ΟΙ ΚΑΡΤΕΣΙΑΝΕΣ ΣΥΝΤΕΤΑΓΜΕΝΕΣ ΤΩΝ ΟΖΟΝΙΣΜΕΝΩΝ ΠΑΡΑΓΩΓΩΝ ΤΟΥ ΦΟΥΛΛΕΡΕΝΙΟΥ C 60 Συνοδινού Κόστιτς Σ. Πανεπιστήμιο Βελιγραδίου, Χημική Σχολή, Σερβία Διεύθυνση επικοινωνίας: Δ. Αρεοπαγίτου 2, 60 100 Κατερίνη, Ελλάδα, E-mail: sinko13@hol.gr Οζονισμένα παράγωγα του φουλλερενίου επιδεικνύουν χημειοφωταυγεία, η οποία μπορεί να χρησιμοποιηθεί για την ποσοτικοποίηση της αρχικής συγκέντρωσης των φουλλερενίων, πριν την οζονοποίηση. Οι συνθήκες της αντίδρασης μπορεί να ορισθούν έτσι ώστε να παραχθεί μόνο ένας τύπος του προϊόντος, δηλ. που έχει δυο ή τρία οξυγονούχα υποκατάστατα φουλλερενίου. Λέξεις κλειδί: Οζονισμένα παράγωγα, φουλλερένιο, οζονόλυση. CARTESIAN COORDINATES OF THE OZONIZED PRODUCTS OF FULLERENE C 60 Synodinou Kostić S. University of Belgrade, Faculty of Chemistry, Serbia Mailing address: D. Areopagitou 2, 60 100 Karterini, Greece, E-mail: sinko13@hol.gr ABSTRACT Ozonized derivatives of fullerenes exhibit chemiluminescence, that can be used to quantify the initial concentration of the fullerenes, before the ozonization. The reaction conditions can be led to produce only one type of derivative, i.e. two or three oxygen substitutes of fullerene. This approach can be used to examine other nano molecules. The reaction sites have been examined and coordinates of oxygen atoms determined, along with the given C 60 coordinates. Key words: Ozonized derivatives, ozonolysis, fullerene.
1.INTRODUCTION Ozonization of fullerene (C 60 ) produces, through transition states and different reactions, final derivatives [1]. The process is followed by the chemiluminescence, that can be used to determine the initial concentration of fullerene. Fig. 1. Reaction of the ozonization of fullerene 2. THE REACTION SITES AND PRODUCTS The atoms of fullerene are labeled according the IUPAC Nomenclature [2]. Fig. 2. Oxygen reacts with the two opposite C atoms of pentagons, breaking the bond between two adjacent hexagons [3]. Fig.3 Reaction of ozonolysis that exhibits CL [3]. Other derivative, C 60 O 3, is obtained also. 2
3. COORDINATES The coordinates of fullerene have been calculated previously[4]. The high symmetry of C 60 facilitates calculation of the atom coordinates of fullerene and of its derivates. During the reaction, the bond C1-C9 breaks, atoms C1 and C9 leave the surface of C 60 and remain elevated, forming the geometrical triangles of atom groups C2-C1-C5 and C8- C9-C10. Atoms C1 and C5, as well as atoms C8 and C10 are not connected. The heights of the triangles, from the lines C2-C5 or C8-C10, are equal to the difference of x1 of C 60 and x 2 or x [4] 5. Both atoms C1 and C9 had y value equal to 0.000 and this remains. Z value of C1 is the height of the triangle added to the z-values of the upper pentagon, i.e. 3.3331. Z of the C9 is the height of the triangle added to the radius of the center of the line C8-C10. Bond lengths for the keto-oxygen atoms is derived from the crystallographic data for a similar molecule, on the base of the geometrical data for cyclopentenone dimer [5]. Fig. 4. Geometrical data for cyclopentenone dimer. The distance between the atoms C1 and C4 was calculated to be 2,465 Ǻ while the distance between similar carbon atoms in fullerene [4], C1 and C4 is 2,411 Ǻ. So, the distance between C5 and the oxygen atom in the cyclopentenone dimer, 1.21 Ǻ, could be taken as the one between C and the O keto-atoms in the fullerene derivatives. 