Ü 48 ½ Ü 8 Vol.48 No.8 1 8 Ü 118 14 ACTA METALLURGICA SINICA Aug. 1 pp.118 14 Ü / Ô MIG Ý ÙÐ ³» ¼ ( Ê Þ¾ÅÆ ÝÌ, Û 561)»Ð Ë Å MIG ÃÓ, Õ ER443 ÃÖ Â¹, Í Î 613 T4 Ì ÅÅ ÅÖ¾ Ã, ÎÃ Æ Æ ºÉ ÖÞ¼., ¾ à ƾ Ã Ã¾Ë Zn Ö α É Fe 3 Ö Zn ; Ã Ô Ö Fe Ì 1.5 4.5 µm, Ã Ö ß. Fe Ì»  à ĐÄ, Fe, Fe 5 É Fe 4 13. Åà Ö, ¾ à ÆÖ, 85 J/cm Ö ² Ò 9 MPa, Á Ì Ã Þ¼ Ä, Þ¹  ; Ã Ê Æ Ã Ô, Â. Ö ¾ Ã, Ú ¹ Ç, Å MIG Ã, ºÅÂ, Ì µ ÑÓ Û TG457.1 «A ± Û 41 1961(1)8 118 7 MICROSTRUCTURES AND PROPERTIES OF PULSED MIG ARC BRAZED FUSION WELDED JOINT OF ALLOY AND GALVANIZED STEEL QIN Guoliang, SU Yuhu, WANG Shujun Key Laboratory for Liquid Solid Structure Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 561 Correspondent: QIN Guoliang, associate professor, Tel: (531)88395897, E-mail: glqin@sdu.edu.cn Supported by National Natural Science Foundation of China (No.59599) and Specialized Research Fund for the Doctoral Program of Higher Education (No.913117) Manuscript received 1 6, in revised form 1 5 1 ABSTRACT Because there are great differences in physicochemical properties and mechanical properties between alloy and steel, their joining with high quality and high efficiency is one of difficult problems in study of welding technology. According to their difference in melting point, the brazing fusion welding technology of alloy to steel was developed based on MIG welding. In pulsed MIG arc brazing fusion welding process, the molten filler metal and alloy base metal will form the fusion welded joint, and will form the brazed joint together with unmelted steel plate, which can efficiently prevent the intermetallic compounds (IMCs) from the formation. With the digital pulsed MIG arc welding machine, the brazing fusion welding of 613 T4 alloy plate to galvanized steel plate was realized with the filler metal of ER443, and the effect of welding heat input on microstructures and properties of the joint was studied. The results showed that there is a zinc rich zone in the weld toe of fusion weld in the brazed fusion welded joint, which is composed of Zn eutectic, rich α solid solutions and Fe 3. Fe IMCs layer on the brazed interface is 