SYNTHESIS KINETICS OF (Y, Gd) 2 O 3 Eu 3+ NANO POWDERS DURING PROCESS OF PREPARATION

Σχετικά έγγραφα
ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

17 min R A (2009) To probe into the thermal property the mechanism of the thermal decomposition and the prospective


Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #


STUDY ON CYCLIC OXIDATION RESISTANCE OF HIGH NIOBIUM CONTAINING TiAl BASE ALLOY WITH ERBIUM

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

PHOTOCATALYTIC PROPERTIES OF TiO 2 THIN FILMS PREPARED BY MICROARC OXIDATION AND DOPING ELECTROLYTES

THE MICRO FABRICATING PROCESS AND ELECTRO- MAGNETIC PROPERTIES OF TWO KINDS OF Fe POWDERS WITH DIFFERENT GRAIN SIZES AND INTERNAL STRAINS

Preparation of Hydroxyapatite Coatings on Enamel by Electrochemical Technique

EFFECT OF HIGH MAGNETIC FIELD ON THE TRANSI- TION BEHAVIOR OF Cu RICH PARTICLES IN Cu 80%Pb HYPERMONOTECTIC ALLOY

College of Life Science, Dalian Nationalities University, Dalian , PR China.

EFFECT OF HAFNIUM CONTENT ON MORPHOLOGY EVOLUTION OF γ PRECIPITATES IN P/M Ni BASED SUPERALLOY

1-6 Ð Ï Te (mass%) 0% 0.3% 0.5% 0.8% 1.0% 2.0% 2 Î 1 6

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Œ.. ² μ,.. Œ ²μ, ƒ.. μ ±μ,. Ô Ô ², Œ.. ƒê Éμ, Œ.. Œ ² μ *

FRICTION AND WEAR PROPERTIES OF SURFACE PLASMA Cr W ALLOYING LAYER OF γ TiAl ALLOY

8Q5SAC) 8Q5SAC UV2Vis 8500 ( ) ; PHS23C ) ;721 ( ) :1 4. ;8Q5SAC : molπl ;Britton2Robinson Q5SAC BSA Britton2Robinson,

2011 Đ 3 Ñ ACTA METALLURGICA SINICA Mar pp

The Significance of Thermal Analysis in the Development of Teaching Materials for Chemistry Education

P Œ ²μ, ƒ.. μ ±μ,. ˆ. ˆ μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. ³ É. ˆŒ ˆ Š ƒ Œ ˆ Ÿ ˆŸ 238 Uˆ 237 U, Œ ƒ Ÿ Š ˆˆ 238 U(γ,n) 237 U.

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

Electronic Supplementary Information (ESI)

NUMERICAL SIMULATION OF KEYHOLE SHAPE AND TRANSFORMATION FROM PARTIAL TO OPEN STATES IN PLASMA ARC WELDING

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

2 PbO 2. Pb 3 O 4 Sn. Ti/SnO 2 -Sb 2 O 4 -CF/PbO x SnO 2 -Sb PbO 2. Sn-Sb 1:1. 1 h. Sn:Sb=10:1. PbO 2 - CeO 2 PbO 2. [8] SnO 2 +Sb 2 O 4 _

Delta Inconel 718 δ» ¼

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

EFFECT OF WELDING PROCESSING PARAMETERS ON POROSITY FORMATION OF MILD STEEL TREATED BY CO 2 LASER DEEP PENETRATION WELDING

RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti 45Al 8Nb ALLOY

Supporting Information. Enhanced energy storage density and high efficiency of lead-free

SYNTHESIS OF PLASTIC Zr BASED BULK METALLIC GLASS WITH CRYSTAL PHASE BY DIRECTIONAL SOLIDIFICATION

Blowup of regular solutions for radial relativistic Euler equations with damping

EFFECTS OF Al Al 4 C 3 REFINER AND ULTRASONIC FIELD ON MICROSTRUCTURES OF PURE Mg

P Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ. ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25

M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1

ˆ ˆ ˆ ˆˆ γ-ˆ ˆŸ ˆ Š Œ ˆ Œ œ Š ˆˆ

VBA Microsoft Excel. J. Comput. Chem. Jpn., Vol. 5, No. 1, pp (2006)

P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É.

