MODERN COMPUTATIONAL ORACLES CHEMICAL ENGINEERING



Σχετικά έγγραφα
MODERN COMPUTATIONAL ORACLES CHEMICAL ENGINEERING. Nicolas Markatos. School of Chemical Engineering, National Technical University of Athens, Greece.

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

C.S. 430 Assignment 6, Sample Solutions

Section 8.3 Trigonometric Equations

The Simply Typed Lambda Calculus

Assalamu `alaikum wr. wb.

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

TMA4115 Matematikk 3

«ΑΓΡΟΤΟΥΡΙΣΜΟΣ ΚΑΙ ΤΟΠΙΚΗ ΑΝΑΠΤΥΞΗ: Ο ΡΟΛΟΣ ΤΩΝ ΝΕΩΝ ΤΕΧΝΟΛΟΓΙΩΝ ΣΤΗΝ ΠΡΟΩΘΗΣΗ ΤΩΝ ΓΥΝΑΙΚΕΙΩΝ ΣΥΝΕΤΑΙΡΙΣΜΩΝ»

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία

2 Composition. Invertible Mappings

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΟΙΚΟΝΟΜΟΤΕΧΝΙΚΗ ΑΝΑΛΥΣΗ ΕΝΟΣ ΕΝΕΡΓΕΙΑΚΑ ΑΥΤΟΝΟΜΟΥ ΝΗΣΙΟΥ ΜΕ Α.Π.Ε

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

Concrete Mathematics Exercises from 30 September 2016

ΤΕΙ ΚΑΒΑΛΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

derivation of the Laplacian from rectangular to spherical coordinates

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

ΣΤΥΛΙΑΝΟΥ ΣΟΦΙΑ

ΚΑΘΟΡΙΣΜΟΣ ΠΑΡΑΓΟΝΤΩΝ ΠΟΥ ΕΠΗΡΕΑΖΟΥΝ ΤΗΝ ΠΑΡΑΓΟΜΕΝΗ ΙΣΧΥ ΣΕ Φ/Β ΠΑΡΚΟ 80KWp

Homework 8 Model Solution Section

Finite Field Problems: Solutions

Every set of first-order formulas is equivalent to an independent set

Επιβλέπουσα Καθηγήτρια: ΣΟΦΙΑ ΑΡΑΒΟΥ ΠΑΠΑΔΑΤΟΥ

Μηχανική Μάθηση Hypothesis Testing

the total number of electrons passing through the lamp.

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

ΠΕΡΙΕΧΟΜΕΝΑ. Κεφάλαιο 1: Κεφάλαιο 2: Κεφάλαιο 3:

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης

The challenges of non-stable predicates

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΥΠΟΛΟΓΙΣΤΩΝ ΤΟΜΕΑΣ ΣΥΣΤΗΜΑΤΩΝ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΥΨΗΛΩΝ ΤΑΣΕΩΝ

Math 6 SL Probability Distributions Practice Test Mark Scheme

ΑΛΛΗΛΕΠΙ ΡΑΣΗ ΜΟΡΦΩΝ ΛΥΓΙΣΜΟΥ ΣΤΙΣ ΜΕΤΑΛΛΙΚΕΣ ΚΑΤΑΣΚΕΥΕΣ

Instruction Execution Times

Γιπλυμαηική Δπγαζία. «Ανθπυποκενηπικόρ ζσεδιαζμόρ γέθςπαρ πλοίος» Φοςζιάνηρ Αθανάζιορ. Δπιβλέπυν Καθηγηηήρ: Νηθφιανο Π. Βεληίθνο

