Predictions on the second-class currents

Σχετικά έγγραφα
Three coupled amplitudes for the πη, K K and πη channels without data

Hadronic Tau Decays at BaBar

LIGHT UNFLAVORED MESONS (S = C = B = 0)

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Light Hadrons and New Enhancements in J/ψ Decays at BESII

Unified dispersive approach to real and virtual photon-photon scattering into two pions

EPS On Behalf of Belle Collaboration. Takayoshi Ohshima Nagoya University, Japan

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Space-Time Symmetries

Derivation of Optical-Bloch Equations

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Isospin breaking effects in B ππ, ρρ, ρπ

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Example Sheet 3 Solutions

Physics of CP Violation (III)

Forced Pendulum Numerical approach

Large β 0 corrections to the energy levels and wave function at N 3 LO

LEPTONS. Mass m = ( ± ) 10 6 u Mass m = ± MeV me + m e

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 3β: Σκέδαση αδρονίων και χρυσός κανόνας του Fermi

Polarizations of B V V in QCD factorization

UV fixed-point structure of the 3d Thirring model

Homework 3 Solutions

measured by ALICE in pp, p-pb and Pb-Pb collisions at the LHC

w o = R 1 p. (1) R = p =. = 1

Section 8.3 Trigonometric Equations

AdS black disk model for small-x DIS

Variational Wavefunction for the Helium Atom

Congruence Classes of Invertible Matrices of Order 3 over F 2

Higher Derivative Gravity Theories

4.6 Autoregressive Moving Average Model ARMA(1,1)

Areas and Lengths in Polar Coordinates

Precise measurement of hadronic tau-decays

Areas and Lengths in Polar Coordinates

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

10.7 Performance of Second-Order System (Unit Step Response)

Other Test Constructions: Likelihood Ratio & Bayes Tests

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

The form factor program - a review and new results - the nested SU(N)-off-shell Bethe ansatz - 1/N expansion

Lifting Entry (continued)

Trigonometry 1.TRIGONOMETRIC RATIOS

CRASH COURSE IN PRECALCULUS

Φυσική Στοιχειωδών Σωματιδίων ΙΙ (8ου εξαμήνου) Μάθημα 5: Σκέδαση αδρονίων και χρυσός κανόνας του Fermi. Λέκτορας Κώστας Κορδάς

6.3 Forecasting ARMA processes

Coupling of a Jet-Slot Oscillator With the Flow-Supply Duct: Flow-Acoustic Interaction Modeling

Electronic Supplementary Information:

Finite Field Problems: Solutions

2 Composition. Invertible Mappings

derivation of the Laplacian from rectangular to spherical coordinates

Numerical Analysis FMN011

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Second Order RLC Filters

1 String with massive end-points

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

MathCity.org Merging man and maths

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

e + e - physics in the tau charm energy region Part I Frederick A. Harris University of Hawaii Jan. 5, 2005

Inverse trigonometric functions & General Solution of Trigonometric Equations

Strain gauge and rosettes

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Lecture 21: Scattering and FGR

CP Violation in Kaon Decays

PHY 396 K/L. Solutions for problem set #12. Problem 1: Note the correct muon decay amplitude. The complex conjugate of this amplitude

Non-Gaussianity from Lifshitz Scalar

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2


Durbin-Levinson recursive method

Local Approximation with Kernels

EE512: Error Control Coding

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

TMA4115 Matematikk 3

Test Data Management in Practice

Math221: HW# 1 solutions

CE 530 Molecular Simulation

Kaon physics at KLOE. M.Palutan. Frascati for the KLOE collaboration Moriond-EW 2006

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

The Spiral of Theodorus, Numerical Analysis, and Special Functions

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Matrices and Determinants

Statistical Inference I Locally most powerful tests

D-term Dynamical SUSY Breaking

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ ΜΕ ΘΕΜΑ : «ΑΜΦΙΣΒΗΤΗΣΕΙΣ ΟΡΙΩΝ ΓΕΩΤΕΜΑΧΙΩΝ ΔΙΑΔΙΚΑΣΙΑ ΕΠΙΛΥΣΗΣ ΜΕΣΩ ΔΙΚΑΣΤΙΚΩΝ ΠΡΑΓΜΑΤΟΓΝΩΜΟΣΥΝΩΝ.»