MICROSTRUCTURE EVOLUTION OF HYPEREUTEC- TOID STEELS DURING WARM DEFORMATION II. Cementite Spheroidization and Effects of Al

CORROSION BEHAVIOR OF X70 PIPELINE STEEL IN SIMULATED KU ERLE SOIL SOLUTION WITH CO 2

STRUCTURE AND MAGNETIC BEHAVIOR OF Zn 1 x Co x O CRYSTAL POWDERS PREPARED BY SOL GEL TECHNIQUE

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.

任秉雄 王崇臣 ENVIRONMENTAL CHEMISTRY. 744 t 50% 10% 20% 1 mg L t S. SHZ-82 Spectrum-100 C 16 H 18 N 3 SCl 3H 2 O

4, Cu( II), Zn( II)

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte

Ανώτερα Μαθηματικά ΙI

Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

P ƒ. Œ. ʳ Ö,. É ±, ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ² μ. Š -ŒˆŠ Š : Œ ˆ, œ,

JOURNAL OF THE CHINESE CERAMIC SOCIETY. TiO 2 X

Rapid Raman spectra identification and determination of levofloxacin hydrochloride injection *

ˆ ˆŸ ˆ ˆŸ ˆ ˆŒ ˆˆ Ÿ Œˆ 10 B

AN INVESTIGATION ON THE CREEP BEHAVIOR OF PURE Mg

Š Ÿ Š Ÿ Ÿ ˆ Œ ˆŠ -280

CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS I. Experimental Result

2 SFI

Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. Supporting Information

Temperature Change of Orientation Function of Polymer Crystals Evaluated by the Simultaneous DSC-XRD and DSC-FTIR Methods

ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ

Approximation Expressions for the Temperature Integral

UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

P ƒ.. Š ³ÒÏ,.. Š ³ÒÏ,.. ± ˆ ŒˆŠˆ Š ˆŠ

A NEW ONE PARAMETER KINETICS MODEL OF DYNAMIC RECRYSTALLIZATION AND GRAIN SIZE PREDICATION

Ó³ Ÿ , º 5(147).. 777Ä786. Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ. ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

PACS: Pj, Gg

Supporting Information

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

49 Ö 6 Đ Vol.49 No ACTA METALLURGICA SINICA Jun pp

Supporting Information

.. ƒ²μ É, Œ. Œ Ï,. Š. μé ±μ,..,.. ³ μ μ, ƒ.. ÒÌ

1 h, , CaCl 2. pelamis) 58.1%, (Headspace solid -phase microextraction and gas chromatography -mass spectrometry,hs -SPME - Vol. 15 No.

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä616 Š ˆŒ CMS LHC

P ˆ.. Œμ ±μ ±μ,. ˆ. ˆ Ó±μ,.. Š ²μ

The Exploitation and Utilization of Magnesium Resources in Salt Lakes

BEHAVIOR OF MARTENSITE REVERSE TRANSFORMA- TION IN 18Mn TRIP STEEL DURING WARM DEFORMATION

ZnO SnO 2 Ta 2 O 5 ZnO JOURNAL OF THE CHINESE CERAMIC SOCIETY h α-fe/bafe 12 O 19

P ˆŸ ˆ Œ Œ ˆ Šˆ. Š ˆ œ ˆ -2Œ

Supporting Information

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

Quick algorithm f or computing core attribute

MICROSEGREGATION OF SOLUTE ELEMENTS IN SOLIDIFYING MUSHY ZONE OF STEEL AND ITS EFFECT ON LONGITUDINAL SURFACE CRACKS OF CONTINUOUS CASTING STRAND