Example Sheet 3 Solutions

AKAΔΗΜΙΑ ΕΜΠΟΡΙΚΟΥ ΝΑΥΤΙΚΟΥ ΜΑΚΕΔΟΝΙΑΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΘΕΜΑ: Η ΧΡΗΣΗ ΒΙΟΚΑΥΣΙΜΩΝ ΣΤΗΝ ΝΑΥΤΙΛΙΑ ΠΛΕΟΝΕΚΤΗΜΑΤΑ-ΜΕΙΟΝΕΚΤΗΜΑΤΑ ΠΡΟΟΠΤΙΚΕΣ

Μηχανισμοί πρόβλεψης προσήμων σε προσημασμένα μοντέλα κοινωνικών δικτύων ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ. «Θεσμικό Πλαίσιο Φωτοβολταïκών Συστημάτων- Βέλτιστη Απόδοση Μέσω Τρόπων Στήριξης»

Strain gauge and rosettes

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και. Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του. Πανεπιστημίου Πατρών

ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΘΕΜΑ: «ιερεύνηση της σχέσης µεταξύ φωνηµικής επίγνωσης και ορθογραφικής δεξιότητας σε παιδιά προσχολικής ηλικίας»

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

EE512: Error Control Coding

PARTIAL NOTES for 6.1 Trigonometric Identities

Πτυχιακή Εργασία. Παραδοσιακά Προϊόντα Διατροφική Αξία και η Πιστοποίηση τους

ΓΗΠΛΧΜΑΣΗΚΖ ΔΡΓΑΗΑ ΑΡΥΗΣΔΚΣΟΝΗΚΖ ΣΧΝ ΓΔΦΤΡΧΝ ΑΠΟ ΑΠΟΦΖ ΜΟΡΦΟΛΟΓΗΑ ΚΑΗ ΑΗΘΖΣΗΚΖ

Block Ciphers Modes. Ramki Thurimella

ΠΟΛΤΣΔΥΝΔΗΟ ΚΡΖΣΖ ΣΜΖΜΑ ΜΖΥΑΝΗΚΧΝ ΟΡΤΚΣΧΝ ΠΟΡΧΝ

Right Rear Door. Let's now finish the door hinge saga with the right rear door

ST5224: Advanced Statistical Theory II

«ΨΥΧΙΚΗ ΥΓΕΙΑ ΚΑΙ ΣΕΞΟΥΑΛΙΚΗ» ΠΑΝΕΥΡΩΠΑΪΚΗ ΕΡΕΥΝΑ ΤΗΣ GAMIAN- EUROPE

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

ΕΠΙΧΕΙΡΗΣΙΑΚΗ ΑΛΛΗΛΟΓΡΑΦΙΑ ΚΑΙ ΕΠΙΚΟΙΝΩΝΙΑ ΣΤΗΝ ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ

4.6 Autoregressive Moving Average Model ARMA(1,1)

Πανεπιστήμιο Πειραιώς Τμήμα Πληροφορικής Πρόγραμμα Μεταπτυχιακών Σπουδών «Πληροφορική»

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΑΓΓΛΙΚΗ ΓΛΩΣΣΑ ΣΕ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΔΙΕΘΝΩΝ ΣΧΕΣΕΩΝ & ΟΙΚΟΝΟΜΙΑΣ

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Τ.Ε.Ι. ΔΥΤΙΚΗΣ ΜΑΚΕΔΟΝΙΑΣ ΠΑΡΑΡΤΗΜΑ ΚΑΣΤΟΡΙΑΣ ΤΜΗΜΑ ΔΗΜΟΣΙΩΝ ΣΧΕΣΕΩΝ & ΕΠΙΚΟΙΝΩΝΙΑΣ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Approximation of distance between locations on earth given by latitude and longitude

ΑΓΓΛΙΚΑ Ι. Ενότητα 7α: Impact of the Internet on Economic Education. Ζωή Κανταρίδου Τμήμα Εφαρμοσμένης Πληροφορικής

Inverse trigonometric functions & General Solution of Trigonometric Equations

7 Present PERFECT Simple. 8 Present PERFECT Continuous. 9 Past PERFECT Simple. 10 Past PERFECT Continuous. 11 Future PERFECT Simple