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

Computing Gradient. Hung-yi Lee 李宏毅

Revisiting the S-matrix approach to the open superstring low energy eective lagrangian

Magnetically Coupled Circuits

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä664

Srednicki Chapter 55

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

Divergence for log concave functions

Parametrized Surfaces

The Θ + Photoproduction in a Regge Model

5. Choice under Uncertainty

Transcript:

Predictions on the second-class currents τ η ( ) ν τ decays Sergi Gonzàlez-Solís Institut de Física d Altes Energies Universitat Autònoma de Barcelona in collaboration with Rafel Escribano and Pablo Roig, PRD 94 (26) 348 4th International Workshop on Tau lepton physics Beijing, 9th september 26

Outline Introduction 2 η ( ) Form Factors Vector Form Factor Scalar Form Factor Breit-Wigner Dispersion relation: Omnès integral Coupled channels 3 Branching ratio predictions τ ην τ τ η ν τ η ( ) π + l ν l (l = e, µ) 4 Conclusions

Introduction Hadronic τ-decays Inclusive decays: τ (ūd, ūs)ν τ Fundamental SM parameters: α s(m τ ), m s, V us (see Tau properties (III) and QCD (I)) Exclusive decays: τ (PP, PPP,...)ν τ, (P = π, K, η ) τ Hadronization of QCD currents, Form Factors, resonance parameters (M R, Γ R ) ν τ W d = V ud d + V us s ū,k h5 Tau properties (II) (Escribano, Gonzàlez-Solís and Roig JHEP 3 (23) 39) η, η (Escribano, Gonzàlez-Solís, Jamin and Roig JHEP 49 (24) 42) this work (Escribano, Gonzàlez-Solís and Roig PRD 94 (26) 348) S.Gonzàlez-Solís TAU 6 9 september 26 3 / 24 hadronization

Introduction τ η ( ) ν τ decays Motivations τ η ( ) ν τ belong to the second-class current processes unobserved in Nature so far (Weinberg 58) G Parity G X = e iπiy C X = ( ) I C X G dγ µ u = + dγ µ u G η = η It is an isospin violating process (m u m d, e ) Sensitive to the intermediate vector and scalar resonances (ρ, ρ, a, a...) coupled to the ūd operator Purposes To describe the participating hadronic form factors To predict the decay spectra and to estimate the branching ratios To stimulate people from B-factories (Belle-II) to measure these decays S.Gonzàlez-Solís TAU 6 9 september 26 4 / 24

Introduction τ K η ( ) ν τ : Amplitude and decay width τ W ν τ η ( ) q 2 M 2 W = η ( ) dγ µ u = [(p η ( ) p π) µ + η ( ) q µ ] C V πη( ) πη ( )F s G F 2 V ud ū(p ντ )γ µ ( γ 5 )u(p τ ) η ( ) dγ µ ( γ 5 )u + (s)+ QCD K K + s, + +, PQ = M 2 P M 2 Q q µ C S η ( ) F π η ( ) (s) dγ (τ η ( ) ν τ ) d = G2 F M3 τ s 24π 3 s S EW V ud 2 π η( ) F+ () 2 ( s Mτ 2 ( + 2s M τ 2 ) q 3 (s) F π η ( ) η ( ) + (s) 2 + 3 2 η ( ) q 4s η ( )(s) F π η ( ) (s) 2 F π η ( ) +, (s) = F π η( ) +, (s), F π η ( ) F π η ( ) + () = CS η ( ) QCD K K + π η( ) +, () C V F () η ( ) η ( ) S.Gonzàlez-Solís TAU 6 9 september 26 5 / 24 2 )

