MICROSTRUCTURES AND PROPERTIES OF PULSED MIG ARC BRAZED FUSION WELDED JOINT OF Al ALLOY AND GALVANIZED STEEL

Σχετικά έγγραφα
ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

STUDY ON CYCLIC OXIDATION RESISTANCE OF HIGH NIOBIUM CONTAINING TiAl BASE ALLOY WITH ERBIUM


RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti 45Al 8Nb ALLOY


2011 Đ 3 Ñ ACTA METALLURGICA SINICA Mar pp

NUMERICAL SIMULATION OF KEYHOLE SHAPE AND TRANSFORMATION FROM PARTIAL TO OPEN STATES IN PLASMA ARC WELDING

Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

1-6 Ð Ï Te (mass%) 0% 0.3% 0.5% 0.8% 1.0% 2.0% 2 Î 1 6

EFFECT OF WELDING PROCESSING PARAMETERS ON POROSITY FORMATION OF MILD STEEL TREATED BY CO 2 LASER DEEP PENETRATION WELDING

CORROSION BEHAVIOR OF X70 PIPELINE STEEL IN SIMULATED KU ERLE SOIL SOLUTION WITH CO 2

EFFECT OF HIGH MAGNETIC FIELD ON THE TRANSI- TION BEHAVIOR OF Cu RICH PARTICLES IN Cu 80%Pb HYPERMONOTECTIC ALLOY

Delta Inconel 718 δ» ¼

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

FRACTURE TOUGHNESS OF WELDED JOINTS OF X100 HIGH STRENGTH PIPELINE STEEL

ØSrÚCa Mg 12Zn 4Al 0.3MnÜ

MICROSTRUCTURE EVOLUTION OF HYPEREUTEC- TOID STEELS DURING WARM DEFORMATION II. Cementite Spheroidization and Effects of Al

UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库

THE MICRO FABRICATING PROCESS AND ELECTRO- MAGNETIC PROPERTIES OF TWO KINDS OF Fe POWDERS WITH DIFFERENT GRAIN SIZES AND INTERNAL STRAINS

PHOTOCATALYTIC PROPERTIES OF TiO 2 THIN FILMS PREPARED BY MICROARC OXIDATION AND DOPING ELECTROLYTES

SYNTHESIS OF PLASTIC Zr BASED BULK METALLIC GLASS WITH CRYSTAL PHASE BY DIRECTIONAL SOLIDIFICATION

MICROSTRUCTURE AND MECHANICAL PROPERTIES OF 1500 MPa GRADE ULTRA HIGH STRENGTH LOW ALLOY STEEL

MICROSTRUCTURE STABILITY IN A FULLY LAMELLAR HIGH Nb TiAl ALLOY AFTER LONG TERM THERMAL CYCLING

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

P Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ. ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25

Preparation of Hydroxyapatite Coatings on Enamel by Electrochemical Technique

INFLUENCES OF PHASE PRECIPITATIONS OF TERNARY β Ti Mo Zr(Sn) ALLOYS ON YOUNG S MODULUS AND MECHANICAL PROPERTIES

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

High order interpolation function for surface contact problem

M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1

Abstract: JFE JFE SA440. TiN B FL. 100 mm

FRICTION AND WEAR PROPERTIES OF SURFACE PLASMA Cr W ALLOYING LAYER OF γ TiAl ALLOY

EFFECT OF HAFNIUM CONTENT ON MORPHOLOGY EVOLUTION OF γ PRECIPITATES IN P/M Ni BASED SUPERALLOY

2 SFI

p din,j = p tot,j p stat = ρ 2 v2 j,

Ανώτερα Μαθηματικά ΙI

EFFECTS OF B ON THE MICROSTRUCTURE AND HYDROGEN RESISTANCE PERFORMANCE OF Fe Ni BASE ALLOY

EFFECTS OF TEMPERING TEMPERATURE ON THE IMPACT TOUGHNESS OF STEEL 42CrMo

Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή

CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS I. Experimental Result

A NEW ONE PARAMETER KINETICS MODEL OF DYNAMIC RECRYSTALLIZATION AND GRAIN SIZE PREDICATION

Š Ÿ Š Ÿ Ÿ ˆ Œ ˆŠ -280

NUMERICAL SIMULATION OF WELDING RESIDUAL STRESSES IN A MULTI PASS BUTT WELDED JOINT OF AUSTENITIC STAINLESS STEEL USING VARIABLE LENGTH HEAT SOURCE

ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

CHARACTERISTIC BEHAVIORS OF PARTICLE PHASES IN NiCrBSi TiC COMPOSITE COATING BY LASER CLADDING ASSISTED BY MECHANICAL VIBRATION

v w = v = pr w v = v cos(v,w) = v w

BEHAVIOUR AND MECHANISM OF STRAIN HARDEN- ING FOR DUAL PHASE STEEL DP1180 UNDER HIGH STRAIN RATE DEFORMATION

EFFECTS OF TEMPERATURE GRADIENT ON LAMEL- LAR ORIENTATIONS OF DIRECTIONAL SOLIDIFIED TiAl BASED ALLOY

Effects of Retained Austenite Characteristics on Delayed Fracture Properties of Ultra High-Strength TBF Steels

Ó³ Ÿ , º 7(163).. 855Ä862 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ƒ. ² ͱ 1,.. μ μ Íμ,.. μ²ö,.. ƒ² μ,.. ² É,.. ³ μ μ, ƒ.. Š ³ÒÏ,.. Œμ μ μ,. Œ.

½ Τετραγωνίζω=κατασκευάζωκάτιίσουεμβαδούμεδοθέντετράγωνο. Δείτεκαιτην υποσημείωσηστηνπρότασηβ 14. ¾

Θεωρία Συνόλων. Ενότητα: Επιλογής επόμενα. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

Μαθηματικά ΙΙΙ. Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 10: Μέθοδος Ελάχιστων Τετραγώνων. Αθανάσιος Μπράτσος. Τμήμα Μηχανικών Ενεργειακής Τεχνολογίας ΤΕ

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

P Œ ²μ, ƒ.. μ ±μ,. ˆ. ˆ μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. ³ É. ˆŒ ˆ Š ƒ Œ ˆ Ÿ ˆŸ 238 Uˆ 237 U, Œ ƒ Ÿ Š ˆˆ 238 U(γ,n) 237 U.

.. ƒ²μ É, Œ. Œ Ï,. Š. μé ±μ,..,.. ³ μ μ, ƒ.. ÒÌ

AN RFID INDOOR LOCATION ALGORITHM BASED ON FUZZY NEURAL NETWORK MODEL. J. Sys. Sci. & Math. Scis. 34(12) (2014, 12),

MODEL RESEARCH BASED ON LIQUID/SOLID TWO PHANSE FLOWS IN METALLURGY STIRRED TUBULAR REACTOR

EFFECTS OF Al Al 4 C 3 REFINER AND ULTRASONIC FIELD ON MICROSTRUCTURES OF PURE Mg

EXPERIMENTAL RESEARCH ON MELTING SURFACE BEHAVIOR IN MOLD UNDER COMPOUND MAGNETIC FIELD

BEHAVIOR OF MARTENSITE REVERSE TRANSFORMA- TION IN 18Mn TRIP STEEL DURING WARM DEFORMATION

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

ER-Tree (Extended R*-Tree)

WAFER LEVEL ELECTRODEPOSION OF Fe Ni NOVEL UBM FILMS

, Litrrow. Maxwell. Helmholtz Fredholm, . 40 Maystre [4 ], Goray [5 ], Kleemann [6 ] PACC: 4210, 4110H

2 PbO 2. Pb 3 O 4 Sn. Ti/SnO 2 -Sb 2 O 4 -CF/PbO x SnO 2 -Sb PbO 2. Sn-Sb 1:1. 1 h. Sn:Sb=10:1. PbO 2 - CeO 2 PbO 2. [8] SnO 2 +Sb 2 O 4 _

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A

Œ.. ² μ,.. Œ ²μ, ƒ.. μ ±μ,. Ô Ô ², Œ.. ƒê Éμ, Œ.. Œ ² μ *

Ó³ Ÿ , º 7(163).. 798Ä802 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

Διπλωματική Εργασία. Μελέτη των μηχανικών ιδιοτήτων των stents που χρησιμοποιούνται στην Ιατρική. Αντωνίου Φάνης

P ƒ.. Š ³ÒÏ,.. Š ³ÒÏ,.. ± ˆ ŒˆŠˆ Š ˆŠ

College of Life Science, Dalian Nationalities University, Dalian , PR China.

