ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

Σχετικά έγγραφα
Homework 3 Solutions

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Matrices and Determinants

Second Order RLC Filters

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

EE512: Error Control Coding

w o = R 1 p. (1) R = p =. = 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

Example Sheet 3 Solutions

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Inverse trigonometric functions & General Solution of Trigonometric Equations

Areas and Lengths in Polar Coordinates

Section 8.3 Trigonometric Equations

2 Composition. Invertible Mappings

Areas and Lengths in Polar Coordinates

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

10.7 Performance of Second-Order System (Unit Step Response)

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

4.6 Autoregressive Moving Average Model ARMA(1,1)

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

Second Order Partial Differential Equations

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Math221: HW# 1 solutions

( ) 2 and compare to M.

derivation of the Laplacian from rectangular to spherical coordinates

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Approximation of distance between locations on earth given by latitude and longitude

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.3 Forecasting ARMA processes

D Alembert s Solution to the Wave Equation

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Srednicki Chapter 55

Statistical Inference I Locally most powerful tests

Math 6 SL Probability Distributions Practice Test Mark Scheme

Πανεπιστήµιο Κύπρου Πολυτεχνική Σχολή

Exercises to Statistics of Material Fatigue No. 5

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Notes on the Open Economy

Section 7.6 Double and Half Angle Formulas

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Concrete Mathematics Exercises from 30 September 2016

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

Partial Differential Equations in Biology The boundary element method. March 26, 2013

The Simply Typed Lambda Calculus

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Appendix S1 1. ( z) α βc. dβ β δ β

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Solution Series 9. i=1 x i and i=1 x i.

Solutions to Exercise Sheet 5

5.4 The Poisson Distribution.

1 String with massive end-points

Συστήματα Διαχείρισης Βάσεων Δεδομένων

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

2. Μηχανικό Μαύρο Κουτί: κύλινδρος με μια μπάλα μέσα σε αυτόν.

Solution to Review Problems for Midterm III

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 8η: Producer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ST5224: Advanced Statistical Theory II

Finite Field Problems: Solutions

Instruction Execution Times

Trigonometry 1.TRIGONOMETRIC RATIOS

Numerical Analysis FMN011

Problem Set 3: Solutions

F19MC2 Solutions 9 Complex Analysis

the total number of electrons passing through the lamp.

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

On a four-dimensional hyperbolic manifold with finite volume

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

Lecture 26: Circular domains

EE101: Resonance in RLC circuits

Section 9.2 Polar Equations and Graphs

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing

Homework 8 Model Solution Section

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Other Test Constructions: Likelihood Ratio & Bayes Tests

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Quadratic Expressions

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Risk! " #$%&'() *!'+,'''## -. / # $

( y) Partial Differential Equations

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

Modbus basic setup notes for IO-Link AL1xxx Master Block

Probability and Random Processes (Part II)

Empirical best prediction under area-level Poisson mixed models

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Εργαστήριο Ανάπτυξης Εφαρμογών Βάσεων Δεδομένων. Εξάμηνο 7 ο


ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

Spherical Coordinates

Transcript:

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΧΗΜΙΚΩΝ ΜΗΧΑΝΙΚΩΝ Εργαστήριο Β Χημικής Μηχανικής Τ.Θ. 472 54124 Θεσσαλονίκη PROCESS DYNAMICS & CONTROL 2014 Final Review Series of Solved Problems Problem 1: Consider the following feedbak ontrol system of Figure 1. Figure 1: Feedbak ontrol-loop. The proess and disturbane transfer funtions are assumed to be equal. KΚ p G(s) p G(s) d (τ s1)(τ s1)(τ s1)(τ s1) 1 2 3 4 τ1 1 min ; τ 2 2 min ; τ 3 4 min ; τ 4 7 min ; Kp 1 i) Calulate the Ziegler-Nihols settings (K, τ I and τ D ) of a PID ontroller based on the ontinuous yling method using the harateristi equation of the losed-loop system. ii) Compare the alulated values of K u and P u (see question (i) ) with the results of Figure 2. iii) Calulate an approximate FOPTD model of the proess using the experimental results of Figure 3. iv) Use the identified FOPTD model to determine the Cohen-Coon and ITAE settings (K, τ I and τ D ) for a PID ontroller. Τηλέφωνο: (+30) 2310 996211 Fax: (+30) 2310 996198 e mail: ypress@peri.erth.gr (+30) 2310 996212 ypress@eng.auth.gr

