SPECIAL FUNCTIONS and POLYNOMIALS

Σχετικά έγγραφα
Differentiation exercise show differential equation

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

D Alembert s Solution to the Wave Equation

Spherical Coordinates

Quadratic Expressions

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

2 Composition. Invertible Mappings

Math221: HW# 1 solutions

Inverse trigonometric functions & General Solution of Trigonometric Equations

A summation formula ramified with hypergeometric function and involving recurrence relation

Section 8.3 Trigonometric Equations

Geodesic Equations for the Wormhole Metric

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

CRASH COURSE IN PRECALCULUS

Matrices and Determinants

derivation of the Laplacian from rectangular to spherical coordinates

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Solutions to Exercise Sheet 5

EE512: Error Control Coding

ExpIntegralE. Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation

If we restrict the domain of y = sin x to [ π 2, π 2

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Homework 3 Solutions

Trigonometric Formula Sheet

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Homework 8 Model Solution Section

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

Second Order Partial Differential Equations

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

TABLES OF SOME INDEFINITE INTEGRALS OF BESSEL FUNCTIONS

PARTIAL NOTES for 6.1 Trigonometric Identities

ADVANCED STRUCTURAL MECHANICS

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation. Mathematica StandardForm notation

Concrete Mathematics Exercises from 30 September 2016

Finite Field Problems: Solutions

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Section 9.2 Polar Equations and Graphs

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Other Test Constructions: Likelihood Ratio & Bayes Tests

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Example Sheet 3 Solutions

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Additional Results for the Pareto/NBD Model

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

On the summability of divergent power series solutions for certain first-order linear PDEs Masaki HIBINO (Meijo University)

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

( y) Partial Differential Equations

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Differential equations

Orbital angular momentum and the spherical harmonics

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Solution Series 9. i=1 x i and i=1 x i.

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Variational Wavefunction for the Helium Atom

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Areas and Lengths in Polar Coordinates

Reminders: linear functions

Computing the Macdonald function for complex orders

The Simply Typed Lambda Calculus

On the k-bessel Functions

Congruence Classes of Invertible Matrices of Order 3 over F 2

Lecture 26: Circular domains

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Commutative Monoids in Intuitionistic Fuzzy Sets

Section 7.6 Double and Half Angle Formulas

Lecture 15 - Root System Axiomatics

4.6 Autoregressive Moving Average Model ARMA(1,1)

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Approximations to Piecewise Continuous Functions

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

Areas and Lengths in Polar Coordinates

C.S. 430 Assignment 6, Sample Solutions

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

GAUSS-LAGUERRE AND GAUSS-HERMITE QUADRATURE ON 64, 96 AND 128 NODES

F19MC2 Solutions 9 Complex Analysis

Divergence for log concave functions

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Answer sheet: Third Midterm for Math 2339

6.3 Forecasting ARMA processes

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.

Uniform Convergence of Fourier Series Michael Taylor

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Transcript:

SPECIAL FUNCTIONS and POLYNOMIALS Gerard t Hooft Stefan Nobbenhuis Institute for Theoretical Physics Utrecht University, Leuvenlaan 4 3584 CC Utrecht, the Netherlands and Spinoza Institute Postbox 8.195 358 TD Utrecht, the Netherlands Many of the special functions and polynomials are constructed along standard procedures In this short survey we list the most essential ones. April 8, 13 1

1 Legendre Polynomials P l x). Differential Equation: 1 x ) P l x) x P l x) + ll + 1) P l x) =, or d 1 x ) d P lx) + ll + 1) P l x) =. 1.1) Generating function: Orthonormality: Expressions forp l x) : P l x)t l = 1 xt + t ) 1 for t < 1, x 1. 1.) l= 1 P l x) P l x) = -1 l + 1 δ l l, 1.3) P l x)p l x )l + 1) = δx x ). 1.4) l= Recurrence relations: P l x) = 1 [l/] 1) ν l ν)! l ν= ν! l ν)! l ν)! xl ν 1.5) = 1 d ) l x 1) l, 1.6) l! l = 1 π π x + x 1 cos ϕ) l dϕ. 1.7) l P l 1 l + 1) x P l + l + 1) P l+1 = ; P l = x P l 1 + x 1 P l 1 ; l xp l l P l = P l 1 ; xp l + l + 1) P l = P l+1 ; d [P l+1 P l 1 ] = l + 1) P l. 1.8) P = 1, P 1 = x, P = 1 3x 1), P 3 = 1 x5x 3). 1.9) 1

