BEHAVIOR OF MARTENSITE REVERSE TRANSFORMA- TION IN 18Mn TRIP STEEL DURING WARM DEFORMATION

Σχετικά έγγραφα
ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (



MICROSTRUCTURE EVOLUTION OF HYPEREUTEC- TOID STEELS DURING WARM DEFORMATION II. Cementite Spheroidization and Effects of Al

Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

STUDY ON CYCLIC OXIDATION RESISTANCE OF HIGH NIOBIUM CONTAINING TiAl BASE ALLOY WITH ERBIUM

RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti 45Al 8Nb ALLOY

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

Delta Inconel 718 δ» ¼

2011 Đ 3 Ñ ACTA METALLURGICA SINICA Mar pp

ØSrÚCa Mg 12Zn 4Al 0.3MnÜ

Effects of Retained Austenite Characteristics on Delayed Fracture Properties of Ultra High-Strength TBF Steels

MICROSTRUCTURE AND MECHANICAL PROPERTIES OF 1500 MPa GRADE ULTRA HIGH STRENGTH LOW ALLOY STEEL

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

EFFECT OF HAFNIUM CONTENT ON MORPHOLOGY EVOLUTION OF γ PRECIPITATES IN P/M Ni BASED SUPERALLOY

CORROSION BEHAVIOR OF X70 PIPELINE STEEL IN SIMULATED KU ERLE SOIL SOLUTION WITH CO 2

AN INVESTIGATION ON THE CREEP BEHAVIOR OF PURE Mg

INFLUENCES OF PHASE PRECIPITATIONS OF TERNARY β Ti Mo Zr(Sn) ALLOYS ON YOUNG S MODULUS AND MECHANICAL PROPERTIES

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

1-6 Ð Ï Te (mass%) 0% 0.3% 0.5% 0.8% 1.0% 2.0% 2 Î 1 6

EFFECTS OF TEMPERATURE GRADIENT ON LAMEL- LAR ORIENTATIONS OF DIRECTIONAL SOLIDIFIED TiAl BASED ALLOY

FRACTURE TOUGHNESS OF WELDED JOINTS OF X100 HIGH STRENGTH PIPELINE STEEL

BEHAVIOUR AND MECHANISM OF STRAIN HARDEN- ING FOR DUAL PHASE STEEL DP1180 UNDER HIGH STRAIN RATE DEFORMATION

Ανώτερα Μαθηματικά ΙI

NUMERICAL SIMULATION OF KEYHOLE SHAPE AND TRANSFORMATION FROM PARTIAL TO OPEN STATES IN PLASMA ARC WELDING

EFFECT OF LOADING MODES ON MECHANICAL PROPERTY AND STRAIN INDUCED MARTENSITE TRANSFORMATION OF AUSTENITIC STAINLESS STEELS

PHOTOCATALYTIC PROPERTIES OF TiO 2 THIN FILMS PREPARED BY MICROARC OXIDATION AND DOPING ELECTROLYTES

2 SFI

High order interpolation function for surface contact problem

DISCONTINUOUS YIELDING BEHAVIOR OF β PHASE CONTAINING TiAl ALLOY DURING HIGH TEMPERATURE DEFORMATION PROCESS

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

EFFECT OF WELDING PROCESSING PARAMETERS ON POROSITY FORMATION OF MILD STEEL TREATED BY CO 2 LASER DEEP PENETRATION WELDING

v w = v = pr w v = v cos(v,w) = v w

AN RFID INDOOR LOCATION ALGORITHM BASED ON FUZZY NEURAL NETWORK MODEL. J. Sys. Sci. & Math. Scis. 34(12) (2014, 12),

P ˆŸ ˆ Œ Œ ˆ Šˆ. Š ˆ œ ˆ -2Œ

SYNTHESIS OF PLASTIC Zr BASED BULK METALLIC GLASS WITH CRYSTAL PHASE BY DIRECTIONAL SOLIDIFICATION

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

EFFECT OF HIGH MAGNETIC FIELD ON THE TRANSI- TION BEHAVIOR OF Cu RICH PARTICLES IN Cu 80%Pb HYPERMONOTECTIC ALLOY

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Œ.. ² μ,.. Œ ²μ, ƒ.. μ ±μ,. Ô Ô ², Œ.. ƒê Éμ, Œ.. Œ ² μ *

P Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ. ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25

UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库

SYNTHESIS KINETICS OF (Y, Gd) 2 O 3 Eu 3+ NANO POWDERS DURING PROCESS OF PREPARATION

THE MICRO FABRICATING PROCESS AND ELECTRO- MAGNETIC PROPERTIES OF TWO KINDS OF Fe POWDERS WITH DIFFERENT GRAIN SIZES AND INTERNAL STRAINS

48 12 Ö Vol.48 No ACTA METALLURGICA SINICA Dec pp Î µ TG142.1, Á A Ì µ (2012)

FRICTION AND WEAR PROPERTIES OF SURFACE PLASMA Cr W ALLOYING LAYER OF γ TiAl ALLOY

MICROSTRUCTURE STABILITY IN A FULLY LAMELLAR HIGH Nb TiAl ALLOY AFTER LONG TERM THERMAL CYCLING

Ó³ Ÿ , º 5(147).. 777Ä786. Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ. ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

EFFECT OF PRECURSOR MICROSTRUCTURE ON MORPHOLOGY FEATURE AND MECHANICAL PROPERTY OF C Mn Si STEEL

Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή

EFFECTS OF Al Al 4 C 3 REFINER AND ULTRASONIC FIELD ON MICROSTRUCTURES OF PURE Mg

ER-Tree (Extended R*-Tree)

CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS I. Experimental Result

ˆŒ œ ƒ ƒ ˆ ˆŸ ˆ Š ˆ 137 Cs Š ˆ Œ.

M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1

EFFECTS OF TEMPERING TEMPERATURE ON THE IMPACT TOUGHNESS OF STEEL 42CrMo

ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ

ˆ ˆ ˆ ˆˆ γ-ˆ ˆŸ ˆ Š Œ ˆ Œ œ Š ˆˆ

p din,j = p tot,j p stat = ρ 2 v2 j,

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

þÿ ÀÌ Ä º± µä À ¹ ¼ ½

MICROSTRUCTURES AND PROPERTIES OF PULSED MIG ARC BRAZED FUSION WELDED JOINT OF Al ALLOY AND GALVANIZED STEEL

ZZ (*) 4l. H γ γ. Covered by LEP GeV

2?nom. Bacc. 2 nom. acc. S <u. >nom. 7acc. acc >nom < <

Base Metal + Alloying Elements

A NEW ONE PARAMETER KINETICS MODEL OF DYNAMIC RECRYSTALLIZATION AND GRAIN SIZE PREDICATION

Déformation et quantification par groupoïde des variétés toriques

ΜΔΛΔΣΖ ΔΝΓΟΣΡΑΥΤΝΖ Δ ΥΑΛΤΒΔ ΘΔΡΜΖ ΔΛΑΖ

Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι. Άρης Παγουρτζής

NUMERICAL SIMULATION OF WELDING RESIDUAL STRESSES IN A MULTI PASS BUTT WELDED JOINT OF AUSTENITIC STAINLESS STEEL USING VARIABLE LENGTH HEAT SOURCE

1 h, , CaCl 2. pelamis) 58.1%, (Headspace solid -phase microextraction and gas chromatography -mass spectrometry,hs -SPME - Vol. 15 No.

P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É.

EFFECTS OF B ON THE MICROSTRUCTURE AND HYDROGEN RESISTANCE PERFORMANCE OF Fe Ni BASE ALLOY

½ Τετραγωνίζω=κατασκευάζωκάτιίσουεμβαδούμεδοθέντετράγωνο. Δείτεκαιτην υποσημείωσηστηνπρότασηβ 14. ¾

* ** *** *** Jun S HIMADA*, Kyoko O HSUMI**, Kazuhiko O HBA*** and Atsushi M ARUYAMA***