ˆ Œ ˆ Ÿ ˆ ˆŸ Ÿ - ˆ ˆ Šˆ Š ˆŸˆ

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

Study on Purification Technology and Antioxidant Activity of Total Flavonoid from Eriobotryae Folium

v w = v = pr w v = v cos(v,w) = v w

EFFECTS OF TEMPERATURE GRADIENT ON LAMEL- LAR ORIENTATIONS OF DIRECTIONAL SOLIDIFIED TiAl BASED ALLOY

Fused Bis-Benzothiadiazoles as Electron Acceptors

FRACTURE TOUGHNESS OF WELDED JOINTS OF X100 HIGH STRENGTH PIPELINE STEEL

Ó³ Ÿ , º 7(163).. 798Ä802 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

ØSrÚCa Mg 12Zn 4Al 0.3MnÜ

Recent advances in coal to chemicals technology developed by SINOPEC

AN RFID INDOOR LOCATION ALGORITHM BASED ON FUZZY NEURAL NETWORK MODEL. J. Sys. Sci. & Math. Scis. 34(12) (2014, 12),

Transcript:

8 6 Ø Vol.8 No.6 6 67 677 ACTA METALLURGICA SINICA Jun. pp.67 677 (Y, Gd) O Eu + ÆÅ ³ º ½ Á ÞÐÜ ) ÓØÔ ) Ù Ò ) Ö ) Ó Ò,) Ú Õ ) ) Ä Ë Ä ÆË ½, ) ¾ ¼ ¾ ( ) ½, 6 ) Õ Ë, 89 ¹Ì Ó² Ñ (Y, Gd) O Eu + Þ, ²ßÚ ±, Í (Y, Gd) O Eu + Ǿ, Ì XRD SEM ß Ò Á Ù; Ì TG DTA Í Ò ² ßÉ Ð. ß Ì, Þ ± Å Ú ÝÜ, Ì Doyle Ozawa Kissinger Ì ÇÝÜ ¹ËÅ, ÚÔ Ú 9.5, 557.5 6.58 kj mol, Ö» ¹ ; (Y, Gd) O Eu + ž² ËÅ 5.58 kj mol, Ǿ ž ÌÏÅĐ³. ¼ (Y, Gd) O Eu + Ǿ, ¹, ËÅ, Ö¹ Á Ê TQ Ì µéã A Ì 96()6 67 7 SYNTHESIS KINETICS OF (Y, Gd) O Eu + NANO POWDERS DURING PROCESS OF PREPARATION ZHU Hongyan ), MA Weimin ), WEN Lei ), GUAN Renguo ), MA Lei,), WU Nan ) ) Key Laboratory for Rare earth Chemical and Applying of Liaoning Province, School of Material Science and Engineering, Shenyang University of Chemical Technology, Shenyang ) Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 6 ) Institute of Metallurgy and Materials, Northeastern University, Shenyang 89 Correspondent: MA Weimin, professor, Tel: ()85886, E-mail: maweimin56@6.com Supported by Natural Science Foundation of Liaoning Province (No.6), Science & Technology Program of Shenyang (No.F 5 ) Manuscript received 7, in revised form 6 ABSTRACT Using NH H O and NH HCO blended solution as a complex precipitation agent, (Y, Gd) O Eu + nano particles were synthesized by co precipitation reaction. XRD and SEM were applied to analyze the crystallization and morphology of the sample. The thermal decomposition curves of samples were analysed by TG DTA at different heating rates. Results showed that under the conditions of ph= and reverse titration, the change process of (Y, Gd) O Eu + precursors is divided into three steps. The apparent activation energy of each step was calculated by using the Doyle Ozawa and Kissinger methods. The calculated results are 9.5, 557.5 and 6.58 kj mol. The dynamic equations have been also established. The activation energy of (Y, Gd) O Eu + grain growth is 5.58 kj mol, indicating that grain growing is primarily controlled by interfacial reaction during process of preparation. KEY WORDS (Y, Gd) O Eu + nano particle, synthesis kinetics, activation energy, micro morphology º Ï Å GE ±È ± º * ¹ 6 ± à F 5 Ù : 7, ² Ù : 6 ÔÐ :,, 987 ², Å ² DOI:.7/SP.J.7..75 X CT Í ± Í Æ Å Y. Gd.6 O (Eu, Pr).6, Ñ YGO, ¾ Eu Pr Y O Gd O Í Å [,], Å Æ ¼ Å. ß (Y, Gd) O Eu + Å Ú Ú Ñ Æ ³ Ò Â [ 7]. Ü, ³ Ò Ä ÂÑ Ã ½ ÈÍ. Í Å