1.5 4.5 µm in thickness and become thicker with the welding heat input being increased. Fe IMCs with sawtooth or tongue shape growtowards the weld, which mainly includes Fe, Fe 5 and Fe 4 13. With the welding heat input * Ýɵ ËÑ ¾Þ 59599 É«µ ÞÑ ÇÁ¾Þ 913117 ÇÁ ÒǺ» : 1 6, ÒÄ º» : 1 5 1 : Ë, Ð, 1975 Ä, «, DOI: 1.374/SP.J.137.1.46
Ü 8 ÊØ : Ë / Ä MIG Ð ½ ÂÆ Ϲ Á 119 being increased, the tensile strength of the brazed fusion welded joint firstly increases and then decreases. At the welding heat input of 85 J/cm, the tensile strength of the brazed fusion welded joint can be up to 9 MPa and the ductile fracture appears in the HAZ of alloy. At the lower welding heat input, the brittle fracture easily occurs. KEY WORDS brazing fusion welding, welding of dissimilar metal, pulsed MIG welding, microstructure and property, intermetallic compound Ù Í «Í ÍÏ Á ÌÊÔÃ, ¹ Ǻ Ú Ê Ù Õ Đ, Ï É Å Å ÙÀ ¹ Ý ±. Í / Í ¼ È Ú. Î Ð Ð ÙÔÈ ¹ Ú Õ Ù Í., «Á ÌÃ, Ú, ÏÕ Ä Ã, ³ Ù Fe Đ Í, ÚÏ ÆÌà ÊÏ Ã. Ï ½ Fe Đ Í Å, µ ¼ Û Ä Ä Ä Ä ĐÎÄ Ã ÄÙ ĐÈ Î Ï Í / È [1 8]. ĐÈ Ö ÕÓÃ ÌÆ, Ñ ¹Ã, ± Ñ ³¹ Đ. Ü, Ù Í «Û ¹ Đ ÊÚ Ä Ú Í / Í Ý Æ Å. Ä Ú Ã Ä Í «ß Û, ÀÄ Ä Ï¹ ß Ú ß Í, Ã Í Ä «Í ݺ Ä, Ñ «Ä, Ä À ¹ ÄÊ Ä Ñ Ã [9]. Í «Ä MIG Đ [1 13] TIG Đ [14,15] Ö [16 19] ĐÈ [] ÖÙÖ + Đ Í [1] Ù. MIG ÄÊ TIG Ä ß Ý Ú Ä Ø. MIG Ä Đ Ã Í É Ù Í, Ý Í / «Ä Ù Ä À Ù Í. TIG Đ Í É MIG Đ, Å, Ä Ø Ú MIG Ä. Ï MIG Đ Í É, Ä Đ Éµ, ÏÚ CMT (cold metal transfer) Ä Ø []. CMT Ä Ø ÖÎ Í Æ«««Ä [13], Ü Ú, Ä Ú, Ö ÍÐ Ä Å. Ì ß MIG Ä Đ µ Ú, ¼ Ä º ʼ³, ± ½ Ù Ý Ê Ä Đ ÊĐ ĐÏ, Î Ñ» ÆÀÅÑ» Û ÛÀÅÙ, Ü Ö ¹Ä À Ã, Î Đ Í É. ¼ Ì Æ MIG Ä (pulsed MIG welding, P MIG) ± Î Ï 613 T4 Í ««È, µï仫ã ß½. 1 ÞÒÐ Î Í Ýº 613 T4 Í, Á mm 5 mm 1 mm; «Ýº SGCC «, Á mm 5 mm mm; ú ¼³ 1. mm ER443(Si5) Í Ä, Ä Ê Í Ýº Ì 1. Î Ä ± Ì MIG ÄÔÙ Ù ±, ¼ ÆÄ Ù, ÛÀÅ«1 drop/pulse. Ù Ý Ä Đ ÊĐ ĐÏ, À Ù Ý Ä Đ, «Ä Ý Ñ Ä, µ Í Ýº «, Í ««Ä. Ä Í «Ê «Í ««³ 1 mm. Î, Ä Å Í º.6 mm, Î Ä Ø¾. Î Õ Ä ³, Ä» ² (OM) X º Ó (XRD) ÖĐ² (SEM) Ù ² Ó (EDS)»Ù ², Ä ÂÎ Ð Æ ÌÃ. 1 Í Ð Ì Ü¹ÉÃÖÖ Ë Table 1 Compositions of 613 T4 alloy and ER443 welding wire (mass fraction, %) Material Cu Si Fe Mg Mn Cr Zn Ti 613 T4.6 1.1.6 1..8.8 1..7.8.1.5.35 Bal. ER443.3 4.5 6..8.5.5.1. Bal.