P μ,. Œμ α 1,. ²μ ± 1,.. ϱ Î, Ÿ. Ê Í± 2 Œˆ ˆ Œ Š Ÿ Š Ÿ ˆ ˆŒ ˆˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É

S i L L I OUT. i IN =i S. i C. i D + V V OUT

þÿ ɺÁ Ä ÅÂ, ±»Î¼ Neapolis University þÿ Á̳Á±¼¼± ¼Ìù±Â ¹ º à Â, Ç» Ÿ¹º ½ ¼¹ºÎ½ À¹ÃÄ ¼Î½ º±¹ ¹ º à  þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å


Stress Relaxation Test and Constitutive Equation of Saturated Soft Soil

Ανώτερα Μαθηματικά ΙI

Θεωρία Συνόλων. Ενότητα: Τα πάντα σύνολα; Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ

þÿ ¼ ¼± Ä Â ÆÅùº  ÃÄ ½

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

College of Life Science, Dalian Nationalities University, Dalian , PR China.

ˆ Œ ˆ Ÿ ˆ ˆŸ Ÿ - ˆ ˆ Šˆ Š ˆŸˆ

, Litrrow. Maxwell. Helmholtz Fredholm, . 40 Maystre [4 ], Goray [5 ], Kleemann [6 ] PACC: 4210, 4110H

Supporting Information

P ƒ Ê Î 1, 2,.. ƒê μ 1, 3,. ÉÓ±μ 2, O.M.ˆ μ 1,.. Œ É μë μ 1,.. μ μ 1,. ƒ. Ê±μ ± 1,.. ³ 1,.. ±Ê Éμ 1. ˆ ˆ ˆ ˆ Š ˆ Si- ˆ SiC- Š Š ˆ

Ó³ Ÿ , º 7(163).. 798Ä802 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

Ó³ Ÿ , º 7(205) Ä1486 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ³ μ 1, ƒ. μ μë,. μ,. ŠÊ² ±μ,. Œ ² μ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

Georgiou, Styliani. Neapolis University. þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å

HIV HIV HIV HIV AIDS 3 :.1 /-,**1 +332

Š Šˆ ATLAS: ˆ ˆŸ ˆ Šˆ, Œ ˆ Œ ˆ.. ƒê ±μ,. ƒ ² Ï ², ƒ.. Š ± ²,. Œ. Ò,.. ŒÖ²±μ ±,.. Ï Ìμ μ,.. Ê ±μ Î,.. ±μ,. Œ. μ

.. ƒ²μ É, Œ. Œ Ï,. Š. μé ±μ,..,.. ³ μ μ, ƒ.. ÒÌ

MICROSEGREGATION OF SOLUTE ELEMENTS IN SOLIDIFYING MUSHY ZONE OF STEEL AND ITS EFFECT ON LONGITUDINAL SURFACE CRACKS OF CONTINUOUS CASTING STRAND

ƒ Š ˆ Šˆ Š Œˆ Šˆ Š ˆŒ PAMELA ˆ AMS-02

Transcript:

Ð 46 Ð 10 Vol.46 No.10 2010 10 Þ Ð 1153 1160 Ì ACTA METALLURGICA SINICA Oct. 2010 pp.1153 1160 18Mn TRIP Â«É ÓÙÞÔ Â ( «Õ² Û, «100083) Ñ Ò Ê ¼ XRD «EBSD À Æ ³Â «18Mn 100 500 Ð Ä Â ß. Ð Ï, 300 Ï, TRIP,  Ò, Á ; Æ ± ¼, bcc Â Ì Ä ± «, «² ȵº ; ¼«Á Ä Á Í, ÍÀ  ; Ï, À¾  Á {110} {100}. bcc Â Ü ¼ hcp Â. «ß, hcp  Þ. Ê 18Mn,, TRIP,  РРTG111.5, TG142.33 ÄØÒ A Á 0412 1961(2010)10 1153 08 BEHAVIOR OF MARTENSITE REVERSE TRANSFORMA- TION IN 18Mn TRIP STEEL DURING WARM DEFORMATION LU Fayun, YANG Ping, MENG Li, MAO Weimin School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 Correspondent: YANG Ping, professor, Tel: (010)82376968, E-mail: yangp@mater.ustb.edu.cn Supported by National Natural Science Foundation of China (No.50771019) and Specialized Research Fund for the Doctoral Program of Higher Education (No.20090006110013) Manuscript received 2010 06 13, in revised form 2010 08 12 ABSTRACT High manganese steels show significant potential for industrial application due to their remarkable TRIP/TWIP effects at room temperature. The study on the TRIP behavior during warm deformation is important in controlling microstructures and properties of high manganese steels. In this paper, the microstructures, phase structures and reverse transformation of martensites to austenite in a high manganese steel which is composed of two types of martensites and austenite were investigated under warm deformation (100 500 ) by means of the determination of transformation temperature, calculation of phase diagram, microstructure observation, XRD analysis and EBSD orientation imaging technique. Results show that during compression above 300, TRIP effect disappeared and reverse transformation from martensite to austenite was enhanced. The transformation from bcc martensite to austenite was determined to be diffusive and no nucleation of austenite was needed. The warm deformation of austenite leads to the formation of coarse deformation twins and the mechanical stabilization of austenite, which suppressed the subsequent martensitic transformation during quenching. The austenitic grains in which reverse martensitic transformation completed at the latest, show mainly {110} and {100} orientations. In addition, hcp martensite could hardly be detected around bcc martensite, and the transformation of hcp martensite into austenite is regarded to be reversible and diffusionless. KEY WORDS 18Mn steel, warm deformation, TRIP effect, reverse transformation of martensite * Å Î 50771019 ³± Ñ ÀÎ 20090006110013 ¾ Ø : 2010 06 13, Ø : 2010 08 12 «Ð :,, 1985 ±, ± ± DOI: 10.3724/SP.J.1037.2010.00283 Ê TRIP. ¹, TRIP Ë, ¹ ² ¼ TRIP [1] ; ¹, ¹ Ã, È ¹ µô TRIP [2,3]. Ó½

1154 Ð 46 TRIP Ñ ² à ¾Ò Ü M s à ¾Ò Ü M d. Î Ü, TRIP µ ٺر, ± ÎÆ» [4,5]. Ì 2 à ¹, hcp Ã, ; α à Å, ³. Á [6,7] Fe Mn Si ± Ñ ε à ². ÆÖÆ [8 10], 304 ³ ± Ñ Ã 400 Ð ²Ã., ß ¹ à Á. Á à ¼ TRIP µ 18Mn 100 500 ¹, È ¹ Ü Ý Ü; ε α à ; TRIP ± ±, Ò ; ¹ Ò». 1 Ï Ê 18Mn, Ù ( À, %) : Fe 17.48Mn 0.0045C 3.04Si 1.80Al 0.0058S. Ù Ö 1050, 0.5 h Á Þ, ¾ Þ Ü 1050, ²Þ Ü 800, ÞÁ. «ÁÙ 18Mn ÆÐ 6 mm, 10 mm Ú½ Ç, 1100 1 h ÁÁË. Á, 100 500 ºÅ. CMT4305 Ô Ù Å, 10% 30%, Ç 10 2 s 1. Gleeble 1500 10 /s Ç 100, 300 500 Á 10%, 20%, 30% Á, ÁË, Ç 10 2 s 1. ÈÚ½ÇÔ Í½ Å. º ËÊ DIL805A È ± Ò. D/MAX RB Æ X à (XRD) Ç Ô± Å; «È D5000 X à ÇÔ Å. Thermo Cal ¾ Ë Ó. 5%( À) É ÍÔĐ ¾Á, Leo 1450 Zeiss SUPRA 55 ÎÔÆ (SEM) HKL Channel 5 Ô Ã (EBSD) ß ÇÔ Å. 2 2.1 18Mn Ú Ä, É ØÙ Ò. Ó 1a 18Mn 1100 Á ËÁ. ÕÌ Ã, Ò±Å Æ hcp Ã, ÍÝÐÆ bcc Ã, ÑÚ. Ó 1b 30% Á, Õà Ð, Ã. EBSD ÔØ 3 Ì S N» {111} γ /{0001}ε, 1 10 / 11 20 ε Burgers» {0001} ε /{110} α, 11 20 ε / 1 11 α, Ú³ K S» [11]. 2.2 ÅÃÌÇÍ ÅĐ Û Ó ÜÁ ( ³ Ü), Æ É Đ Å. Ø 18Mn ¹ Ò Ë Õ Ó, ÕÓ 2 Ó 3. Ó 2 ÞÁ ÇÔ» ¹. Õ 150 200 ¹, ÇÔ ², ß Ô bcc Ã Í Å ; 600 700 ², ß Ã Í Å. ¹, Ç ÅÒ, Ý 1 18Mn Æ Fig.1 Microstructures of 18Mn steel at room temperature Relative length change (a) undeformed (b) compressed by 30% 0.025 0.020 0.015 0.010 0.005 0.000 1 Heating 0 200 400 600 800 1000 Temperature, o C 2 18Mn ³Ú Í Ä 2 Cooling Fig.2 Length change of 18Mn steel during heating and cooling (heating at 10 /s and cooling at 5 /s)