η ( ) Form Factors Framework and mixing Chiral Perturbation Theory: valid up to the first resonance ρ mass Large-N C : to include η singlet Resonance Chiral Theory: to access resonance regime π -η-η mixing (P. Kroll, Mod. Phys. Lett. A2, 2667 (25)) π η η = ε πη cθ ηη + ε πη sθ ηη ε πη cθ ηη ε πη sθ ηη ε πη cθ ηη sθ ηη ε πη sθ ηη cθ ηη where ε πη ( ) and θ ηη are the π -η ( ) and η-η mixing angles π 3 η 8 η S.Gonzàlez-Solís TAU 6 9 september 26 6 / 24

η ( ) Form Factors Vector Form Factor Vector Form Factor: RChT The vector contribution current occurs via π η η mixing, so it is O(ε πη ( )) and hence suppressed η ( ) η ( ) = F π η + (s) F π η + (s) = ( τ π ν τ + + P ρ (77) ρ (45) P η ( ) + επη ) F V G V s ε + πη V =ρ,ρ,ρ F 2 MV 2 s suppresion Fujikawa et. al. PRD78 726 (Belle) s 2 F ΠΠ.. η ( ) + cancel each other Belle data η ( )..5..5 2. 2.5 3. s GeV 2 S.Gonzàlez-Solís TAU 6 9 september 26 7 / 24

η ( ) Form Factors Scalar Form Factor Scalar Form Factor: Breit-Wigner F π η ( ) (s) = c π η ( ) 8cm(cm c d ) 2mK 2 m2 π F 2 M 2 S + 4cm F 2 (c m c d )2m2 π + c d (s + mπ 2 m 2 ) η ( ) M 2 S s Imposing F π η ( ) (s) to vanish for s c d c m = and 4c d c m = F 2 Resummation of self-energy insertions in propagator F π η ( ) (s) = c π η ( ) c π η = cos θ P 2 sin θ P c π η = cos θ P + sin θ 2 P i + Σ(s) + Σ(s) Σ(s) +...= s MK 2 +Σ(s) resonance: M S = 98(2), Γ S = 75(25) M 2 S + η ( ) M 2 S s im SΓ S (s) s ΠΗ, ΠΗ' F 25 2 5 5..5..5 2. s GeV S.Gonzàlez-Solís TAU 6 9 september 26 8 / 24

η ( ) Form Factors Scalar Form Factor Scalar Form Factor: Breit-Wigner 5 5 η η mixing: Next-to-leading order prediction in Res. ChPT F π η ( ) + () = CS η ( ) QCD K K + π η( ) C V F () η ( ) η ( ) F π η ( ) + () = ε πη ( ) ε F π η ( ) () = c π η ( ) M 2 S + πη = 9.8(3) 3 η ( ) ε πη M 2 = 2.5(.5) S 4 Breit-Wigner with 2 resonances: a (98) and a (45) B. Wigner a 98 B. Wigner a 98 a 45..5..5 s ΠΗ' F 4 2 8 6 4 2 B. Wigner a 98 B. Wigner a 98 a 45..5..5 S.Gonzàlez-Solís TAU 6 9 september 26 9 / 24

η ( ) Form Factors Scalar Form Factor Scalar Form Factor: Dispersion relation Analyticity and elastic unitarity through a dispersion relation F π η ( ) + (s) = π η ( ) s th ds ImF π η( ) + (s ) s s iε η ( ) η ( ) Im = T ImF π η ( ) + (s) = σ π η ( )(s)f π η ( ) + T (s) = F π η ( ) + sin δ π η ( ) η ( ) (s)e iδπ (s) Watson theorem: phase of F π η ( ) + (s) is δ π η ( ) (s) in the elastic approx. Omnès solution (Omnès 58) F π η ( ) + (s) = P(s) exp s s π ds δ π η( ) (s ) s th (s s )(s s iε) S.Gonzàlez-Solís TAU 6 9 september 26 / 24