1 É Ü 48 ½ P MIG ¾ Ã Í ½ Table P MIG arc brazing fusion welding parameters Test U, V I, A v w, m/min v, m/min E, J/cm No.1 16.5 4..6 66 No. 16.6 45..6 747 No.3 16.5 4..5 79 No.4 17.4 57.7.7 85 No.5 16.5 4..4 99 No.6 16.5 4..3 13 1 Ì / ž Ã Æ Ñ Fig.1 Morphology of brazed fusion welded joint of alloy and galvanized steel Note: U arc voltage, I welding current, v w wire feeding rate, v welding speed, E welding heat input Đ Í / «Ä Ä Ê Ä, 1.,» «, Å..1 Ú Í / «Ä «± SEM., Ä Í Ä Ù,» Si α, α Ì ²Æ Í Ú Si», a ñ ; ͱ Àà ¼ ͺ Ä Å, Å ( b). Í «P MIG Đ Ä, Ä Ä Ì Ñ» Zn ± ( 1),» Ò 3. Zn ± É P MIG Đ Ä À, Đ Ó ¼Ä Gauss ², Đ» Ú, ÖÐĐ ÆÚ, Ä Ì Ï Zn ±. Ï ³±», À EDS «, 3. ½ Zn Í» [3] Ê EDS, Zn ± À, µ Zn α, 3 1 Ì Î. ÐÆ Ú, α ѳ. ««Ë, Í Si α, Si, Ð «Zn Zn», 3 Ì, 3 Ì Zn». 3 4 Ì EDS, Zn ±«Ò Đ Ñ Æ Fe Í, ³ Fe Í Fe 3 Đ Í Ù Fe Zn», Á. Ä À ÜÐĐ Zn Ú, È ¼ «Đ», À³ÐĐÚ Ò, Ì Ú, Ý. Ü, Zn ± Ó Ò., Zn Ñ Ó Ò È Ü Ñ. ¾Ã Æ Å Ö SEM Fig. SEM images of weld zone (a) and fusion zone (b) in fusion welded joint of alloy 3 1 ¾Ã ÆÃ¾Ë Zn Ö SEM Fig.3 SEM image of zinc rich zone at weld toe of fusion welded joint in Fig.1. Ø ² ÕÓ Í / «Ä À, Ä Õ ÆÖ Ê Fe È Ê Ý, Ï
x8!drt : `S / A* gl MIG }`1 JÆ W- I 11 m s Fe g fu"6. 4 L,d9 d9' L q g fu" 6s SEM 4. ;, }N L,d9s f, g fu"6s ug M E=99 J/cm ' L q& xq &. ; *, L q T MWr Fe, R Si 3? x F s W f. l E=66 J/cm S, g fu" C H K xb=, Si q $ts,7, Fe R / B= 6L M <, H. h, 1 µm \ ( K. 5a); E=85 J/cm S, g fu" C F K 6L M L,d9 3 L L q g fu" <, ho.34 µm \ ( 5b); E=99 J/cm 6s R Y/ G A e{1. 5 $ L, S, g fu" C H K 6L M <, H. :, H A h, g fu"6 e, 3 3 ; # Zn $ # 7 r EDS # F.6 µm \. Table 3 EDS analysis of different points on zinc rich zone in 5 <$,d9 L q 6\, 3 6L D { Fig.3 H EDS $, G 4. ;*, Si L qt I (atomic fraction, %) Position Zn Si Fe Main microstructure UXD, $ Fe g fu"sga, \=5 1 55.97 44.3 Zn α solid solution <. Z) t, Z K ', Si Fe g 45.1 5.5.48 Zn eutectoid fu"<s=5 ;e 6%, MIG b3 3 3.51 76.9 Zn eutectic L<, l L =X, Si eo ZK 's = 4 14.5 8.67 3.4 53.59 Fe 5. 1, Fe / U EDS $; *, 5 < A, B, C {T g fu"; Fe, Fe R Fe ; D, E, F {Ts g fu"n [ ; Fe, [4,5] 3 [3] 5 4 K p$% wp % 5 # K + 8& K Æ K pr SEM 3 Fig.4 Element scanning maps of (a), Fe (b) and Si (c) on brazed interface of No.5 sample (E=99 J/cm) Fig.5 SEM images of brazed interface at E=66 J/cm (a), E=85 J/cm (b) and E=99 J/cm (c)