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΕΙΡΑΙΩΣ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΜΣ «ΠΡΟΗΓΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΠΛΗΡΟΦΟΡΙΚΗΣ» ΚΑΤΕΥΘΥΝΣΗ «ΕΥΦΥΕΙΣ ΤΕΧΝΟΛΟΓΙΕΣ ΕΠΙΚΟΙΝΩΝΙΑΣ ΑΝΘΡΩΠΟΥ - ΥΠΟΛΟΓΙΣΤΗ»

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

On a four-dimensional hyperbolic manifold with finite volume

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

ΑΝΑΠΤΥΞΗ ΠΡΟΓΡΑΜΜΑΤΩΝ ΕΚΠΑΙΔΕΥΣΗΣ ΜΕ ΣΤΟΧΟ ΤΗΝ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗ ΕΥΑΙΣΘΗΤΟΠΟΙΗΣΗ ΑΤΟΜΩΝ ΜΕ ΕΙΔΙΚΕΣ ΑΝΑΓΚΕΣ ΚΑΙ ΤΗΝ ΚΟΙΝΩΝΙΚΗ ΤΟΥΣ ΕΝΣΩΜΑΤΩΣΗ

ΕΦΑΡΜΟΓΗ ΕΥΤΕΡΟΒΑΘΜΙΑ ΕΠΕΞΕΡΓΑΣΜΕΝΩΝ ΥΓΡΩΝ ΑΠΟΒΛΗΤΩΝ ΣΕ ΦΥΣΙΚΑ ΣΥΣΤΗΜΑΤΑ ΚΛΙΝΗΣ ΚΑΛΑΜΙΩΝ

Matrices and Determinants

ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΘΕΜΑ»

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

5.4 The Poisson Distribution.

ΓΕΩΜΕΣΡΙΚΗ ΣΕΚΜΗΡΙΩΗ ΣΟΤ ΙΕΡΟΤ ΝΑΟΤ ΣΟΤ ΣΙΜΙΟΤ ΣΑΤΡΟΤ ΣΟ ΠΕΛΕΝΔΡΙ ΣΗ ΚΤΠΡΟΤ ΜΕ ΕΦΑΡΜΟΓΗ ΑΤΣΟΜΑΣΟΠΟΙΗΜΕΝΟΤ ΤΣΗΜΑΣΟ ΨΗΦΙΑΚΗ ΦΩΣΟΓΡΑΜΜΕΣΡΙΑ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΗΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία ΑΝΑΠΤΥΞΗ ΔΕΙΚΤΩΝ ΠΟΙΟΤΗΤΑΣ ΕΔΑΦΟΥΣ

ΠΣΤΥΙΑΚΗ ΔΡΓΑΙΑ. Μειέηε Υξόλνπ Απνζηείξσζεο Κνλζέξβαο κε Τπνινγηζηηθή Ρεπζηνδπλακηθή. Αζαλαζηάδνπ Βαξβάξα

ΑΝΑΠΤΥΞΗ ΣΕΝΑΡΙΩΝ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ ΤΗΣ ΔΙΑΧΕΙΡΙΣΗΣ ΚΑΙ ΤΗΣ ΥΔΡΟΗΛΕΚΤΡΙΚΗΣ ΠΑΡΑΓΩΓΗΣ ΤΟΥ ΥΔΡΟΣΥΣΤΗΜΑΤΟΣ ΤΟΥ ΠΟΤΑΜΟΥ ΝΕΣΤΟΥ

Μεταπτυχιακή διατριβή. Ανδρέας Παπαευσταθίου

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Managing Economic Fluctuations. Managing Macroeconomic Fluctuations 1

[1] P Q. Fig. 3.1

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Math221: HW# 1 solutions

Advanced Subsidiary Unit 1: Understanding and Written Response

Επιμέλεια: Αδαμαντία Τραϊφόρου (Α.Μ 263) Επίβλεψη: Καθηγητής Μιχαήλ Κονιόρδος

Code Breaker. TEACHER s NOTES

(C) 2010 Pearson Education, Inc. All rights reserved.