η ( ) Form Factors Scalar Form Factor Scalar Form Factor: Omnès integral Analyticity and elastic unitarity through the Omnès solution π s s δ η ( ) (s) = P(s) exp ds, (s ) = P(s)Ω(s) π s th (s s )(s s iε) F π η ( ) Elastic unitarity: Form factor phase= δ η ( ) 2 2 elastic scattering δ π η ( ), (s) = arctan Imt,(s) Ret, (s), t N, (s),(s) = + g(s)n, (s) = N(s) D(s) N, : U(3) U(3) amplitudes in RχT (Guo-Oller: Phys.Rev. D84 (2) 345) c d = c d / 3 c m = c m/ 3 c d = 9.8 +2. 5.2 MeV c m = 4.9 +3.9 9.2 MeV M a,s 8 = 397 +73 6 MeV M S = +3 63 MeV S.Gonzàlez-Solís TAU 6 9 september 26 / 24

η ( ) Form Factors Scalar Form Factor Scalar Form Factor: Omnès Assuming F π η ( ) (s) to behave as s F πη( ) (s) = P(s)Ω(s), P(s) constant. Our choice: P(s) = F Breit Wigner () F ΠΗ s 8 6 4 2..5..5 2. 2.5 3. s GeV s F ΠΗ' 5 2 5 2 Omnès integral..5..5 2. s GeV S.Gonzàlez-Solís TAU 6 9 september 26 2 / 24

η ( ) Form Factors Scalar Form Factor Scalar Form Factor: Closed expression ( s/s F πη( ) pi ) (s) = i,j ( s/s zj ) D(s) D(s )F (s ) s p and s z: poles and zeros of D(s) = ( + g(s)n(s)) Iwamura, Kurihara, Takahashi 77 Kamal 79, Kamal, Cooper 8 Jamin, Oller, Pich s = F (s ) = F π η,bw () =.5 s z =.397 GeV N(s) = N πη πη s F ΠΗ' 5.. 5...5 Omnès Closed expression..5..5 2. 2.5 3. s GeV S.Gonzàlez-Solís TAU 6 9 september 26 3 / 24

η ( ) Form Factors Scalar Form Factor Scalar Form Factor: Coupled channels case F i (s) = π 2 j= s i Other cuts (K K, πη...) ds Σ j(s )F j (s )T i j (s ) (s s iε) F πη (s) = π ds σπη(s πη )F (s )T πη πη(s ) s th s s iε F πη (s) = π ds σπη(s πη )F (s )T πη πη (s ) s th s s iε Im Im η = + π η = η, η T ds σ πη (s πη )F (s )T πη πη (s ) s th2 s s iε + π η, η T η ds σ πη (s πη )F (s )T πη πη (s ) s th2 s s iε S.Gonzàlez-Solís TAU 6 9 september 26 4 / 24 η

η ( ) Form Factors Scalar Form Factor Scalar Form Factor: Coupled channels case (closed expression) ( s/s F πη( ) pi ) (s) = i,j ( s/s zj ) D(s) D(s )F (s ) s p and s z : poles and zeros of detd(s) Iwamura, Kurihara, Takahashi PTF 58 (977) Kamal 79, Kamal, Cooper 8 F (s) = ( F πη (s) F πη (s) ), D(s) = + g(s)n(s), s z =.397 GeV F (s ) = F BW () 5 2 Elastic ΠΗ coupled to ΠΗ' g(s) = ( g πη ), g πη F ΠΗ s 5 2 N(s) = ( N πη πη N πη πη N πη πη N πη πη ),..5..5 2. s GeV S.Gonzàlez-Solís TAU 6 9 september 26 5 / 24