Figure 2: Experimental alulation of the ultimate gain, K u = 6.35 and of the ultimate period, P u. Figure 3: Open-loop response to a unit step hange in the input signal (Proess reation urve) Solution of Problem 1: i) The harateristi equation of the losed-loop system under P-ontrol is: Τηλέφωνο: (+30) 2310 996211 Fax: (+30) 2310 996198 e mail: ypress@peri.erth.gr (+30) 2310 996212 ypress@eng.auth.gr

Κ 1G OL(s) 0 1 1 0 (τ1s1)(τ 2s1)(τ 3s1)(τ 4s1) (s1)(2s1)(4s1)(7s1) 56s 4 106s 363s 2 14s (1 K ) 0 To alulate K u and ω, we substitute s = jω in the above harateristi equation. Thus, we have: 3 j 56ω 4 106ω 3 63ω 2 14 jω (1 K ) 0 Rearranging the above equation in the omplex form (Re + jim) we obtain: Κ (1 K 4 2 3 5 6 ω 63ω ) j( 106ω 14ω ) 0 This omplex equation is satisfied if both the real and imaginary parts are equal to zero. Real part (Re): (1K 56ω 4 63ω 2) 0 (a) Imaginary part (Im): ( 106ω314ω)jjω(106ω 2 14) 0 (b) From Eq. (b), we get: ω 2 14 106 and thus, ω 0.3634. Substituting the value of ω into Eq. (a), we alulate the ultimate value of K u. K u 6.3439 1 K 4 2 u 56 0.3634 63 0.3634 0 Aordingly, P u 2π 23.14 P u 17.28 ω 0.3634 From the above results we an alulate the following Z-N tuning settings of a PID ontroller: PID: K = 0.6K u = 3.8063 ; τ I = P u /2 = 8.64 and τ D = P u /8 = 2.16 ii) From Figure 2, we an verify the above alulated values of the ultimate gain and ultimate period are: K u 6.35 6.3439 and Pu 17.4 17.28 Τηλέφωνο: (+30) 2310 996211 Fax: (+30) 2310 996198 e mail: ypress@peri.erth.gr (+30) 2310 996212 ypress@eng.auth.gr

P u Figure 2: Experimental alulation of the ultimate gain, K u = 6.35 and of the ultimate period, P u. ii) From the results of Fig. 3 we an obtain the following parameter values for a FOPTD model. τ θ Figure 3: Open-loop response to a unit step hange in the input signal (Proess Reation Curve) K 1 ; τ 16.9 ; θ 3.85 Τηλέφωνο: (+30) 2310 996211 Fax: (+30) 2310 996198 e mail: ypress@peri.erth.gr (+30) 2310 996212 ypress@eng.auth.gr

Therefore, the FOPTD model of the proess will be: (1) e 3.85s G(s) (16.9s 1) iv) From the attahed two Tables 1 and 2, we an alulate the Cohen-Coon and ITAE settings (K, τ I and τ D ) of a PID ontroller. Cohen-Coon settings 1 τ 3θ 16τ K 6.1028 K θ 12τ ; I 4θ τ D 1.3443 11 2(θ τ) θ[32 6(θ τ)] τ 8.6667 13 8(θ τ) ; ITAE settings Set-point Settings KK 0.85 0.965(3.85 16.9) 3.3930 K 3.3930 1 K 3.3930 ττ 0.796 0.1465(3.85 16.9) 0.7626 τ 16.9 0.7626 I I I τ 0.929 D τ 0.308(3.85 16.9) 0.0779 τ D 0.0779 16.9 τ 22.1603 τ D 1.3171 Load Settings KK 0.947 1.357(3.85 16.9) 5.5075 K 5.5075 1 K 5.5075 ττ 0.738 I 0.842(3.85 16.9) 2.5085 τ I 16.9 2.5085 τ I 6.7370 τ 0.995 D τ 0.381(3.85 16.9) 0.0874 τ D 0.0874 16.9 τ D 1.4777 Τηλέφωνο: (+30) 2310 996211 Fax: (+30) 2310 996198 e mail: ypress@peri.erth.gr (+30) 2310 996212 ypress@eng.auth.gr