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΠΕΡΙΛΗΨΗ. Εισαγωγή. Σκοπός

Συστήματα Διαχείρισης Βάσεων Δεδομένων

ΕΘΝΙΚΗ ΣΧΟΛΗ ΗΜΟΣΙΑΣ ΙΟΙΚΗΣΗΣ

Transcript:

MODERN COMPUTATIONAL ORACLES IN CHEMICAL ENGINEERING Nicolas Markatos School of Chemical Engineering, National Technical University of Athens, Greece. Symposium on New Frontiers in Chemical and Biochemical Engineering Thessaloniki, 26-27 November 29

Outline of the argument What will happen if? is the most important question which a conscious being can ask. Answering it rightly more times than not is what keeps most of us safe, healthy and reasonably prosperous; for it allows us to: foresee, and so avoid, dangerous events; select, from available options, those which best promote happiness and wellbeing; and create opportunities which never before existed

Outline of the argument Society seeks, through education, to inculcate in the young the habit of asking this question; and to convey how the right answers can be arrived at, which means to teach to all: techniques of prediction. In essence, all such techniques are the same: examine the past; and if elements of the present are seen there, suppose that what transpired is likely to happen again. Thus: When last I pulled the tail of a cat, it scratched me; so, if I do it again, another scratch is what I must expect. It is a sound principle.

Outline of the argument In ancient times, oracles were consulted on matters of importance, as best fitted by age, experience or connections to foresee, what the past implied about the impending future. That too was a sound principle, for those who could afford the oracle s fees! How are these principles applied in Chemical Engineering? If the task in hand involves little novelty, as when one more reactor is to be built for an established and satisfactory production line, simple repetition of past actions is what the principle dictates. But when the performance requirements have changed, exceeding what the old reactor is capable of, novelty is needed; and what is new has, by definition, no past to be examined. What to do?

Outline of the argument There is however a more general encapsulation of the past, which we call science; and for chemical engineers it takes the form of: laws of conservation of mass, momentum and energy, (Lomonosov, Newton, Joule); laws of transport of those same entities by diffusion, viscous action and heat conduction (Fick, Newton, Fourier); laws of deformation of solids in response to mechanical and thermal stresses (Hooke); laws governing rates of chemical transformation, and electrical and magnetic interactions (Arrhenius, Faraday). It is such laws, to which the chemical engineer must turn, whenever actions without precedent are contemplated, in order to answer what will happen if? questions.

The present lecture explains: Contents of the lecture how simulation-by-computer has become the engineers favored prediction technique, and how specialized software packages have become the oracles which they consult. Two things the modern oracles share with the ancient ones: they cost money (or sheep, oxen or other currency); and Their pronouncements are never % reliable. The reasons for both will be explained.

Fire Simulation industry buildings public transport forests!need for designing reliable systems for fire extinction

Fire simulation in a building isosurface of temperature velocity vectors in a vertical cross-section

Fire simulation at a METRO station

Fire simulation in an airplane cabin temperature contours the BFC grid used

Fire simulation in a room Steckler s Room 2.8 m 62.9 KW.4.72.3.3 2.8 m.25.3 2.8 m

Fire simulation - Results 46 horizontal temperature profile at I=, J=2 Steckler s room 44 y (8) 42 x (22 cells) fire door 4 temperature (K) 38 36 z (25) 34 6-flux 32 discrete (24 rays) no radiation 3 5 5 2 25 k-direction cell number 6 door centre vertical temperature profile Steckler s room 6 door centre w-velocity profile 4 2 6-flux discrete (24 rays) no radiation y (8) x (22 cells) z (25) fire door 4 2 8 6 4 2 y (8) x (22 cells) Steckler s room z (25) 3 3 32 33 34 35 36 37 38 39 4 temperature (K) fire door j-cell number 8 6 4 2 6-flux discrete (24 rays) no radiation -2 - velocity (m/s) 2