η ( ) Form Factors Scalar Form Factor Scalar Form Factor: Coupled channels case (closed expression) ( s/s F πη( ) pi ) (s) = i,j ( s/s zj ) D(s) D(s )F (s ) s p and s z : poles and zeros of detd(s) Iwamura, Kurihara, Takahashi PTF 58 (977) Kamal 79, Kamal, Cooper 8 F (s) = ( F πη (s) F πη (s) ), s z =.397 GeV F (s ) = F BW () 5 Elastic ΠΗ' coupled to ΠΗ D(s) = + g(s)n(s), g(s) = ( g πη ), g πη s F ΠΗ' 5 5 N(s) = ( N πη πη N πη πη N πη πη N πη πη ),..5..5 2. s GeV S.Gonzàlez-Solís TAU 6 9 september 26 6 / 24

η ( ) Form Factors Scalar Form Factor η ( ) Form Factors: recapitulate 5 2 5 2 Elastic ΠΗ coupled to ΠΗ' ΠΗ coupled to KK ΠΗ coupled to ΠΗ' and KK Elastic 5 ΠΗ' coupled to ΠΗ ΠΗ' coupled to KK ΠΗ' coupled to ΠΗ and KK 5 5..5..5..5..5 Vector Form Factor: Driven by the π vector form factor Scalar Form Factor Breit-Wigner: with a (98) and a (45) resonances 2 Omnès solution: analyticity+elastic final state interactions 3 Closed Form: coupled-channels S.Gonzàlez-Solís TAU 6 9 september 26 7 / 24

Branching ratio predictions τ ην τ T H IS W O R K τ ην τ : Invariant mass distribution and Branching Ratio 6 ÿ dgêd s... -4 Full: vector + elastic Full: vector + 3 coupled channels Full: vector + B. Wigner H2 resl Vector BR V 5 BR S 5 BR 5 Reference.25.6.85 Tisserant, Truong 82.2.38.5 Bramón, Narison, Pich 87.5.6.2 Neufeld, Rupertsberger 94.36..36 Nussinov, Soffer 8 [.2,.6] [.2, 2.3] [.4, 2.9] Paver, Riazuddin.44.4.48 Volkov, Kostunin 2.3.2.33 Descotes-Genon, Moussallam 4.26(2).72 +.46.22.98(5) Breit-Wigner [a (98)].26(2).48 +.29.4.74(32) Breit-Wigner [a (98) + a (45)].26(2). +.2.3.36(4) Elastic Omnès solution.26(2).5(9).4(9) 2 coupled channels ( η to η ).26(2).86() 2.2() 2 coupled channels ( η to K K ).26(2).4(9).67(9) 3 coupled channels -5.6.8..2.4.6.8 s HGeVL BRexp BaBar < 9.9 5 95%CL (PRD 83 (2) 322) BR Belle exp < 7.3 5 9%CL (PoS EPS -HEP29, 374 (29)) S.Gonzàlez-Solís TAU 6 9 september 26 8 / 24

Branching ratio predictions τ ην τ τ η ν τ : Invariant mass distribution and Branching Ratio 7 ÿ dgêd s. -4-6 Full: vector + elastic scalar Full: vector + 3 coupled channels Full: vector + B. Wigner H2 resl Vector T H I S W O R K -8 -..2.4.6.8 2. s HGeVL BR V BR S BR Reference < 7 [.2,.3] 6 [.2,.4] 6 Nussinov, Soffer 99 [.4, 3.4] 8 [.6,.8] 7 [.6, 2.] 7 Paver, Riazuddin. 8 2.63 8 3.74 8 Volkov, Kostunin 2 [.3, 5.7] [2, 7 ] [.5,.3 9 ] Breit-Wigner ( res) [.3, 5.7] [5, 2 9 ] [.8, 2.6 9 ] Breit-Wigner (2 res) [.3, 5.7] [2 9, 4 8 ] [2.6 9, 4 8 ] Elastic Omnès solution [.3, 5.7] [2 7, 2 6 ] [2 7, 2 6 ] 2 cc ( η to η) [.3, 5.7] [3 7, 3 6 ] [3 7, 3 6 ] 2 cc ( η to K K ) [.3, 5.7] [ 7, 6 ] [ 7, 6 ] 3 coupled channels BR BaBar exp < 4 6 (9%CL), (PRD 86, 92 (22) S.Gonzàlez-Solís TAU 6 9 september 26 9 / 24