Table 1: Cohen-Coon Tuning Relations Controller K T i T d P-only ( 1/ )( / )[1 /3 ] K p PI ( 1/ )( / )[0.9 /12 ] K p [303( / )] 9 20( / ) PID (1/ K p 3 16 )( / )[ ] 12 [326( / )] 138( / ) 4 11 2( / ) Table 2: Controller Design Based on ITAE Τηλέφωνο: (+30) 2310 996211 Fax: (+30) 2310 996198 e mail: ypress@peri.erth.gr (+30) 2310 996212 ypress@eng.auth.gr

Problem 2: Consider the problem of ontrolling the level in tank 3 of the three tank proess shown in Figure 4. Figure 4: Three noninterating tanks in series with proportional feedbak ontrol To aomplish this, the inlet flowrate to the first tank, F o (t), is manipulated based on a signal from a proportonal feedbak ontroller. The proess transfer funtion for the three noninterating tanks in series is: G p (s) = K p / [(τ 1 s +1)( τ 2 s + 1)( τ 3 s + 1)] where K p = 6 and τ 1 = 2, τ 2 = 4, τ 3 = 6. The time onstants are given in minutes. The trnsfer funtions of the measurement element (level transmitter) and final ontrol element (ontrol valve) are equal to one, i.e. G m (s) = G v (s) = 1. i) Draw the blok diagram for the above ontrol system. ii) Identify the transfer funtion for eah element in the ontrol system and alulate the losed loop transfer funtion between the ontrolled variable Y(s) and the set-point value, Y sp (s). iii) Using the Routh array alulate the values of the ultimate gain, K u, and ultimate period of sustained osillations, P u. iv) Use the method of diret substitution s = jω and the harateristi equation, to verify the results of question (iii). Τηλέφωνο: (+30) 2310 996211 Fax: (+30) 2310 996198 e mail: ypress@peri.erth.gr (+30) 2310 996212 ypress@eng.auth.gr

v) Calulate the Ziegler-Nihols settings of a PID ontroller, using the tuning rules of the following Table 3. Table 3: Ziegler-Nihols ontroller tuning parameters vi) For feedbak ontrolling tuning purposes, the approximate model most ommonly employed has a first-order-plus-time-delay (FOPTD) transfer funtion. Figure 5: Proess reation urve for the three-tank in series (time is in min) To estimate the parameters of the approximate model (FOPTD) for the three-tank system, the proess reation urve was applied using a unit step hange as a proess input. The results of the proess reation urve are given in Figure 5. Applying the graphial proedure, identify the parameters K p, θ, and τ of the approximate FOPTD proess model. vii) Use the identified FOPTD model to determine the ITAE settings (K, τ I and τ D ) of a PID ontroller for set point hanges (see Table 4). Τηλέφωνο: (+30) 2310 996211 Fax: (+30) 2310 996198 e mail: ypress@peri.erth.gr (+30) 2310 996212 ypress@eng.auth.gr

Table 4: Controller Design Based on ITAE and FOPTD Model Solution of Problem 2: i) The blok diagram of the ontrol system is illustrated in the figure below: Kp G p (s) (τ s1)(τ s1)(τ s1) 1 2 3 ii) Identifiation of the transfer funtions for eah element: TF of measurement devie TF of ontrol valve TF of P-ontroller TF of proess G (s) K 1 m v Τηλέφωνο: (+30) 2310 996211 Fax: (+30) 2310 996198 e mail: ypress@peri.erth.gr (+30) 2310 996212 ypress@eng.auth.gr m G (s) K 1 v G (s) K