Water mist suppression system Fine water spray systems have received much attention as a fire suppression system Radiation is attenuated due to absorption by the water droplets Water sprays can even be used as radiative shields for protecting from possible secondary ignition due to water sprays target fire: heat source thermal radiation

nozzles outlet 6 seconds 8 seconds Water mist suppression system for the extinction of fire in the CARGO of an AIRBUS 5 seconds 2 seconds seconds 2 seconds

3 seconds 4 seconds 6 seconds 8 seconds 2 seconds seconds Water mist suppression system for the extinction of fire in the CARGO of an AIRBUS Small outlet 4 seconds

Simulation of ejection of Inert Gas (ΝΕΑ- ΑirLiquide) for the extinction of fire at the CARGO of an AIRBUS AFTER SECOND AFTER 3 SECONDS AFTER 5 SECONDS AFTER SECONDS AFTER 6 SECONDS AFTER 2 SECONDS AFTER 25 SECONDS AFTER 3 SECONDS

Simulation of an Oil-Spill Prasologos island (included in the NATURA 2 network) The oil spill at the surface of the sea 3h after the accident The emulsion at the surface of the sea 3h after the accident

Simulation of an Oil-Spill Lesvos island The oil spill at the surface of the sea s after the accident The oil spill at the surface of the sea 6.5h after the accident

Simulation of an Oil-Spill Euboean gulf The oil spill at the surface of the sea 2h after the accident The emulsion at the surface of the sea 2h after the accident

Simulation of an Oil-Spill Depth(m) 3.48 25.48 2.48 5.48.48 5.48.48.E+.E-6 2.E-6 3.E-6 Volum e fraction of oil spill(r2) Volume fraction of oil spill.e-2 8.E-3 6.E-3 4.E-3 2.E-3.E+.E+ 5.E+ 2 Oil Density.E+ 3 Series Series2

Air pollution - street canyon 2-2 W=6 in (m/s) Gr./Re = 9.29x ΔΤ=5 Σχήμα 3

Air pollution - street canyon W=6 in (m/s) Gr./Re=.86x -2 W=6 W= in (m/s) Gr./Re = 6.69x 2 - ΔΤ= ΔΤ=

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΜΟΝΑΔΑ ΥΠΟΛΟΓΙΣΤΙΚΗΣ ΡΕΥΣΤΟΔΥΝΑΜΙΚΗΣ ΑΝ ΑΘΕΣΗ ΕΡΓΟΥ: ΠΕΤΡΟΛΑ ΕΛ ΛΑΣ Α.Ε.Β.Ε. ΕΜΠ - ΗΜΕΡΕΣ ΕΡΕΥΝΑΣ & ΤΕΧΝΟΛΟΓΙΑΣ 2 Environmental impact of an Oil Refinery ΔΙΕΡΕΥΝΗΣΗ ΕΠΙΠΤΩΣΕΩΝ ΣΤΟ ΠΕΡΙΒΑΛΛΟΝ ΑΠΟ ΤΗ ΛΕΙΤΟΥΡΓΙΑ ΔΙΥΛΙΣΤΗΡΙΩΝ - Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΠΕΤΡΟΛΑ >2 25-2 -25 8-65-8 5-6 5 4-5 3-4 2-3 -2 5-. 25-5 >2 25-2 -25 8-65-8 5-65 4-5 3-4 2-3 -2 5-.25-5 km [μg/ m 3 ] km [μg/ m 3 ] km Σχήμα: Ζώνες ημερήσιων συγκεντρώσεων SO2 - Υφι στάμεν η κατάσταση (άν εμος δυτικός - 2m/s, κλάση ευστάθ ει ας : Α, ύψος αναστρο φής 4 m) SO 2 daily concentration zones. Existing situation. (westerly wind at 2 m/s, equilibrium class A, Inersion height 4 m). km Σχήμα: Ζώνες ημερήσιων συγκεντώσεων SO2 - Μελλο ντική κατ άστασ η (άνεμος δυτικός- 2m/s, κλάση ευστάθειας: Α, ύψος αναστροφής 4m) SO 2 daily concentration zones. Future situation. (westerly wind at 2 m/s, equilibrium class A, Inersion height 4 m).