Ð 10 ß : 18Mn TRIP ¾ Á Þ 1155 Temperature, o C 1600 1400 1200 1000 800 600 bcc bcc+liquid bcc+fcc+liquid fcc+liquid fcc bcc+fcc bcc+cementite Liquid 400 bcc+m 5 C 2 bcc+cementite bcc+fcc+m 5 C 2 bcc+fcc+cementite 200 0 2 4 6 8 10 12 14 16 18 20 Mass fraction of Mn, % 3» Termo Calc Ê 18Mn Ò Fig.3 Phase diagram of 18Mn steel calculated by Termo Calc 600 ÑÅ, ² Å, ß hcp Ã Đ α Ã, ½ Ã, α Ã È hcp à ±² (Ó 1). ¹ Ó, ¹ hcp à ¹ ( Ò À Ë), Đ α à ¹Ì, Õ, Î ÜÛ ºØ, Æ ³ ½. ¹, Ô Ï, hcp Ã ß α Ã Í Å, ¼. 600 α à ŠÁ, «³ à Ò. Ó 3 ¾ Thermo Calc Ë 18Mn Õ Ó. Õ, 18Mn 700 ¾Â bcc, Å,  C, Mn 20% ¹, ³ Ø, 18Mn. Ó 3 Æ, 500 ³ Ø, Å Â, º, Å, ÂÀ³. ¹ 100 500 ¹, Ì Ã Í Å, Å Þ. 2.3 Å Î Ü Ã ËÅ È Ó 4a  18Mn ³ Ü Á Ø. Õ, Ì ε α à Ð, Ù±» (A); 30% Á (B ), Ó, α à Ç, Ï α à ; 18Mn 100, 300 500 30% Á,, α à Ó, (C, D E). 500 Á,», {110} γ à ÞÝ, Ø (E). Â, Þ Ü, Ã, TRIP µ Ó, Þ Ü ²Ã Intensity a.u. True stress, MPa (a) (100)hcp (111)fcc 1200 1000 (110)bcc (101)hcp (200)fcc (102)hcp (200)bcc (220)fcc (211)bcc (311)fcc (222)fcc E D B A 40 50 60 70 80 90 100 2, deg 800 600 400 200 (b) 0 0.00 0.05 0.10 0.15 0.20 0.25 0.30 True strain 4 18Mn XRD Ö Æ ½ Æ Fig.4 XRD patterns (a) and true stress true strain curves (b) of 18Mn steel (A undeformed at room temperature; B compressed by 30% at room temperature; C compressed by 30% at 100 ; D compressed by 30% at 300 ; E compressed by 30% at 500 ). Ó 4b 18Mn ³ Ü ¾. Õ, Î Ü, 18Mn ÝÜ Å Û, Å ß, Ü, à Ó, TRIP µ ºØ±. 2.4 Å Î Üà ÖÀ Ë Ó 5  18Mn ³ Ü 30% Á. Õ, 100 30% ¹, à ÐÀ, Á ³ ; 300 ¹, à Ó, Ç TRIP µ, Â Þ Ü Ç Ã ; 500 30% Á, à ΠÓ, Ø ±, Æ α M Ì. Ó 5, α M ÝÙ³ ε (Ó 5c ±Ö ) Î. Æ Â, ¹, hcp à Ù. Ó 3, 500 fcc bcc Đ, ³É Î, bcc Ì, Ã É ÈÊÃ Í Å. C E D C B