Associated Legendre Functions P m l x). 1 x ) Pl m x) x Pl m x) + ll + 1) m ) P m 1 x l x) =..1) Generating function: l=m 1-1 l l= m= P m l x) z m y l m! = [ 1 y x + z 1 x ) + y ] 1..) Pl m x) Pl m l + m)! x) = l + 1 l m)! δ l l, l, l m )..3) l m)! l + 1) l + m)! P l m x) Pl m x ) = δx x ), x < 1 and x < 1 )..4) Expressions for P m l x) 1 : P m l x) = Recurrence relations: ) m Pl m x) = 1 x ) 1 d m P l x)..5) l + m)! π 1) m/ x + x 1 cos ϕ ) l cos mϕ dϕ..6) l! π P m+1 l mx 1 x P m l + {ll + 1) mm 1)}P m 1 l =.7) 1 x P m+1 l x) = 1 x ) P m l x) + mx P m l x), l + 1)x P m l = l + m) P m l 1 + l + 1 m) P m l+1,.8) x P m l = P m l 1 l + 1 m) 1 x P m 1 l, and various others. Pl+1 m Pl 1 m = l + 1) Pl m 1 1 x,.9) P 1 1 = 1 x, P = 31 x ), P 1 = 3x 1 x, P 3 = 15 x1 x )..1) 1 Note that some authors define Pl mx) with a factor 1)m, giving Pl mx) = 1)m 1 x ) 1 m d m ) Pl x). Obviously this minus sign propagates to the generating function, the recurrence relations and the explicit examples, when m is odd.

3 Bessel J n x) and Hankel H n x) functions. Differential equation for both J n and H n ): Generating function if n integer): x J nx) + x J nx) + x n ) J n x) =. 3.1) n= J n αx) J n = 1) n J n. ) s n = e x α s ) s, 3.) α ξ J n αξ) J n βξ) dξ = 1 δ α β ). 3.3) α a ξ J n αξ) J n βξ) dξ = a {J n+1αa)} δ αβ. 3.4) if in the nd relation α, β are roots of the equation J n αξ) =. Expressions for J n x) for n integer): J n x) = J n x) = 1 π 1) k k! k + n)! k= π x ) n+k = Recurrence relations for both J n and H n ): 1 x ) n πi t n 1 dt e t x /4t. 3.5) cos nθ x sin θ) dθ. 3.6) d {xn J n x)} = x n J n 1 x) ; J n 1 x) + J n+1 x) = n x J nx) ; J nx) = J n 1 x) n x J nx) = n x J nx) J n+1 x) = 1 J n 1x) J n+1 x)). 3.7) Relations between Hankel and Bessel functions: H n 1) i x) = e nπi J n x) J n x) ) ; sin nπ H n ) i x) = e nπi J n x) J n x) ), 3.8) sin nπ so that J n x) = 1 H 1) n x) + H n ) x) ) ; J n x) = 1 e nπi H n 1) x) + e nπi H n ) x) ). 3.9) 3

4 Spherical Bessel Functions j l x). Generating Function: xj l ) + x ll + 1) ) jl =. 4.1) x j l x) t l l= l! = j x xt ). 4.) x j l αx) j l βx) = π δα β). 4.3) α Expressions for j l : j l x) j l x) = π j l x) = x J l+ 1 x) = 1) l x l π l + 1 δ ll. 4.4) d x ) l sin x x, 4.5) j l x) = = x l 1 l+1 l! 1 l l! l + 1)! xl e ixs 1 s ) l ds 1 1 x) 1 x) ) 4 +... 1! l + 3)!l + 3)l + 5). 4.6) Recurrence relations: j l+1 = l x j l j l = l + 1 j l j l 1. 4.7) x j x) = sin x x ; j 1 x) = sin x x j x) = 3 sin x x 3 cos x ; x 3 cos x x sin x x. 4.8) 4

5 Hermite Polynomials H n x). or d Generating function: More general: H nx) x H nx) + n H n x) =, 1 Hn x) e x) + n x + 1) H n x) e 1 x =. 5.1) H n x) s n /n! = e s +sx. 5.) n= H n x) H m x) e x = n n! π δ nm 5.3) H n x) H n y)/ n n!) = π δx y) e x. 5.4) n= H n x) H n y) s n / n n!) = n= Expressions for H n : 1 1 s exp s x + y ) + sxy 1 s ). 5.5) H n x) = 1) n H n x); 5.6) H n x) = 1) n e x d ) ne x = e 1 x x d ) ne 1 x ; 5.7) Recurrence relations: n/ H n x) = 1) n/ n! 1) k x) k k)! 1n k)!, H n x) = 1) n 1 k= n 1 n! k= d m H n x) m = if n even, 1) k x) k+1 k + 1)! n 1 k ), if n odd. 5.8)! m n! n m)! H n mx), 5.9) x H n x) = 1H n+1x) + n H n 1 x), 5.1) H n x) = x d ) H n 1 x). 5.11) H x) = 1, H 1 x) = x, H x) = 4x. 5.1) 5