P ƒ Ê Î 1, 2,.. ƒê μ 1, 3,. ÉÓ±μ 2, O.M.ˆ μ 1,.. Œ É μë μ 1,.. μ μ 1,. ƒ. Ê±μ ± 1,.. ³ 1,.. ±Ê Éμ 1. ˆ ˆ ˆ ˆ Š ˆ Si- ˆ SiC- Š Š ˆ

48 12 Ö Vol.48 No ACTA METALLURGICA SINICA Dec pp Î µ TG142.1, Á A Ì µ (2012)

S i L L I OUT. i IN =i S. i C. i D + V V OUT

1 h, , CaCl 2. pelamis) 58.1%, (Headspace solid -phase microextraction and gas chromatography -mass spectrometry,hs -SPME - Vol. 15 No.

Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι. Άρης Παγουρτζής

Supporting Information. Enhanced energy storage density and high efficiency of lead-free

P ² Ì μ Š ˆ Œˆ Š Œ Œˆ. ² μ Ê ² Nuclear Instruments and Methods in Physics Research.

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

Σπανό Ιωάννη Α.Μ. 148

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

VSC STEADY2STATE MOD EL AND ITS NONL INEAR CONTROL OF VSC2HVDC SYSTEM VSC (1. , ; 2. , )

49 Ö 6 Đ Vol.49 No ACTA METALLURGICA SINICA Jun pp

Ó³ Ÿ , º 7(163).. 793Ä797 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

ˆ ˆ ˆ ˆˆ γ-ˆ ˆŸ ˆ Š Œ ˆ Œ œ Š ˆˆ

EFFECT OF LOADING MODES ON MECHANICAL PROPERTY AND STRAIN INDUCED MARTENSITE TRANSFORMATION OF AUSTENITIC STAINLESS STEELS

STRUCTURE AND MAGNETIC BEHAVIOR OF Zn 1 x Co x O CRYSTAL POWDERS PREPARED BY SOL GEL TECHNIQUE

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.

Ó³ Ÿ , º 4Ä5(174Ä175).. 629Ä634 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ,.. μ, Š.. ±μ. Î ± É ÉÊÉ ³..., Œμ ±

Σανπρώτοπαράδειγμαχρήσ εωςτης ÉÈ ÒØ Öπαρουσ ιάζεταιέναπαράδειγμασ χεδιασ μούκύκλωνμέσ ασ εένακεντρικόπαράθυροº

Micro arc Oxidation Technique for Aluminum and its Alloys

Λιμνοποτάμιο Περιβάλλον και Οργανισμοί

P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É.

SYNTHESIS KINETICS OF (Y, Gd) 2 O 3 Eu 3+ NANO POWDERS DURING PROCESS OF PREPARATION

ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ

Transcript:

Ü 48 ½ Ü 8 Vol.48 No.8 1 8 Ü 118 14 ACTA METALLURGICA SINICA Aug. 1 pp.118 14 Ü / Ô MIG Ý ÙÐ ³» ¼ ( Ê Þ¾ÅÆ ÝÌ, Û 561)»Ð Ë Å MIG ÃÓ, Õ ER443 ÃÖ Â¹, Í Î 613 T4 Ì ÅÅ ÅÖ¾ Ã, ÎÃ Æ Æ ºÉ ÖÞ¼., ¾ à ƾ Ã Ã¾Ë Zn Ö α É Fe 3 Ö Zn ; Ã Ô Ö Fe Ì 1.5 4.5 µm, Ã Ö ß. Fe Ì»  à ĐÄ, Fe, Fe 5 É Fe 4 13. Åà Ö, ¾ à ÆÖ, 85 J/cm Ö ² Ò 9 MPa, Á Ì Ã Þ¼ Ä, Þ¹  ; Ã Ê Æ Ã Ô, Â. Ö ¾ Ã, Ú ¹ Ç, Å MIG Ã, ºÅÂ, Ì µ ÑÓ Û TG457.1 «A ± Û 41 1961(1)8 118 7 MICROSTRUCTURES AND PROPERTIES OF PULSED MIG ARC BRAZED FUSION WELDED JOINT OF ALLOY AND GALVANIZED STEEL QIN Guoliang, SU Yuhu, WANG Shujun Key Laboratory for Liquid Solid Structure Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 561 Correspondent: QIN Guoliang, associate professor, Tel: (531)88395897, E-mail: glqin@sdu.edu.cn Supported by National Natural Science Foundation of China (No.59599) and Specialized Research Fund for the Doctoral Program of Higher Education (No.913117) Manuscript received 1 6, in revised form 1 5 1 ABSTRACT Because there are great differences in physicochemical properties and mechanical properties between alloy and steel, their joining with high quality and high efficiency is one of difficult problems in study of welding technology. According to their difference in melting point, the brazing fusion welding technology of alloy to steel was developed based on MIG welding. In pulsed MIG arc brazing fusion welding process, the molten filler metal and alloy base metal will form the fusion welded joint, and will form the brazed joint together with unmelted steel plate, which can efficiently prevent the intermetallic compounds (IMCs) from the formation. With the digital pulsed MIG arc welding machine, the brazing fusion welding of 613 T4 alloy plate to galvanized steel plate was realized with the filler metal of ER443, and the effect of welding heat input on microstructures and properties of the joint was studied. The results showed that there is a zinc rich zone in the weld toe of fusion weld in the brazed fusion welded joint, which is composed of Zn eutectic, rich α solid solutions and Fe 3. Fe IMCs layer on the brazed interface is 1.5 4.5 µm in thickness and become thicker with the welding heat input being increased. Fe IMCs with sawtooth or tongue shape growtowards the weld, which mainly includes Fe, Fe 5 and Fe 4 13. With the welding heat input * Ýɵ ËÑ ¾Þ 59599 É«µ ÞÑ ÇÁ¾Þ 913117 ÇÁ ÒǺ» : 1 6, ÒÄ º» : 1 5 1 : Ë, Ð, 1975 Ä, «, DOI: 1.374/SP.J.137.1.46