1 É Ü 48 ½ 4 5 Ã Ô ÅÞÖ EDS Table 4 EDS analysis results of brazed interface at different points in Fig.5 (atomic fraction, %) Position Fe Si A 49.34 5.66 B 33.7 6.7 4.45 C 5.84 7.8 3.36 D 9.4 66.69 4.6 E 3.48 67.7 1.8 F.68 79.3 G 3.87 65.6 3.87 H 1.3 7.98 5.89 Fe 5 Ê Fe 3 (Fe 4 13 ); G, H ß Đ Í Fe 5 Ê Fe 3 (Fe 4 13 ). Ä XRD Fe Đ Í», 6. Ö É, Ä Õ Å» Fe, Fe 5 Ê Fe 4 13. Í EDS, Ó Đ Í Fe Ê Fe 5 Í», Ä Fe 4 13. P MIG Ä Ä Õ Fe Đ Í ÐĐ Ã «Đ Õ Ý, «Ê. MIG Đ ÄÀ, Đ ««Ê ÓĐ,, «Ë Í Fe È Đ Õ. ÐÀ ÐĐ Si à «ÊË, µ Ê Ú Fe 5 È. Fe 5»¹, c ¹ È ( 3%), È Ù, ÏÕ Fe 5 [6,7], ÇÏ Fe È, È» Ú, Ñ» Fe Đ Í. ««Ë, Fe ÈÍÀ Fe 5 Õ, Ð Fe È Õ Ó Fe 3 Ë, È ÐĐ, Ë Õ È Ô Ê, ÎÝ Fe 5 Õ Fe 3 Í È. ÐÆ Ú, È Ý, À Ò Fe È, È», Ë Fe 5 Fe È, Ò Í Fe 5 Ê Í Fe Í». ÐÆ ÜÈ Ú, Fe Ê Fe 5 Í ÜÈ, Ä Fe 3 «È Í Fe 4 13. 7 Fe Đ Í ÐÄ ²º., Fe Đ Í 1.5 4.5 µm Đ, ÐÆÄ Ø ºÃ. Đ Í Í Ñ, ÐĐ «Đ Õ ÝËĐÊ, Õ ÝËĐÊ «Ä. ÐÄ ¹Ë, ƹ, ËĐ, Fe È«È Ý, ºÀ, Ü Fe Đ Í Intensity, a.u. Intensity, a.u. Intensity, a.u. (a) Fe Fe 5 Fe 4 13 3 4 5 6 7 8 9, deg (b) Fe Fe 5 Fe 4 13 3 4 5 6 7 8 9, deg (c) Fe Fe 5 Fe 4 13 3 4 5 6 7 8 9, deg 6 Åà à ÔÖ XRD Fig.6 XRD patterns of brazed interface at E=66 J/cm Thickness of IMC h, m (a), E=85 J/cm (b) and E=99 J/cm (c) 5 4 3 1 6 8 1 1 14 Welding heat input E, J/cm 7 Ì Ã Ö Fig.7 Variation of thickness of intermetallic compound (IMC) layer with welding heat input
Ü 8 ÊØ : Ë / Ä MIG Ð ½ ÂÆ Ϲ Á 13., Ä Ú,» Ú, ËĐ «, Fe È«È Ý ËĐ«, Ü Fe Đ Í..3 ß Æ 8 Ä Í / «P MIG Đ Ä ß½., ÐÆÄ, Ä µ, 85 J/cm ³ Ó 9 MPa,»Ð «³ 613 T4 Í Ä. À ÐÀ, Í / «P MIG Ä Ó ¹ Ò. 9 Ê 1 «Ä ³ Í / 4 «P MIG Đ Ä Â Ê Ý Ò. E=85 J/cm Ë, Â Í Ä ß½± ( 9a), Ò 1a,, ²Æ ͺ, ºÃ. Ä (E 79 J/cm) ³, Ä Ä Õ, 9b. P MIG Đ ÄÀ, Ä Ë, Õ Ý» Ú ÝËĐ «, Fe È«È Ã, Ï Ó ÌÆ Í. 1b Ò,, Õ ÏÕ, Ã. 1b «Ë ÔØ, ³, Í ««Ó Í. ÐÄ À (E 99 J/cm) Ë, 613 T4 Í ÌÁ Í, Ä Tensile strength s, MPa 18 16 14 6 8 1 1 14 Welding heat input E, J/cm 8 Åà ²Ö¾ Ã Æ Fig.8 Tensile strength of brazed fusion welded joint at different welding heat inputs 9 P MIG ¾ Ã Æ Fig.9 Fracture positions of P MIG arc brazed fusion welded joint (a) HAZ at alloy side at E=85 J/cm (b) brazed interface at E 79 J/cm (c) fusion zone at alloy side at E 99 J/cm 1 P MIG ¾ Ã Æ Á Ñ Fig.1 Tensile fracture appearances of brazed fusion welded joint (a) HAZ at alloy side at E=85 J/cm (b) brazed interface at E 79 J/cm (c) fusion zone at alloy side at E 99 J/cm