67 8 ½ (TG DTA) Æ Ý, ½ Ð È Ø º ± È ÎÆ Â Å [8,9]. µ, Ø º ½ ¼Ø ºÅ Î ÈÞÝ ºÌÆ, Ê Î Â [,]. (Y, Gd) O Eu + Ø º, Đ Ó. ºÍ Ô ³ Ò (Y, Gd) O Eu + È, ºÍ X (XRD) ÊÐ (SEM) Á TG DTA ½ (Y, Gd) O Eu + Ø º. Í Doyle Ozawa [ ] Kissinger [5 7] Í ÈÞÝ ºÌÆ. È ÁÄÛÛ 99.99% Y O, Gd O Eu O Û, NH H O, NH HCO, HNO C H 5 (OH) ÛÆ Ä. Y. Gd.6 Eu.6 O ƺ «Ð Æ Ê, ÛÛ.5 mol/l HNO Î. Í ÛÛ. mol/l NH H O. mol/l NH HCO, Ð NH H O NH HCO ÏĐ Û Ò. ³ Ò, ÍÅ Û Ô (NSC) Ô (RSC), NSC Ù Ô Û Ò», RSC ÑÙ» Ò. Ù Ø Ò ( RSC ) Î Ò, ÔÊ Û ml min, Û 7 K, Ô µû, Þ Ò. Ù Ò Í ÂĐ 5 Ç, À, ÍĐÂÀÃĐ Ç. Ù À Ò «Ö Ð 58 K Ð h, ß Ò, Í Ä ZrO ÅÝ» ÁĐÂÀÃÛ ¹ Î h, À««, Ð 87 7 K ² h, (Y, Gd) O Eu + È. ºÍ D/max 5PC XRD Æ ³ Û ², Sherrer ± µí Ó «É. Í HITACHI S N SEM º¼ Ó Â. Í NET ZSCH STA 9C ½ / ÅÆ (DTA/TG) Î Ò ß 7 7 K TG DTA, Æ Û«Æ, ¾ Û ml min N, ºÍ µ Ê, Æ Û 5,, 5 K min. È Î. (Y, Gd) O Eu + À ¾¹ Û³ ÔÅ Î ß Æ 7 K ² h SEM. Á, NSC Î Ó ± Ò, ÉÜÍг, ÄÍ Ò È ( a); RSC Î Ó Ë ¹Ì NSC RSC Í Þ 7 K ± h SEM Fig. SEM images of precursor precipitates prepared by the normal strike co precipitation (NSC) (a) and reverse strike co precipitation (RSC) (b) after calcined at 7 K for h, Í, Æ ± ( b). dz ³, ÔÅ» Á Ç ph г, ºÍ NSC ¼, Î Ò Ò,» ph Ð µ, Y +, Gd + Eu + Æ Û³ Æ Ç Ò; RSC, Ò ph Ð (ph=),» à Y +, Gd + Eu + ¼ Ò, Æ Ê ÏÆ Ê, ÄÆ Ô ß Ò [8].. (Y, Gd) O Eu + À» Ï Û 58 K ÐÀ ß Ò Fourier È Ò (FT IR). Á, cm Á ܲ Î, È Ò H O O H Ô Ï Ø; 98 cm Á NH + N H Ô Ï Ø ; 57 cm Á CO C O Ô ³ Ï Ø ³; cm Á È CO C O Ô Ï Ø; 88, 86 686 cm C O Ô Ó Ø; O H ÔÓ Ø ³ 76 cm Á ; RE O Ô Ø 556 cm Á. ÁÐÞ, ß Ò RE +, OH, CO, «Â ÝÔÅÆ NH H O NH HCO. ß 87 7 K ² FT