Branching ratio predictions η ( ) π + l ν l (l = e, µ) Branching Ratio estimates: η ( ) π + l ν l (l = e, µ) dγ d s = G2 F V udf + () 2 πη (CV )2 (s ml 2)2 24π 3 Mη 3 s {(2s + m 2 l )q3 πη F + (s) 2 + 3 4s 2 πηm l 2 q πη F (s) 2 }.5..5 Η Π e Νe Η Π Μ ΝΜ Η' Π e Νe 5 Η' Π Μ ΝΜ 4 3 2....2.3.4..2.4.6.8 Decay Descotes-Genon, Moussallam 4 Our estimate η π + e ν e + c.c..4 3.6 3 η π + µ ν µ + c.c..2 3.4 3 η π + e ν µ + c.c..7 7 η π + µ ν µ + c.c..7 7 S.Gonzàlez-Solís TAU 6 9 september 26 2 / 24

Conclusions Outlook τ η ( ) ν τ : second-class currents unseen in Nature Isospin-violating processes and hence suppressed Form Factors: Vector Form Factor: driven by τ π ν τ data Scalar Form Factor: Breit-Wigner, Omnès, coupled-channels We predict τ ην τ.7 5 and τ η ν τ O( 7 6 ) We encourage experimental groups (Belle-II) to pursue this decay mode S.Gonzàlez-Solís TAU 6 9 september 26 2 / 24

Back-up

Back-up Hadronic Matrix Element Taking the divergence we obtain on the L.H.S µ( sγ µ u) K + η ( ) = i(m s m u) su K + η ( ) = i K π C S K η ( ) F K η ( ) (s) () where PQ = M 2 P M2 Q, CS K η = / 6, C S K η = 2/ 3 on the R.H.S (vector current not conserved) iq µ K η ( ) sγ µ u = ic V K η ( ) [(m2 η ( ) m2 K )F K η ( ) + (s) sf K η ( ) (s)] (2) Equating eqs. (,2) allows us to relate F K η ( ) (s) with F K η ( ) (s) as F K η ( ) (s) = K η ( ) s C S K η ( ) C V K η ( ) K π F K η ( ) (s) + F K η ( ) + (s) K η ( ) The hadronic matrix element finally reads (q µ = (p η ( ) + p K ) µ + and q 2 = s) (3) K η ( ) sγ µ u = [(p η ( ) p K ) µ + K η ( ) q µ ] C V K η s ( )F K η ( ) + (s) + K π s qµ C S K η F K η ( ) ( ) (s) (4) S.Gonzàlez-Solís TAU 6 9 september 26 23 / 24

Back-up Scalar Form Factor: Closed expression Once subtracted dispersion relation F(s + iε) = F(s ) + s s ds σ(s )tij (s )F (s ) π s th (s s )(s s iε) = F(s ) + F(s + iε), F(s + iε) F(s iε) = 2iσ(s)t (s + iε)f(s + iε) = 2iσ(s)t (s + iε)[f(s ) + F(s + iε)] t = N/D Imt = σ(s) ImD(s) = Nσ(s) F(s + iε)d(s + iε) F(s iε)d(s iε) = 2iImD(s)F(s ), F(s + iε) = (s s ) D(s + iε) π ds ImD(s )F(s ) s th (s s )(s s) = D(s + iε) [D(s + iε) D(s )] F(s ) S.Gonzàlez-Solís TAU 6 9 september 26 24 / 24