Fuel-tank Fires The tank geometry considered. Velocity Vectors (YZ plane)

Fuel-tank Fires Enthalpy Enthalpy Contours (XZ plane) Enthalpy Enthalpy Contours (YZ plane)

Fuel-tank Fires Concentration of CO vs. the height at a position of 5 km from the flow axis. Configuration of risk zones I and II.

Πρότυπο Κτίριο-Ιδεατός Τόπος Ν Αραιοκατοικημένη Περιοχή Περιοχή Απαλλαγμένη από Θερμικές Πηγές Ημιαστικό Περιβάλλον Κτίριο Εξοχικού Τύπου (rural-type building)

Computational domain and grid

Πεδίο Ροής/Βιοκλιματικοί Χάρτες Επιτάχυνση ροής PMVs, PD στο άνοιγμα Αποδεκτές συνθήκες -.88<PMV<.88 AND PD<5% Venturi Effect!!!

Βάση Δεδομένων-Μεταβλητές εισόδου/εξόδου θ Μ=7W/m 2, Height O.V.=.-.8m Occup ie d volume Stored TCI avg Μ=6W/m 2, Height O.V.=.6-.2m Δz Μ=4W/m 2, Height O.V.=.4-.7m Βήμα Προσανατολισμού: Δθ=3 ο Βήμα Ύψους Ανοίγματος: Δz=.275m No. of data PMV PMVNV PMV(SET*) PD (%) θ (degrees) Δz (m).4785.59.556 5.7482 2.2 2.4278.968.3633 7.2892 3 2.2 3.234.87.97 4.7745 6.925 4.365.946.27 2.948 9.375 - - - - - - - -.2325.827.9893 22.853 2. - - - - - - - -.2629.8579.9426 2.6496 5.825 - - - - - - - 63.557.46.628 4.24 8 63 (+ ) ζεύγη Μεταβλητών Εισόδου/Εξόδου για κάθε δραστηριότητα! r Διάνυσμα εισόδου: x = [ θ Δz] T r Διάνυσμα εξόδου: y = [ PMV PMV ( *) ] T NV PMV SET PD

Βάση Δεδομένων-Μεταβλητές εισόδου/εξόδου θ Μ=7W/m 2, Height O.V.=.-.8m Εκπαίδευση/Επαλήθευση Τεχνητού Νευρωνικού Δικτύου Δz Occup ie d volume Stored TCI avg r y= r f( x) Σύνολο Μ=6W/m Ελέγχου 2, Height Ακρίβειας O.V.=.6-.2m T.N.Δ. Kennard-Stone Μ=4W/m 2, Height O.V.=.4-.7m Βήμα Προσανατολισμού: Δθ=3 ο Βήμα Ύψους Ανοίγματος: Δz=.275m No. of data PMV PMVNV PMV(SET*) PD (%) θ (degrees) Δz (m).4785.59.556 5.7482 2.2 2.4278.968.3633 7.2892 3 2.2 3.234.87.97 4.7745 6.925 4.365.946.27 2.948 9.375 - - - - - - - -.2325.827.9893 22.853 2. - - - - - - - -.2629.8579.9426 2.6496 5.825 - - - - - - - 63.557.46.628 4.24 8 63 (+ ) ζεύγη Μεταβλητών Εισόδου/Εξόδου για κάθε δραστηριότητα! r Διάνυσμα εισόδου: x = [ θ Δz] T r Διάνυσμα εξόδου: y = [ PMV PMV ( *) ] T NV PMV SET PD