K p 6 G p(s) (τ s1)(τ s1)(τ s1) (2s1)(4s1)(6s1) 1 2 2 Derive CLTF: 6K Y(s) K mg (s)g v(s)g p(s) (2s 1)(4s 1)(6s 1) Y 6K sp(s) 1 G (s)g v(s)g p(s)g m(s) Y(s) 6K 1 (2s 1)(4s 1)(6s 1) Y 3 2 sp(s) 48s 44s 12s (1 6K ) iii) The Charateristi Equation is: The Routh Array for this third-order system is: 1 a a 1 n n2 48s 344s 2 12s (1 6K ) 0 n1 an3 1 2 1 2 48 12 2 a 2 44 1 6K 3 b b 3 528 48(1 6K ) 44 0 4 41 6K 0 To have a stable system, eah element of the first olumn in the Routh array must be positive, i.e. 528 48(1 6K ) 0 K 5 3 and 1 6K 0 K 1 6 44 We onlude that the system will be stable if, 0.167 K 1.667. Therefore, the ontroller s gain at the point of marginal stability, i.e. the ultimate gain, is equal to: K u 5 3 1.667. We an alulate the purely imaginary roots from the following equation: 2 2 5 44s (1 6K 2 u ) 0 44s (1 6 ) 44s 11 0 s j0.5, whih yields, ω 0.5 3 Hene, Pu 2πω 2π 0.5 4π Pu 12.56 (in min/yle). iv) By substituting s = jω into the above harateristi equation, we get: Τηλέφωνο: (+30) 2310 996211 Fax: (+30) 2310 996198 e mail: ypress@peri.erth.gr (+30) 2310 996212 ypress@eng.auth.gr

48jω3 44ω 2 12 jω (1 6K ) 0 Rearranging the above equation in the omplex variable form: (Re + jim) we obtain: (16K 2 3 44ω ) j( 48ω 12ω) 0 This omplex equation is satisfied if and only if both the real and imaginary parts are equal to zero. Real part (Re): (16K 44ω 2) 0 (a) Imaginary part (Im): ( 48ω 312ω)jjω(48ω 2 12) 0 (b) ω 0 From Eq. (b), we get: ω(48ω 2 12) 0 (48ω 2 12) 0 and thus, ω 0 or 0.5. Substituting the values of ω into Eq. (a), we an alulate the K, i.e. For ω = 0 we obtain: 1 6K 0 K 1 6 For ω = 0.5 we obtain: 16K 440.52 0 K 5 3 whih onfirm the results of question (iii). v) The Z-N PID ontroller tuning parameters will be: K 0.6K u K 1 ; τ I Pu 2 τ I 6.28 min ; τ D Pu 8 τ D 1.57 min vi) From Figure 2 we an alulate the numerial values of the FOPTD model parameters: Kp 6 ; τ 15 min ; θ 3 Therefore, the FOPTD model of the proess will be: 6e 3s G(s) (15s 1) vii) Finally, from the Table 4 and the above model we get the following ITAE settings of a PID ontroller for set point hanges: K 0.632 KK 0.85 0.965(3 15) 3.790 K 3.790 6 Τηλέφωνο: (+30) 2310 996211 Fax: (+30) 2310 996198 e mail: ypress@peri.erth.gr (+30) 2310 996212 ypress@eng.auth.gr

ττ 0.796 0.1465(3 15) 0.7667 τ 15 0.7667 τ I 19.56 min I I τ D τ 0.929 D τ 0.308(3 15) 0.069 τ D 0.069 15 1.04 min Τηλέφωνο: (+30) 2310 996211 Fax: (+30) 2310 996198 e mail: ypress@peri.erth.gr (+30) 2310 996212 ypress@eng.auth.gr