1156 Ð 46 5 18Mn ² ÛÆ Ï 30% À Fig.5 Microstructures of 18Mn steel compressed by 30% at 100 (a), 300 (b) and 500 (c) Ó 6 18Mn 300, 400 500 30 min Á, ÁË Æ. ÇÔ, à Ð. Ó 6a 300 Á, α M, Ù³ à ± ²Ñ È Ê, Æ Ç Å. Ó 6b, 400 Á, ±Â Þ ÐÆ à (Ö ), à ÈÊÃ Í Å. Ó 6c, 500 Á, ± ÈÊÃ Í Å ± ( Ö ), ±Æ Þв α M( Ö ), ±» ĐÇÃ, 500 ¹, à ², ÈÊÃ Í Å, ±Ò» Ã, پà Æ. Â, 18Mn 300 ¹, à ² ; 300 Ñ, Ç ¼ ²Ã, 500 ². ¹, Ó Ì, 6 18Mn ² Û Fig.6 Microstructures of 18Mn steel heated for 30 min at 300 (a), 400 (b) and 500 (c) Á³É» à ; Á, ±Â Ã. Æ ±, Ê Ã ; ¹, ± Ì Ò Ã. 2.5 Õ ßÆ Ã Ñ Ã ÒÕ [12]. Ó 7 300 30% EBSD. Ó 7a, ż± µ е ÃÐÆ Þ α M. È α M Ó (Ó 7b c) Â, ż Ø {110}, µ {100} {111} 6 α M, Ù± {100} α M ¹Þ Ø, Ù ² Ù. α M Þ Ä,.  α M Ù³ à ± ³

l 10 s ~7 18Mn {g : 18Mn TRIP 27B#I8`b 5z 300 1157 EW 3 30% e EBSD? Fig.7 EBSD orientation maps of 18Mn steel compressed by 30% at 300 (a) orientation map (grey denotes α M, red denotes ε M, other colors denote austenite) (b) pole figures of austenite (c) pole figures of α M f, ~' 7 4 I+ 9 D %* /4 f. 18Mn 300 4 -, x (, 6W ` (, γ α M 8 $^, P~ & α γ f8, $ k+ :b 0%3>"6 α M. o 8 18Mn 500 F X 30% I f EBSD!, q α M b k T C } EBSD M, J X U e C Z. o 1a < B, " α bb f [ ue 7 ε M, v 7 s Z i f :b!,.o 5c 1 8f ~6. < r, 1 8 ZFVf 4 G (o 8b % f O G, o 8c [ oh ), 7 < 4 -~ 1 8 f. G _ k " 6 f hcp K :b (q o 8b % f G & n), G * i f {111}[ 7 hcp K :b {0001}f. N r, " K :b b 4 N Z b O k, Z E o emb (U PRK :b). z f :b _ f! M Z o z g f K :b, J X 4 / Q & :b _. $ > Z 6 α M f :b j Miller H! (Z y 7 {103}), s u G / f {110}! :b _O k K :b T. = ; _ / Q k 1! hcp K :b b; k 4 ( α M b (o 8b? e), " {100}, {111}? 2 ( H!, jo * K :b7 u + - 4 f, ~8? 18Mn 500 EW 30% He va \ EBSD Fig.8 Microstructure and EBSD orientation maps of 18Mn steel compressed by 30% at 500 (a) microstructure of the steel (b) orientation map (red denotes ε M, grey denotes α M, other colors denote austenite, yellow lines denote twin boundaries) (c) pole figures of austenite (d) pole figures of ε M (e) pole figures of α M - k% + f _. P o 8b % } X &, ~!', ~ α M! :bf8 7& 9D!f&>9D, ~Ok/ :bf4=. α M