6 Laguerre Polynomials L n x). Generating function: x L nx) + 1 x) L nx) + n L n x) =. 6.1) n= L n x) z n = 1 1 z e xz 1 z. 6.) Expressions for L n : L n x) L m x) e x = δ nm. 6.3) L n x) = ex d n! Recurrence relation: = 1)n n! ) n x n e x ) x n n 1! xn 1 + n n 1) x n... + 1) n n! ). 6.4)! 1 + n x) L n n L n 1 n + 1)L n+1 = ; x L nx) = n L n x) n L n 1 x). 6.5) L x) = 1 ; L 1 x) = 1 x ; L x) = 1! x 4x + ). 6.6) It s important to note that sometimes different definitions are used for the Laguerre and Associated Laguerre polynomials, where the Generating Function has the form: n= L nx) z n /n! = 1 this case the Expressions given for L n should be multiplied by n!. 1 z e xz 1 z. In 6

7 Associated Laguerre Polynomials L k nx). Generating function: x L k n + k + 1 x) L k n + n L k n =. 7.1) L k nx) z n = n= 1 xz e 1 z. 7.) 1 z) k+1 L k nx) z n u k k= n=k k! = 1 1 z exp xz + u). 7.3) 1 z L k nx) L k mx) x k e x = n + k)! δ nm. 7.4) n! Expressions for L k n : L k nx) = 1) k d ) k Ln+k x). 7.5) Recurrence relation: L k nx) = ex x k n! d ) n x n+k e x ). 7.6) L k n 1 x) + Ln k 1 x) = L k n x) ; x L k n x) = n L k n x) n + k)l k n 1 x). 7.7) L k x) = 1 ; L k 1x) = x + k + 1 ; L k x) = 1 [ x k + )x + k + 1)k + ) ] ; L k 3x) = 1 [ x 3 + 3k + 3)x 3k + )k + 3)x + k + 1)k + )k + 3) ]. 7.8) 6 7

8 Tschebyscheff 3 Polynomials T n x). Generating function: Symmetry relation: 1 x ) d T nx) x d T nx) + n T n x) =. 8.1) T n x) y n = n= 1 xy 1 xy + y. 8.) T n x) = T n x). 8.3) Expression for T n : 1 1 { T m x)t n x) = 1 x 1 πδ nm m, n π m = n = 8.4) T n x) = cosn cos 1 x) 8.5) [{ } n { } n ] x + i 1 x + x i 1 x. 8.6) Recurrence relation: T n x) = 1 T n+1 x T n x) + T n 1 = 8.7) 1 x )T nx) = nx T n x) + n T n 1 x). 8.8) T x) = 1 ; T 1 x) = x ; T x) = x 1 ; T 3 x) = 4x 3 3x. 8.9) 3 Transliterations Chebyshev and Tchebicheff also occur. 8

9 Remark. All of the functions discussed here are special cases of hypergeometric functions mf n a 1, a,... a m ; b 1, b,... b n ; z) defined by: where Differential equations: m = n = 1: m =, n = 1: mf n a 1, a,... a m ; b 1, b,... b n ; z) = a) r r=p a 1 ) r a ) r... a m ) r z r b 1 ) r b ) r... b n ) r r!, 9.1) Γa + r) ; r a positive integer. 9.) Γa) z d ) 1F 1 + b z) d dz dz 1 F 1 a 1 F 1 =. 9.3) z1 z) d ) F 1 + c a + b + 1)z ) d dz dz F 1 ab F 1 =. 9.4) We have: P l x) = F 1 l, l + 1; 1; 1 x ) ; 9.5) Pl m l + m)! 1 x ) m/ x) = F l m)! m 1 m l, m + l + 1; m + 1; 1 x ) ; m! 9.6) ) J n x) = e ix x n 1F 1 n + n! 1; n + 1; ix) ; 9.7) H n x) = 1) n n)! 1F 1 n; n! 1; x ) ; n n + 1)! H n+1 x) = 1) x 1 F 1 n; n! 3; x ) ; L n x) = 1 F 1 n; 1; x) ; 9.8) 9.9) 9.1) L k Γn + k + 1) nx) = n!γk + 1) 1 F 1 n; k + 1; x) ; 9.11) T n x) = F 1 n, n; 1; 1 x ). 9.1) 9

References [1] H. Margenau and G.M. Murphy, The Mathematics of Physics and Chemistry, D. van Nostrand Comp. Inc., 1943, 1956. [] I.S. Gradshteyn and I.W. Ryzhik, Tables of Integrals, Series and Products, Acad. Press, New York, San Francisco, London, 1965. [3] W.W. Bell, Special Functions for Scientists and Engineers, D. van Nostrand Comp. Ltd., 1968. 1