Δομή Τεχνητού Νευρωνικού Δικτύου yˆ L ( x ) wj f ( ) i x i -c j = j= i j f ( x c )

.56.2..8. 3.8.8.8 PMV.275.55.825..375.65.925 2.2 Windward opening height (m) Αποτελέσματα/Πρόβλεψη Μ=7W/m2.43.3.7.56.43.69.69. 8.9.56.8.3.7.7.3.43.7 5.4.8.6.7.9 2.7.3.56.69.43.7.82.4.8 9.3.8.7 6.43.56.69.43.56.82 3.69.56 8.9.9 5 2. 2 PMVNV.9.3 9.2.9 6..9.. 3.2.2..275.55.825..375.65.925 2.2 Windward opening height (m) Wind incidence angle ( o ) W ind incidence angle ( o ) 3 3.8 PMV(SET*) 8 8.6 3.8.4.2.2.6.4.8.6.8.4.2.8.6 5.8.6 3.8.8.4 2.2.2.4 9.8.6.8 3.8 2 6.2.4.4.6 7.6 7.6 7.6.4 7.6 7.6 7.6.6 3 3.8 3.8.8.8.275.55.825..375.65.925 2.2 Windward opening height (m) PMV<.88 PD>5% 7.6.4.4 5.2 5.2 9 9 22.8 22.8 26.6 26.6 22.8 26.6 9 5.2 22.8 22.8 26.6 PMV 5.4 2 PD (%) 9 5.2 9 5.2.4 9 5.2 6.4.4.275.55.825..375.65.925 2.2 Windward opening height (m) Wind incidence angle ( o ) Wind incidence angle ( o ) PD<5% 3

.6.6.2 7 7.5.6.6 7.5 28.2.4 Αποτελέσματα/Πρόβλεψη Μ=6W/m2.2.2.4 8 PMV.7.7.9.9.5.5.8.8.6.6.4.4.7.4 5.3.2.6.9 2.2.5.4.6.6.4.8.3 9.7.4.5.6.8.2 6.6.7.9.2.6 Wind incidence angle ( o ) Wind incidence angle ( o ).4 3.7.2.4.4.275.55.825..375.65.925 2.2 Windward opening height (m) 8 5 2 9 6 3 PMVNV.9.9.2.275.55.825..375.65.925 2.2 Windward opening height (m).2.8.8.4.4.2.6.2 -.2.8.4.2.6.2.4.8.6.8.2.2.4.6.4 8 PMV(SET*) 3.5 3.5 7.4 5 3.5 2 7.4.6 9 3.5 6 Wind incidence angle ( o ) 7 7.4 3.6 7.2.8 3.5 3.5.4.6.275.55.825..375.65.925 2.2 Windward opening height (m) PMV<.5 PD>5% 7.5.5 4 4 2 24.5 2.5 28 7.5 24.5 24.5 2 PMV<.8 2 4 4.5 4 7.5 7.5 PD<5% 8 5 2 9 6 PD (%).5 Wind incidence angle ( o ).5 3 7.275.55.825..375.65.925 2.2 Windward opening height (m)