D o 9 18Mn 500 F X 30% I< V t f!, U ST CZf EBSD M (q o 9b), J X e C Z. o 9b E x :b 0 K {123}!, _ + K :b C "; l x K {317}! f 1158 ~9 500 EW 30% He va \ EBSD? G 18Mn Fig.9 Microstructure and EBSD orientation maps of 18Mn steel compressed by 30% at 500 (a) microstructure (b) orientation map (red denotes ε M, blue denotes α M, other colors denote austenite) (c) pole figures of austenite (d) pole figures of ε M (e) pole figures of α M l 46 :b _K :b z } (o 9b? e), D ^ % +. [13] b S! X, {100}! f :b Fe 2 f G i _ 4 K:b. " d5`f7, sk:b Vvf : b ({223}) 7u :b ({317}) Z fg!, JXu j :b8 α M -G&f*Q8, -S7d8 fu :b!.! EBSD! %, vo k18 VY!f&i- :b, 4 f :bsuz :b 9 b 'Z, N Æ O k J 4 =9 D, ~ 7 J 9K:bUeMbfd!&>. Po 9e f[oh J, T 4 ( α M!, 2 ( {110}? 2 ( {100}. \ 2! EBSD H v! X, α K :b,y J Z 6 M, JX M4 6CZ, [Q7 hcp K:bN7d8 f :bk\ V*. H*Æ, hcp K:b! :b f 8 7 d f$ 7 d z", α K :b! hcp K :bu :b8 7' d f, ^& 9D!f. o 10! 5 9 18Mn ~ 4? 4 I f, L 9D. jo 18Mn u2. Op%7 :b, α M? ε M * T, N ^ \i X # 5 6F1,. o 10a ~ 10 18Mn } 3> 3 H 9a ( Fig.10 Austenitic orientation distribution in undeformed and warmly deformed 18Mn steel (a) austenite orientations in undeformed 18Mn, inverse pole figures (level max=1.2) (b) macrotexture of austenite after compresed at 500 by 30%, ODF φ2 =45 (c) orientations of austenite in 18Mn steel compressed at 500 by 30% inverse pole figures (level max=2.0)