Ü 8 ÊØ : Ë / Ä MIG Ð ½ ÂÆ Ϲ Á 119 being increased, the tensile strength of the brazed fusion welded joint firstly increases and then decreases. At the welding heat input of 85 J/cm, the tensile strength of the brazed fusion welded joint can be up to 9 MPa and the ductile fracture appears in the HAZ of alloy. At the lower welding heat input, the brittle fracture easily occurs. KEY WORDS brazing fusion welding, welding of dissimilar metal, pulsed MIG welding, microstructure and property, intermetallic compound Ù Í «Í ÍÏ Á ÌÊÔÃ, ¹ Ǻ Ú Ê Ù Õ Đ, Ï É Å Å ÙÀ ¹ Ý ±. Í / Í ¼ È Ú. Î Ð Ð ÙÔÈ ¹ Ú Õ Ù Í., «Á ÌÃ, Ú, ÏÕ Ä Ã, ³ Ù Fe Đ Í, ÚÏ ÆÌà ÊÏ Ã. Ï ½ Fe Đ Í Å, µ ¼ Û Ä Ä Ä Ä ĐÎÄ Ã ÄÙ ĐÈ Î Ï Í / È [1 8]. ĐÈ Ö ÕÓÃ ÌÆ, Ñ ¹Ã, ± Ñ ³¹ Đ. Ü, Ù Í «Û ¹ Đ ÊÚ Ä Ú Í / Í Ý Æ Å. Ä Ú Ã Ä Í «ß Û, ÀÄ Ä Ï¹ ß Ú ß Í, Ã Í Ä «Í ݺ Ä, Ñ «Ä, Ä À ¹ ÄÊ Ä Ñ Ã [9]. Í «Ä MIG Đ [1 13] TIG Đ [14,15] Ö [16 19] ĐÈ [] ÖÙÖ + Đ Í [1] Ù. MIG ÄÊ TIG Ä ß Ý Ú Ä Ø. MIG Ä Đ Ã Í É Ù Í, Ý Í / «Ä Ù Ä À Ù Í. TIG Đ Í É MIG Đ, Å, Ä Ø Ú MIG Ä. Ï MIG Đ Í É, Ä Đ Éµ, ÏÚ CMT (cold metal transfer) Ä Ø []. CMT Ä Ø ÖÎ Í Æ«««Ä [13], Ü Ú, Ä Ú, Ö ÍÐ Ä Å. Ì ß MIG Ä Đ µ Ú, ¼ Ä º ʼ³, ± ½ Ù Ý Ê Ä Đ ÊĐ ĐÏ, Î Ñ» ÆÀÅÑ» Û ÛÀÅÙ, Ü Ö ¹Ä À Ã, Î Đ Í É. ¼ Ì Æ MIG Ä (pulsed MIG welding, P MIG) ± Î Ï 613 T4 Í ««È, µï仫ã ß½. 1 ÞÒÐ Î Í Ýº 613 T4 Í, Á mm 5 mm 1 mm; «Ýº SGCC «, Á mm 5 mm mm; ú ¼³ 1. mm ER443(Si5) Í Ä, Ä Ê Í Ýº Ì 1. Î Ä ± Ì MIG ÄÔÙ Ù ±, ¼ ÆÄ Ù, ÛÀÅ«1 drop/pulse. Ù Ý Ä Đ ÊĐ ĐÏ, À Ù Ý Ä Đ, «Ä Ý Ñ Ä, µ Í Ýº «, Í ««Ä. Ä Í «Ê «Í ««³ 1 mm. Î, Ä Å Í º.6 mm, Î Ä Ø¾. Î Õ Ä ³, Ä» ² (OM) X º Ó (XRD) ÖĐ² (SEM) Ù ² Ó (EDS)»Ù ², Ä ÂÎ Ð Æ ÌÃ. 1 Í Ð Ì Ü¹ÉÃÖÖ Ë Table 1 Compositions of 613 T4 alloy and ER443 welding wire (mass fraction, %) Material Cu Si Fe Mg Mn Cr Zn Ti 613 T4.6 1.1.6 1..8.8 1..7.8.1.5.35 Bal. ER443.3 4.5 6..8.5.5.1. Bal.

1 É Ü 48 ½ P MIG ¾ Ã Í ½ Table P MIG arc brazing fusion welding parameters Test U, V I, A v w, m/min v, m/min E, J/cm No.1 16.5 4..6 66 No. 16.6 45..6 747 No.3 16.5 4..5 79 No.4 17.4 57.7.7 85 No.5 16.5 4..4 99 No.6 16.5 4..3 13 1 Ì / ž Ã Æ Ñ Fig.1 Morphology of brazed fusion welded joint of alloy and galvanized steel Note: U arc voltage, I welding current, v w wire feeding rate, v welding speed, E welding heat input Đ Í / «Ä Ä Ê Ä, 1.,» «, Å..1 Ú Í / «Ä «± SEM., Ä Í Ä Ù,» Si α, α Ì ²Æ Í Ú Si», a ñ ; ͱ Àà ¼ ͺ Ä Å, Å ( b). Í «P MIG Đ Ä, Ä Ä Ì Ñ» Zn ± ( 1),» Ò 3. Zn ± É P MIG Đ Ä À, Đ Ó ¼Ä Gauss ², Đ» Ú, ÖÐĐ ÆÚ, Ä Ì Ï Zn ±. Ï ³±», À EDS «, 3. ½ Zn Í» [3] Ê EDS, Zn ± À, µ Zn α, 3 1 Ì Î. ÐÆ Ú, α ѳ. ««Ë, Í Si α, Si, Ð «Zn Zn», 3 Ì, 3 Ì Zn». 3 4 Ì EDS, Zn ±«Ò Đ Ñ Æ Fe Í, ³ Fe Í Fe 3 Đ Í Ù Fe Zn», Á. Ä À ÜÐĐ Zn Ú, È ¼ «Đ», À³ÐĐÚ Ò, Ì Ú, Ý. Ü, Zn ± Ó Ò., Zn Ñ Ó Ò È Ü Ñ. ¾Ã Æ Å Ö SEM Fig. SEM images of weld zone (a) and fusion zone (b) in fusion welded joint of alloy 3 1 ¾Ã ÆÃ¾Ë Zn Ö SEM Fig.3 SEM image of zinc rich zone at weld toe of fusion welded joint in Fig.1. Ø ² ÕÓ Í / «Ä À, Ä Õ ÆÖ Ê Fe È Ê Ý, Ï