14 É Ü 48 ½ ß½±, Ü ÂÎ Í Í±, 9c; 1c Ò Ø, ²Æ Í º, ßÃ. ÂÎ Ø, Ð E >79 J/cm Ë, Ä Í Í±², Ä Õ. ÔØ ³, Ä Ä Õ ¹ 613 T4 Í Ä., ÐÄ Ó Ñ Ò Ë, Í / «P MIG Đ Ä Ä Õ» Æ, Í ß ½± Ñ Í / «Ä Í Ä ß½± Ü. 3 ĐÅ (1) Ö ER443 Ä Ãº, Î Ï 613 T4 Í ««P MIG Đ Ä, Í Ä Ê Í / Ä. Í Ä Ù, ͱ ¼ ͺ ÀÃ. Ä Ì Ñ» Zn α Ê Fe 3 Æ Zn ±. () Ä Ä Õ Fe Đ Í 1.5 4.5 µm Đ, ÐÆÄ. Fe Đ Í Fe, Fe 5 Ê Fe 4 13. Ò Ñ Fe Ê Fe 5 Ó Í», Ä ¼À à Рà Fe 4 13. (3) Ä ÐÆÄ µ, 85 J/cm ³ Ä Ó 9 MPa, Í Ä ß½±, ºÃ. ÐÄ Ë Ä Õ, à ; ÐÄ À Ë, ÂÎ Í Ä Í±, ßÃ. [1] Elliott S, Wallach E R. Met Constr, 1981; 13: 1 [] Elrefaey A, Takahashi M, Ikeuchi K. Quart J Jpn Weld Soc, 5; 3: 186 [3] Sedykh V S. Weld Prod, 1985; 3(): 8 [4] Calderon P D, Walmsley D R, Munlr Z A. Weld J, 1985; 64: 44 [5] Qiu R F, Iwamoto C, Satonaka S. Mater Charact, 9; 6(): 156 [6] Tsujino J, Hidai K, Hasegawa A, Kanai R, Matsuura H, Matsushima K, Ueoka T. Ultrasonics, ; 4: 371 [7] Czechowski M. Mater Corros, 4; 55: 464 [8] Liu S Y, Suzumura A, Ikeshoji T A, Yamazki T. JSME Int J, 5; 48A: 4 [9] Lin S Y, Qin G L, Lei Z, Wang X Y. Chin Pat, 617614.8, 8 [1] Jácome L A, Weber S, Leitner A, Arenholz E, Bruckner J, Hackl H, Pyzalla A R. Adv Eng Mater, 9; 11: 35 [11] Vraňáková R, Füssel U, Zschetzsche J, Juttner S. Weld World, 5, 49(9): 15 [1] Murakami T, Nakata K, Tong H, Ushio M. ISIJ Int, 3; 43(1): 159 [13] Zhang H T, Feng J C, He P. Mater Charact, 7; 58: 588 [14] Dong H G, Yang L Q, Dong C, Kou S D. Mater Sci Eng, 1; A57: 7151 [15] Lin S B, Song J L, Yang C L, Ma G C. Acta Metall Sin, 9; 45: 111 (, Ú, Ã,. Ë, 9; 45: 111) [16] Laukant H, Wallmann E, Müller M, Korte W, Stirn B, Haldenwanger H G, Glatzel U. Sci Technol Weld Join, 5; (): 19 [17] Dharmendra C, Rao K P, Wilden J, Reich S. Mater Sci Eng, 11; A58: 1497 [18] Torkamany M J, Tahamtan S, Sabbaghzadeh J. Mater Des, 1; 31: 458 [19] Mathieu A, Shabadi R, Deschamps A, Suery M, Matteï S, Grevey D, Cicala E. Opt Laser Technol, 7; 39: 65 [] Bach F W, Beniyas A, Lau K, Versemann R. Adv Mater Res, 5; (6 8): 143 [1] Lei Z, Qin G L, Lin S Y, Wang X Y. J Mech Eng, 9; 45(3): 94 ( ², Ë,, Æ. Ó Ë, 9; 45(3): 94) [] Yang X R. Mater Sci Technol, 6; 14: 36 ( ļ. ¹ ËÅ, 6; 14: 36) [3] Shi C X, Li H D, Zhou L. The Handbook of Materials Science and Engineering, Vol.1. Bejing: Chemical Industry Press, 4: 33 (È Ç,  Ô, É. ¹ ËÅ ( ¾). : Ë È À. 4: 33) [4] Maitra T, Gupta S P. Mater Charact, 3; 49: 93 [5] Gupta S P. Mater Charact, 3; 49: 69 [6] Heumann T, Dittrich N A. Z Metallk, 1959; 5: 617 [7] Tomiad S, Nataka K. Surf Coat Technol, 3; 174: 559 ( º½: ¹ ¾)