Ð 10 ß : 18Mn TRIP ¾ Á Þ 1159 EBSD Ò Ø, 230 ż., Ù¾ 18Mn ± µ ÞÎ, Þ. 500 30% Á, Ï, Ã, Æ X à fcc, Ó 10b. Õ, Þ² ² Ø {110}, Æ Þ {113}, {110} Å. 500 ½ ÞÉ Å, È {110}. 18Mn 500 Á, Æ Å¼± Ã, ß Ç Å¼, Ù 10c. Õ, 500 Á à żÐß {110} {100}, {110} ÞÐ, ¹ Ø Î. Ù¾ ¹ Þ, 500, Ü, Ï, TRIP µ, ²Ã. ±»É ²Ã Æ ², ƹ ºØ {110} Ù, {100} ± ² ². ÜÍ Å, α M à ² ½, à ºØ Õ ²Í± ; ÈÙ {110} Å ÞÐ, ³ ² ÍÛ, È {110} ±Ã ³. 3 ÝÑ TRIP Á [8 16], Î ÜÍÇ ³, ß, Ë ², Ç ºÓß ½. Á, ºÅ 3 Ò³ : Î ßÓ Á ¹ Ã, Á ß. Đ ßÓ Á Î Ã, ε γ Í α γ, Á 2 Ã Ì ¹,» ± ε Ã. 18Mn ±, ¹ α È ε ±, ½ ε à ; ¹, Þ ½ ε Ã, ÙÙ ¹ ε Ã Þ ; Í ε à Þ, ¹ ², EBSD Å Ò, Ø. ¹ Ì Ï. ¼ Ø 18Mn ± α γ ² ½. ̫à ÌÜ ², Þ Â ε Ã, ½ Á [6,7], ε Ã, ß ³ Ü ÇÔ,  ßà 3 Í : (1) É ² Å, ßß ½ ³º ; Ó ÜÞ, Ï, à Ð, ß ½. Þ Ü (300 ) ¹, bcc à ß, hcp à ¾Ü ÐÀ. Ê ² ½, ¹, 500 à º Ó. ½Ã Ó Ü 500 Û 300. (2) Á ¹ à ; ß 30 min Á, É ²» à (Ó 6). µ Î ßËʳ Ã È TRIP Ü ³. ĐØ, Ø,, ½ ¹ TRIP, Ñ È. (3) Ç ¹, ² ¼ Î Å. 18Mn Ï, ÜÌ Ï, ½ hcp à ÇÜ Ó Å ÇÜ; TRIP ±, Ì«Ó Å, Î ² à Â. Ü Á, ¹Îà ±, à ¼, ²³Đ Ã, ² ¾ Û,»É. Î Å Ë Î Ü Å. Î Å Í Å Mn TWIP (25 30Mn) ¹Ë Ç ½, Æ Ù ± ÔÊ Å» ³ Ã. ÅÆ, ÜÁ ¾Ü, Î ε Ã, µ γ ßßÄ α à ß, ½ ÁË ¹, α à ڳ È ßÅÂ, ε à ; Æ, µ α à ², Â Ê ² ½. 4 Ñ (1) Â, 18Mn 5 /s ¹ Ý 600 ² γ ε α Ã, Ò ²ÐÛ Å, ¹ 200 ² Ô bcc Ã Í Å, 600 ¹Â Å Í (ÈÊ) Ã, ² ¼ Å, α à ² ½. (2) γ, ε α Ì Ù¾, 100 ¹ TRIP µ ; 300 ¹, TRIP µ ±, à Ó. ² Å Ç ² ½ α /α γ, α ε Á ¹ γ ε α à ; ½ ² ¾Î Ü Û, à Ó,  ΠÅ. (3) Ã»É ε à ÈÙ, α à ÈÊÃ Í Å ÁĐ ² Ù, ³». ¹ Ï ³ ¼. 500 30% Á, Á α»é

1160 Ð 46 ¹ Ø {110}, ÙÇ {100},. ¹ ¹ Ö³ Ü Ý ¾ Ê Ò. Æ [1] Zhang F C, Lei T Q. Wear, 1997; 212: 195 [2] Grässel O, Krüger L, Frommeyer G, Meyer L W. Int J Plast, 2000; 16: 1391 [3] Frommeryer G, Brüx U, Neumann P. ISIJ Int, 2003; 43: 438 [4] Curtze S, Kuokkala V T, Hokka M, Peura P. Mater Sci Eng, 2009; A507: 124 [5] Byun T S, Hashimoto N, Farrell K. Acta Mater, 2004; 52: 3889 [6] Sawaguchi T, Bujoreanu L G, Kikuchi T, Ogawa K, Koyamaa M, Murakamic M. Scr Mater, 2008; 59: 826 [7] Bergeon N, Guenin G, Esnouf C. Mater Sci Eng, 1998; A242: 87 [8] Stalder M, Vogel S, Bourke M A M, Maldonado J G, Thoma D J, Yuan V W. Mater Sci Eng, 2000; A280: 270 [9] Gauzzi F, Montanari R, Principi G, Tata M E. Mater Sci Eng, 2006; A438 440: 202 [10] Tavares S S M, Fruchart D, Miraglia S. J Alloys Compd, 2000; 307: 311 [11] Kundu S, Bhadeshia H K D H. Scr Mater, 2007; 57: 869 [12] Kitahara H, Ueji R, Tsuji N, Minamino Y. Acta Mater, 2006; 54: 1279 [13] Zhang M X, Kelly P M, Gates J D. Mater Sci Eng, 1999; A273 275: 251 [14] Gauzzi F, Montanari R. Mater Sci Eng, 1999; A273 275: 524 [15] Lee Se J, Park Y M, Lee Y K. Mater Sci Eng, 2009; A515: 32 [16] Leem D S, Lee Y D, Jun J H, Choi C S. Scr Mater, 2001; 45: 767