x8!drt : `S / A* gl MIG }`1 JÆ W- I 11 m s Fe g fu"6. 4 L,d9 d9' L q g fu" 6s SEM 4. ;, }N L,d9s f, g fu"6s ug M E=99 J/cm ' L q& xq &. ; *, L q T MWr Fe, R Si 3? x F s W f. l E=66 J/cm S, g fu" C H K xb=, Si q $ts,7, Fe R / B= 6L M <, H. h, 1 µm \ ( K. 5a); E=85 J/cm S, g fu" C F K 6L M L,d9 3 L L q g fu" <, ho.34 µm \ ( 5b); E=99 J/cm 6s R Y/ G A e{1. 5 $ L, S, g fu" C H K 6L M <, H. :, H A h, g fu"6 e, 3 3 ; # Zn $ # 7 r EDS # F.6 µm \. Table 3 EDS analysis of different points on zinc rich zone in 5 <$,d9 L q 6\, 3 6L D { Fig.3 H EDS $, G 4. ;*, Si L qt I (atomic fraction, %) Position Zn Si Fe Main microstructure UXD, $ Fe g fu"sga, \=5 1 55.97 44.3 Zn α solid solution <. Z) t, Z K ', Si Fe g 45.1 5.5.48 Zn eutectoid fu"<s=5 ;e 6%, MIG b3 3 3.51 76.9 Zn eutectic L<, l L =X, Si eo ZK 's = 4 14.5 8.67 3.4 53.59 Fe 5. 1, Fe / U EDS $; *, 5 < A, B, C {T g fu"; Fe, Fe R Fe ; D, E, F {Ts g fu"n [ ; Fe, [4,5] 3 [3] 5 4 K p$% wp % 5 # K + 8& K Æ K pr SEM 3 Fig.4 Element scanning maps of (a), Fe (b) and Si (c) on brazed interface of No.5 sample (E=99 J/cm) Fig.5 SEM images of brazed interface at E=66 J/cm (a), E=85 J/cm (b) and E=99 J/cm (c)

1 É Ü 48 ½ 4 5 Ã Ô ÅÞÖ EDS Table 4 EDS analysis results of brazed interface at different points in Fig.5 (atomic fraction, %) Position Fe Si A 49.34 5.66 B 33.7 6.7 4.45 C 5.84 7.8 3.36 D 9.4 66.69 4.6 E 3.48 67.7 1.8 F.68 79.3 G 3.87 65.6 3.87 H 1.3 7.98 5.89 Fe 5 Ê Fe 3 (Fe 4 13 ); G, H ß Đ Í Fe 5 Ê Fe 3 (Fe 4 13 ). Ä XRD Fe Đ Í», 6. Ö É, Ä Õ Å» Fe, Fe 5 Ê Fe 4 13. Í EDS, Ó Đ Í Fe Ê Fe 5 Í», Ä Fe 4 13. P MIG Ä Ä Õ Fe Đ Í ÐĐ Ã «Đ Õ Ý, «Ê. MIG Đ ÄÀ, Đ ««Ê ÓĐ,, «Ë Í Fe È Đ Õ. ÐÀ ÐĐ Si à «ÊË, µ Ê Ú Fe 5 È. Fe 5»¹, c ¹ È ( 3%), È Ù, ÏÕ Fe 5 [6,7], ÇÏ Fe È, È» Ú, Ñ» Fe Đ Í. ««Ë, Fe ÈÍÀ Fe 5 Õ, Ð Fe È Õ Ó Fe 3 Ë, È ÐĐ, Ë Õ È Ô Ê, ÎÝ Fe 5 Õ Fe 3 Í È. ÐÆ Ú, È Ý, À Ò Fe È, È», Ë Fe 5 Fe È, Ò Í Fe 5 Ê Í Fe Í». ÐÆ ÜÈ Ú, Fe Ê Fe 5 Í ÜÈ, Ä Fe 3 «È Í Fe 4 13. 7 Fe Đ Í ÐÄ ²º., Fe Đ Í 1.5 4.5 µm Đ, ÐÆÄ Ø ºÃ. Đ Í Í Ñ, ÐĐ «Đ Õ ÝËĐÊ, Õ ÝËĐÊ «Ä. ÐÄ ¹Ë, ƹ, ËĐ, Fe È«È Ý, ºÀ, Ü Fe Đ Í Intensity, a.u. Intensity, a.u. Intensity, a.u. (a) Fe Fe 5 Fe 4 13 3 4 5 6 7 8 9, deg (b) Fe Fe 5 Fe 4 13 3 4 5 6 7 8 9, deg (c) Fe Fe 5 Fe 4 13 3 4 5 6 7 8 9, deg 6 Åà à ÔÖ XRD Fig.6 XRD patterns of brazed interface at E=66 J/cm Thickness of IMC h, m (a), E=85 J/cm (b) and E=99 J/cm (c) 5 4 3 1 6 8 1 1 14 Welding heat input E, J/cm 7 Ì Ã Ö Fig.7 Variation of thickness of intermetallic compound (IMC) layer with welding heat input