6 Ø «: (Y, Gd) O Eu + ƽ Ö 67 IR. Ó, ² ÛÛ 87 K ¼, Í, 556 cm Á RE O Ø, ÄÍ Æ «; ² ÛÒ 7 K ¼, ÕÂ, Ú Û, ÕÄÍ ÆÔÅ «. Ûß ³ µ Ê TG DTA. Á, ß Æ ÆÛ ÞÝ: ÞÝÛÑÂÞÝ, Û ÙÛ 7 K, Å 8%, Û 9 K Á Å Ó ÂÆØ, 9 K ¼, ÅÊ Í, DTA, Õ ß «ÂµÆ ; ÞÝÛ Æ ÞÝ, Û ÙÛ 9 K, ÍÆ Å, Å Û 5%, DTA 89 K Á RE(OH) x (CO ) y Æ ; ÞÝ Û (Y, Gd) O Eu + ÞÝ, Û ÙÛ 9 5 K, ųÍÆ, Û 5%, DTA 7 K Á Í Ó Æ, ĐÔ Û Transmittance, % 98 57 556 88 686 86 76 5 5 5 5 Wavenumber, cm - Ë Þ Ñ 58 K FT IR Ö Fig. Fourier transform infrared (FT IR) spectrum of precursor precipitates after dried at 58 K Transmittance, % 87 K 7 K 5 5 5 5 Wavenumber, cm - Ë Þ 87 7 K ± Í FT IR Ö Fig. FT IR spectra of the samples obtained by calcined precursors at 87 and 7 K 5 K/min K/min 5 75 9 5 5 75 9 5 5 K/min K/min 5 75 9 5 5 75 9 5 Ë Þ ² ßÉ TG DTA Fig. TG DTA curves of precursors at different heating rates

67 8 «; 5 K ÁÀ, ³ Å. Ä ÞÝ È È Å : Re(OH) x (CO ) y nh O Re(OH) x (CO ) y (T < K) () Re(OH) x (CO ) y Re O CO +H O+CO ( K < T < 9 K) () Re O CO Re O (9 K < T < 5 K) (), x, y n Æ Û ÍÆ»Á; T Û º Û. ß Æ È Û Ù Á, ºÍ Doyle Ozawa [9,] Kissinger [,] Æ Í (Y, Gd) O Eu + ºÌÆ E. Doyle Ozawa Ü, Ô È Æ α( TG DTA Æ Á Î ), lgβ(β Ûµ Ê ) /T Þ È ± «, Ðß Û.567E/R(R ÛÏĐÝ Á). lgβ /T, ß Í È ºÌ Æ. 5 ³ È Æ ³ È lgβ /T, 5 ß Í ºÌ Æ. Ü, ß Æ ÞÝ È Õ ºÌÆÆ Û 6., 57.88.9 kj mol. Kissinger, ln(β/t m) /T m (T m Û Ð Û) È ± «, ß Û ( E/R), ln(β/t m) /T m, È ÌÆ. 6 Û È ln(β/t m ) /T m. 6 ß Í Þ 9 K, 86 9 K 97 5 K È ºÌÆÆ Û.9, 5. 7.5 kj mol. Ü Ü, Doyle Ozawa Kissinger Í ºÌƽ Ü, ÛÒ Í ½ Å Õ ÐÀ, 9 K, 86 9 K 97 5 K Û Ù Õ ºÌÆÆ Û 9.5, 557.5 6.58 kj mol. Õ ºÌÆ Ô Û Ê ß ÞÝ È Ã Û, ³ (Y, Gd) O Eu + ÞÝ ºÌÆ Í, Û 557.5 kj mol, lg(, K/min)......9.8.7.6 (a), % 5 7 9 Linear fitting curve..5..5.5.55..65.7.75. lg(, K min - )......9.8.7.6.5 (b)..5 lg(, K min - )......9.8 (c).7.6.5.95..5 Ë 5 Doyle Ozawa Í ² Ç Å ² ßÇ lgβ /T Fig.5 lgβ /T plots of different endothermic peaks at different conversions (α) obtained by the Doyle Ozawa method (β) (a) the endothermic peak between 9 K (b) the endothermic peak between 86 9 K (c) the endothermic peak between 97 5 K

