ d d d d d d d d Inför / introduce, ξ ξ β β d ) ( di / d ) ( di ) ( I ) ( I / β λ α β β 66) (3 ) ( I ) ( I Z β β αλ ϑ

Triangular fin Optimal triangulär fläns, optimal triangular fin. Ma. värmeflöde vid given vikt, maimum heat flu at given weight. /.39 λ α (3 67)

Sammanställning rektangulär och triangulär fläns, summary of formulae for rectangular and triangular fins ϑ ϑ t tf t t f cosh m( ) cosh m (3 38) ϑ ϑ I ( I ( β) β) (3 65) m α λ β α λ η αλ Zϑ tanh m λ α tanh m (3 4) η I( αλ Zϑ I( λ I ( β) α I ( β) β) β) ϕ tanh m m ϕ I( β) / I ( β β) Optimal fläns, optimal fin (ma värmeflöde vid given vikt) λ.49 (3 55) / α Optimal fläns, optimal fin (ma värmeflöde vid given vikt) λ.39 (3 67) / α

Formler för flänsverkningsgrader. Formulas for fin efficiencies Några enkla räkningar ger följande resultat, Some simple calculations give: Rektangulär fläns, rectangular fin η λ α tanh m ϕ tanh m m Triangulär fläns, triangular fin η λ α I I ( ( β) β) ϕ I( β) / I( β β) 3

Cirkulära flänsar, circular or annular fins r r Värmeledande ytan, heat conducting area πr Konvektiv omkrets, convective perimeter C πr 4πr 4

Fin efficiency circular fins 8 ϕ (%) 6 4 r c r + / c + / r c /r 3 4 r r.5.5.5 c α /( λ) 5

6 nvändning av flänsverkningsgraden ϕ, How to use the fin efficiency in engineering calculations s flänsar area oflänsad fin unfinned area + + ) ( ) ( ) ( ) ( f fins f fläns t t fins f t t flänsar f t t t t + + α λ α λ ϕ α ϕ α { } { } ) 7 (3 ) ( 7) (3 ) ( + + fins f fläns f t t t t ϕ α ϕ α fläns