Ü 8 ÊØ : Ë / Ä MIG Ð ½ ÂÆ Ϲ Á 13., Ä Ú,» Ú, ËĐ «, Fe È«È Ý ËĐ«, Ü Fe Đ Í..3 ß Æ 8 Ä Í / «P MIG Đ Ä ß½., ÐÆÄ, Ä µ, 85 J/cm ³ Ó 9 MPa,»Ð «³ 613 T4 Í Ä. À ÐÀ, Í / «P MIG Ä Ó ¹ Ò. 9 Ê 1 «Ä ³ Í / 4 «P MIG Đ Ä Â Ê Ý Ò. E=85 J/cm Ë, Â Í Ä ß½± ( 9a), Ò 1a,, ²Æ ͺ, ºÃ. Ä (E 79 J/cm) ³, Ä Ä Õ, 9b. P MIG Đ ÄÀ, Ä Ë, Õ Ý» Ú ÝËĐ «, Fe È«È Ã, Ï Ó ÌÆ Í. 1b Ò,, Õ ÏÕ, Ã. 1b «Ë ÔØ, ³, Í ««Ó Í. ÐÄ À (E 99 J/cm) Ë, 613 T4 Í ÌÁ Í, Ä Tensile strength s, MPa 18 16 14 6 8 1 1 14 Welding heat input E, J/cm 8 Åà ²Ö¾ Ã Æ Fig.8 Tensile strength of brazed fusion welded joint at different welding heat inputs 9 P MIG ¾ Ã Æ Fig.9 Fracture positions of P MIG arc brazed fusion welded joint (a) HAZ at alloy side at E=85 J/cm (b) brazed interface at E 79 J/cm (c) fusion zone at alloy side at E 99 J/cm 1 P MIG ¾ Ã Æ Á Ñ Fig.1 Tensile fracture appearances of brazed fusion welded joint (a) HAZ at alloy side at E=85 J/cm (b) brazed interface at E 79 J/cm (c) fusion zone at alloy side at E 99 J/cm