6 Ø «: (Y, Gd) O Eu + ƽ Ö 675 ÄÍÆÞÝ È Ü, È ¾ ÞÝ ¼.. Ç¾Í Ï 7 Ûß Ò Æ ³ Û ² h À XRD. Á, 87 K, ß Ã ² Å ßÇ Ô ËÅ Table Activation energies of the endothermic peaks at different α α, % E, kj mol E, kj mol E, kj mol 7. 5. 8.6.6 5. 9. 9.9 58.85.69 56.9 57. 5.9 5 5. 657..57.5 59.5.5 7. 66.87. 68.6 58.8.85 9 8.6 5.7 9. 9.86 55..8 Average 6. 57.88.9 Note: E activation energy of the endothermic peak between 9 K, E activation energy of the endothermic peak between 86 9K, E activation energy of the endothermic peak between 97 5 K Æ, RE O CO, ÍÆ ; 97 K ¼ ; Æ 7 K ² À ÕÂ, Û Y O «(PDF No. 6) ; 7 7 K ², Æ ² Ó, Í. Y +, Gd + Eu + Æ, Æ Û.89,.98.95 nm, (Y, Gd) O Eu + Õ, Eu + ¾ Å Ü«, Ó Ü Y O. Scherrer ±, 7 XRD Í ««É D, lnd /T «8. «³ ÌÆ Í± [,] : d[lnd] d(/t) = E R (7) 8, (7) Í (Y, Gd) O Eu + È«³ ÌÆÜ, Û 5.58 kj mol, Í«É̱Ü, (Y, Gd) O Eu + È ³ ÛÆ «É.. Ǿ Ä Ï 9 ß Ò 7 K ² ³ ¼ SEM. Á, ÝƲ, È ÍÆ ( 9a); 7 K ² h À, ln( /T m, min - K - ) ln( /T m, min - K - ) -9. (a) -9. -9.6-9.8 -. -. -. -.6 -.8....6.8. -9. (b) -. (c) -9.6 -. -9.8 -. -. -.6 -. -.8 -. -. -.6 -. -.8 -. -..88.9.9.9.96.98.6.7.8.9.5.5.5.5.5 Ë 6 ²ßÚ Ø ßÇ ln(β/tm) /T m Fig.6 ln(β/t m) /T m plots of the endothermic peaks between 9 K (a), 86 9 K (b) and 97 5 K (c) ln( /T m, min - K - )