3.1. O61 AND O62 ATOMS O61 atom could be pproximately considered to have x and y coordinates equal to those of C1, and the z coordinate the extended z value of C1, by the bond length. O62 coordinated were calculated in the same way as the corresponding for the C8 and C10 atoms [4] r 62 = r 9 + 1,21 = 5.4675 (1) x 62 = r 62 sin(ψ+ξ) = 3.7385 y 62 =0 z 62 = r 62 cos (ψ+ξ) = 3.9897 Table 1. Cartesians of C 60 O 2. C i x i y i z i Inverse C j atom -x i, -y i, -z i 1 0.3834 0.0000 4.1905 none 2 0.3834-1.1800 3.3331 56 3-1.0038-0.7293 3.3331 57 3
4-1.0038 0.7923 3.3331 58 5 0.3834 1.1800 3.3331 59 6 0.7515 2.3128 2.5952 49 7 1.9925 2.3135 1.8239 50 8 2.8160 1.1600 1.8239 51 9 3.1067 0.000 2.9111 none 10 2.8160-1.1800 1.8239 53 11 1.9925-2.3135 1.8239 54 12 0.7515-2.3128 2.5952 55 13-0.2521-3.0428 1.8239 41 14-1.5846-2.6099 1.8239 42 15-19674 -1.4294 2.5952 43 16-2.9718 0.7005 1.8239 44 17-2.9718 0,7005 1.8239 45 18-1.9674 1.4294 2.5952 46 19-1.5846 2.6099 1.8239 47 20-0.2521 3.0428 1.8239 48 21 0.3681 3.4928 0.5601 31 22 1.7553 3.0421 0.5601 32 23 2.3508 2.6094-0.5601 33 24 3.2081 1.4294-0.5601 34 25 3.4359 0.7293 0.5601 35 26 3.4356-0.7293 0.5601 36 27 3.2081-1.4294-0.5601 37 28 2.3508-2.6094-0.5601 38 29 1.7553-3.0421 0.5601 39 30 0.3681-3.4928 0.5601 40 52-2.4318 0.0000-2.5952 60-1.2408 0.0000-3.3331 O61 0.3834 0.0000 5.4675 O62 3.7385 0.0000 3.9897 5. CONCLUSIONS It is possible to calculate all coordinates in C 60 O 2, that could be optimized by a program for geometry optimization, following by the calculations of MO energy levels. These results can give the MO levels involved in CL, so it can identify the kind of derivative that gave the CL. REFERENCES 1. Hiroto watanabe, Eitaro Matsui, Yuichi Ishiyama and Mamoru Senna (2007), Solvent free mechanochemical oxygenation of fullerene under oxygen atmosphere, Tetrahedron Letters, Volume 12, November 2007, Pages 8132-8137 2. W. H. Powell, F. Cozzi, G. P. Moss, C. Thilgen, R. J.-R. Hwu and A. Yerin (2002), Nomenclature for the C 60 -I h and C 70 -D 5h(6) fullerenes (IUPAC Recommendations 2002), Pure Appl. Chem., 2002, Vol. 74, No. 4, pp. 629-695, doi:10.1351/pac200274040629 4
3. Sabirov D.Sh., Bulgakov R.G., Khursan S.L., Razumovskii S.D. (2009), Chemiluminescent test for oxofullerenocarbonyl oxides generated by fullerene ozonolysis, Mendeleev communications, 2008, 18 (6) : 307-308; 9th Biennial International Workshop, Fullerenes and Atomic clusters, IWFAC 2009, St. Petersburg, Russia, July 6-10, 2009 4. Synodinou Kostić S. (2011), Cartesian coordinates of fullerene C 60 on the base of the experimental data, 4 ο Περιβαλλοντικό Συνέδριο Μακεδονίας, 18-20 Μαρτίου, Θεσσαλονίκη, 2011. 5. T. N. Margulis,(1965), Geometrical data for cyclopentenone dimer, Acta Crystallogr., 18, 742 (1965). 5