14 É Ü 48 ½ ß½±, Ü ÂÎ Í Í±, 9c; 1c Ò Ø, ²Æ Í º, ßÃ. ÂÎ Ø, Ð E >79 J/cm Ë, Ä Í Í±², Ä Õ. ÔØ ³, Ä Ä Õ ¹ 613 T4 Í Ä., ÐÄ Ó Ñ Ò Ë, Í / «P MIG Đ Ä Ä Õ» Æ, Í ß ½± Ñ Í / «Ä Í Ä ß½± Ü. 3 ĐÅ (1) Ö ER443 Ä Ãº, Î Ï 613 T4 Í ««P MIG Đ Ä, Í Ä Ê Í / Ä. Í Ä Ù, ͱ ¼ ͺ ÀÃ. Ä Ì Ñ» Zn α Ê Fe 3 Æ Zn ±. () Ä Ä Õ Fe Đ Í 1.5 4.5 µm Đ, ÐÆÄ. Fe Đ Í Fe, Fe 5 Ê Fe 4 13. Ò Ñ Fe Ê Fe 5 Ó Í», Ä ¼À à Рà Fe 4 13. (3) Ä ÐÆÄ µ, 85 J/cm ³ Ä Ó 9 MPa, Í Ä ß½±, ºÃ. ÐÄ Ë Ä Õ, à ; ÐÄ À Ë, ÂÎ Í Ä Í±, ßÃ. [1] Elliott S, Wallach E R. Met Constr, 1981; 13: 1 [] Elrefaey A, Takahashi M, Ikeuchi K. Quart J Jpn Weld Soc, 5; 3: 186 [3] Sedykh V S. Weld Prod, 1985; 3(): 8 [4] Calderon P D, Walmsley D R, Munlr Z A. Weld J, 1985; 64: 44 [5] Qiu R F, Iwamoto C, Satonaka S. Mater Charact, 9; 6(): 156 [6] Tsujino J, Hidai K, Hasegawa A, Kanai R, Matsuura H, Matsushima K, Ueoka T. Ultrasonics, ; 4: 371 [7] Czechowski M. Mater Corros, 4; 55: 464 [8] Liu S Y, Suzumura A, Ikeshoji T A, Yamazki T. JSME Int J, 5; 48A: 4 [9] Lin S Y, Qin G L, Lei Z, Wang X Y. Chin Pat, 617614.8, 8 [1] Jácome L A, Weber S, Leitner A, Arenholz E, Bruckner J, Hackl H, Pyzalla A R. Adv Eng Mater, 9; 11: 35 [11] Vraňáková R, Füssel U, Zschetzsche J, Juttner S. Weld World, 5, 49(9): 15 [1] Murakami T, Nakata K, Tong H, Ushio M. ISIJ Int, 3; 43(1): 159 [13] Zhang H T, Feng J C, He P. Mater Charact, 7; 58: 588 [14] Dong H G, Yang L Q, Dong C, Kou S D. Mater Sci Eng, 1; A57: 7151 [15] Lin S B, Song J L, Yang C L, Ma G C. Acta Metall Sin, 9; 45: 111 (, Ú, Ã,. Ë, 9; 45: 111) [16] Laukant H, Wallmann E, Müller M, Korte W, Stirn B, Haldenwanger H G, Glatzel U. Sci Technol Weld Join, 5; (): 19 [17] Dharmendra C, Rao K P, Wilden J, Reich S. Mater Sci Eng, 11; A58: 1497 [18] Torkamany M J, Tahamtan S, Sabbaghzadeh J. Mater Des, 1; 31: 458 [19] Mathieu A, Shabadi R, Deschamps A, Suery M, Matteï S, Grevey D, Cicala E. Opt Laser Technol, 7; 39: 65 [] Bach F W, Beniyas A, Lau K, Versemann R. Adv Mater Res, 5; (6 8): 143 [1] Lei Z, Qin G L, Lin S Y, Wang X Y. J Mech Eng, 9; 45(3): 94 ( ², Ë,, Æ. Ó Ë, 9; 45(3): 94) [] Yang X R. Mater Sci Technol, 6; 14: 36 ( ļ. ¹ ËÅ, 6; 14: 36) [3] Shi C X, Li H D, Zhou L. The Handbook of Materials Science and Engineering, Vol.1. Bejing: Chemical Industry Press, 4: 33 (È Ç,  Ô, É. ¹ ËÅ ( ¾). : Ë È À. 4: 33) [4] Maitra T, Gupta S P. Mater Charact, 3; 49: 93 [5] Gupta S P. Mater Charact, 3; 49: 69 [6] Heumann T, Dittrich N A. Z Metallk, 1959; 5: 617 [7] Tomiad S, Nataka K. Surf Coat Technol, 3; 174: 559 ( º½: ¹ ¾)