676 8 6 (Y,Gd) O :Eu + RE O CO 7 K 5..5 Intensity, a.u. 7 K 7 K 97 K 87 K Uncalcined 5 7 9, deg Ë 7 Þ Ñ ²± ßÚ ß h XRD Ö Fig.7 XRD patterns of precursor precipitates after calcined at different temperatures for h ln(d, nm)..5..5......5 Temperature, K - Ë 8 (Y, Gd) O Eu + ÇÅ lnd /T Å Fig.8 Relationship between lnd and /T of (Y, Gd) O Eu + nanocrystals (D grain diameter) Ë 9 Þ Ñ 7 K ± ²» SEM Fig.9 SEM images of precursor precipitates (a) and after calcined at 7 K for h (b), h (c) and 6 h (d), É 5 nm( 9b); ² h, Í, ± ( 9c); ² 6 h, Þ, nm( 9d). Á Í, ² ÛÛ 7 K ¼, h (Y, Gd) O Eu + È Â.  () ph ÐÛ NH H O NH HCO Ò Ô Y, Nd Eu Ë», ³³ ÒÎ ß Ò, 58 K Ð h À 7 K ² h, 5 nm (Y, Gd) O Eu +. () ß Ò µ Æ ¹ÆÑÂ Æ ³ (Y, Gd) O Eu + È«Þ Ý, ÞÝ Õ ºÌÆÆ Û 9.5, 557.5 6.58 kj mol. () (Y, Gd) O Eu + È«³ ³ ÌÆ Û 5.58 kj mol. Ì [] van Eijk C W E. Phys Med Biol, ; 7: 85 [] Hell E, Knuepfer W, Mattern D. Nucl Instrum Methods Phys Res, ; 5A: [] Jung Y S, Kim K H, Jang T Y, Tak Y, Baeck S H. Curr Appl Phys, ; : 58

6 Ø «: (Y, Gd) O Eu + ƽ Ö 677 [] Louardi A, Rmili A, Ouachtari F, Bouaoud A, Elidrissi B, Erguig H. J Alloys Compd, ; 59: 98 [5] Selvam N C S, Kumar R T, Yogeenth K, Kennedy L J, Sekaran G, Vijaga J J. Powder Technol, ; : 5 [6] Gunawidjaja R, Myint T, Eilers H. Ceram Int, ; 8: 775 [7] Taniguchi T, Watanabe T, Katsumata K, Okada K, Matsushita N. J Phys Chem, ; C: 76 [8] Chien J T, Hsu D J, Inbaraj B S, Chen B H. Int J Mol Sci, ; : 5 [9] Matiadis D, prousis K C, Markopoulou O I. Molecules, 9; : 9 [] Si W, Wang J, Wang X H, Gao H, Zhai Y C. J Inorg Mater, ; 6: 76 (Ç Ü, Õ Å, Õ²É,, Â. ¹, ; 6: 76) [] Si W, Gao H, Wang J, Jiang D, Zhai Y C. Chin J Inorg Chem, ; 6: (Ç Ü,, Õ Å, Ø, Â. Ź¹, ; 6: ) [] Jie X F, Liang G C, Wang L, Zhi X K, Gao L M. Adv Mater Res, ; 78: 7 [] Yu H Y, Ren W T, Zhang Y. J Appl Polym Sci, 9; : 7 [] Zhuang Y X, Xing P F, Duan T F, Shi H Y, He J C. J Rare Earths, ; 9: 79 [5] Wang C S, Wang R Q, Wang Y, Fu Y X. Key Eng Mater, ; 5: 9 [6] Dai J F, Ling R Q, Wang K Z. Adv Mater Res, ; 8: 8 [7] Kok M V. Fuel Process Technol, ; 96: [8] Ma W M, Wen L, Shen S F, Liu J, Wang H D. Acta Metall Sin, 9; 5: 759 (ÀÜË, Ð, ±, Å, ÕÁÙ. À¹, 9; 5: 759) [9] Ozawa T. Bull Chem Soc Jpn, 965; 8: 88 [] Doyle C D. J Appl Polym Sci, 96; 5: 85 [] Kisssinger H E. J Res Nat Bue Stand, 965; 57: 7 [] Kissingger H E. Anal Chem, 957; 9: 7 [] Zhao Y N, Zhang W L. Adv Mater Res, ; 9: 558 [] Mullaugh K M, Luther G W. J Nanopart Res, ; : 9 (Ý Ñ: Û )