-.25.6 - -.2 7 -.25 -.75 - -.25 -.5 -.5.25 8 -.25 5 - -.5 -.75 2 -.5 -.25.25 -.25 9 PMV.5 - -.75 -.5 6 -.75 -.25 -.5 3 Αποτελέσματα/Πρόβλεψη Μ=4W/m2 -.3 -.3 -.6 -.6.3 -.9 -.9 -.2 -.2.3 -.6 -.5 -.8 -.3 -.9-2..6.3 -.8 -.8 -.5 -.2 -.5 -.6 -.9 -.9 -.6.25 -.25.5 -.3 -.3 -.3.6.3.25.275.55.825..375.65.925 2.2 Windward opening height (m) 8 5 2 9 6 PMV(SET*).275.55.825..375.65.925 2.2 Windward opening height (m) Wind incidence angle ( o ) Wind incidence angle ( o ) 3 7.5.5 4 7.5 7.5 2 4 3.5.5 7 7.5 3.5 4 4 7.5 24.5 2 7.5.5 7 4 24.5 2 2.5 Wind incidence angle ( o ) PMV<-.6 PD>5% 8 5 2 9 6 PD (%) 7.5 3.5 3 7 3.5.275.55.825..375.65.925 2.2 Windward opening height (m) PMV>-.6 PD<5%

The cost of CFD The new oracles demand their sacrifices What are they?. The software In the first two decades of the CFD industry, licences to use the software packages could be sold for tens of thousands of Euros. Nowadays their price is dozens times less. Industrial organizations can purchase them easily, academic ones not so as yet.

The cost of CFD 2. The hardware Nowadays hardware costs have decreased dramatically and parallel-computing facilitates the use of more adequate computational grids Another possibility is to use remote clusters via Internet paying for actual services. In this case it is only a laptop that a user needs to solve great multifactor problems.

3. The personnel The Cost of CFD Nowadays, therefore, it is the cost of hiring CFD-literate personnel which is the most serious impediment to the extension of computer simulation. Suitable people are those, who have experience of several packages who recognize that most of their claims to superiority are ill-founded, who understand the limitations from which they all suffer who possess well-balanced commonsense, and who are pragmatically skeptical and when the occasion arises, they can conclude that A particular computer simulation simply must be wrong

Why the Oracles are not completely reliable Grids are inadequate. If a hundred million control cells had been used, these cells would still be hardly small enough to represent a continuous problem as discrete. Only the largest computer clusters in the world would have been able to handle so many; and the computation would take for too long for its outcome to remain of interest. Engineers like to think that fuel and oxygen combining form combustion product gases but chemists have discovered that a great many of intermediate products are formed in combustion, and the information is too immense. Therefore, engineers create simplified combustion models and their accuracy always raises doubts. The same is true for many physical phenomena such as radiation and turbulence

Why the Oracles are not completely reliable Although turbulence has been much studied, none of the current representations are known to correspond with reality in all circumstances. This regrettable fact seems likely to remain until some Newton reduces chaos to order. Until then all predictions of turbulent flows must be regarded as no more than probable forecasts of What will happen if? When chemical reaction and two-phase effects are present the margin for error widens.

Why the Oracles are not completely reliable What is to be done? The optimists are impressed by the plausible-seeming attractively-coloured images they produce. The pessimists argue that all packages use the same dubious models of turbulence, etc, and all are compelled to use far-too-coarse grids. Aristotle s advice is here appropriate: The best lies between the extremes It entails recognizing that. the CFD-based predictions are no more than indicators of probability, but 2. they are immensely better than the mere guess-work which is mankind s only alternative

Conclusions The use of CFD has been increasing steadily in the last three decades for the design of equipment and processes of modern engineering Its use seems certain to continue to grow It is therefore obvious that the educational systems of the world should prepare their students to participate and to contribute to it.

CONCLUSIONS Methods now exist for computing complex phenomena with a view of protecting the Environment, saving energy and controlling major hazards. Detailed improvement of modeling, and computer processing is continuous, as more reliable physical information becomes available. Two-phase computational methods are now as advanced as singlephase ones. It is now feasible to compute for two or more interpenetrating continua in -, 2-, or 3-dimensions. Predictions to-date are encouraging. Further validation of codes is needed; this requires reliable data for complex flows. Uncertainty remains for turbulent transport and combustion in single and particularly in two-phase flows. Hypotheses are needed, guided by experimental observations. Numerical computations can effect the comparisons.