Examples of Cost and Production Functions

Σχετικά έγγραφα
Estimators when the Correlation Coefficient. is Negative

Finite Field Problems: Solutions

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

C.S. 430 Assignment 6, Sample Solutions

1. For each of the following power series, find the interval of convergence and the radius of convergence:

CS 1675 Introduction to Machine Learning Lecture 7. Density estimation. Milos Hauskrecht 5329 Sennott Square

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Example Sheet 3 Solutions

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

2 Composition. Invertible Mappings

Numerical Analysis FMN011

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Section 7.6 Double and Half Angle Formulas

The Simply Typed Lambda Calculus

IIT JEE (2013) (Trigonomtery 1) Solutions

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Solution Series 9. i=1 x i and i=1 x i.

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

PARTIAL NOTES for 6.1 Trigonometric Identities

Section 8.3 Trigonometric Equations

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

INTEGRATION OF THE NORMAL DISTRIBUTION CURVE

4.6 Autoregressive Moving Average Model ARMA(1,1)

Latent variable models Variational approximations.

Homework 3 Solutions

Matrices and Determinants

Exam Statistics 6 th September 2017 Solution

Multi-dimensional Central Limit Theorem

Lecture 2. Soundness and completeness of propositional logic

Math221: HW# 1 solutions

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006


Statistical Inference I Locally most powerful tests

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Concrete Mathematics Exercises from 30 September 2016

Partial Differential Equations in Biology The boundary element method. March 26, 2013

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Second Order RLC Filters

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

derivation of the Laplacian from rectangular to spherical coordinates

Other Test Constructions: Likelihood Ratio & Bayes Tests

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Instruction Execution Times

Areas and Lengths in Polar Coordinates

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

( ) 2 and compare to M.

Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους

Srednicki Chapter 55

FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B

α & β spatial orbitals in

Latent variable models Variational approximations.

[1] P Q. Fig. 3.1

Right Rear Door. Let's now finish the door hinge saga with the right rear door

EE512: Error Control Coding

Lecture 13 - Root Space Decomposition II

Math 6 SL Probability Distributions Practice Test Mark Scheme

MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra

Multi-dimensional Central Limit Theorem

Lecture 34 Bootstrap confidence intervals

Homework for 1/27 Due 2/5

Tridiagonal matrices. Gérard MEURANT. October, 2008

Areas and Lengths in Polar Coordinates

Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)

Discrete Fourier Transform { } ( ) sin( ) Discrete Sine Transformation. n, n= 0,1,2,, when the function is odd, f (x) = f ( x) L L L N N.

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Uniform Convergence of Fourier Series Michael Taylor

Αλγόριθμοι και πολυπλοκότητα NP-Completeness (2)

Trigonometric Formula Sheet

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Advanced Subsidiary Unit 1: Understanding and Written Response

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

6.3 Forecasting ARMA processes

Section 9.2 Polar Equations and Graphs

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

5.4 The Poisson Distribution.

w o = R 1 p. (1) R = p =. = 1

Solutions to Exercise Sheet 5

Notes on the Open Economy

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

A Class of Orthohomological Triangles

On Hypersurface of Special Finsler Spaces. Admitting Metric Like Tensor Field

ST5224: Advanced Statistical Theory II

Every set of first-order formulas is equivalent to an independent set

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

An Inventory of Continuous Distributions

Example of the Baum-Welch Algorithm

Bessel function for complex variable

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

(a,b) Let s review the general definitions of trig functions first. (See back cover of your book) sin θ = b/r cos θ = a/r tan θ = b/a, a 0

Transcript:

Dvso of the Humates ad Socal Sceces Examples of Cost ad Producto Fuctos KC Border October 200 v 20605::004 These otes sho ho you ca use the frst order codtos for cost mmzato to actually solve for cost fuctos The basc steps are these: Solve each of the frst order codtos for x terms of the parameters ages ad output level ad the Lagrage multpler 2 Substtute these expressos for x to the producto fucto ad solve for the Lagrage multpler 3 Substtute ths expresso for the Lagrage multpler to the expresso for x 4 Multply each x by ts age, ad sum to get the cost Admttedly all the examples here are specally chose to be ameable to ths approach Oe thg these examples mae clear s t there s ofte a dualty betee famles of cost ad producto fuctos For stace, the cost fucto assocated th a Leoteff producto fucto s lear, hle the cost fucto assocated th a lear producto fucto s Leoteff I all cases, assume y > 0 ad 0 vo Neuma Leoteff Producto Fucto I ths costat returs to scale producto fucto, the puts must be used exactly the rght proportos or the excess s asted { x y = m,, x }, α α here each α > 0 Note that the producto fucto fals to be dfferetable at ay terestg pot, so you caot actually apply the Lagrage multpler theorem Nevertheless, smple reasog shos that the codtoal factor demads must satsfy y = x α for each, so ˆx y, = α y So the cost fucto s cy, = y α Note that the cost fucto s qute smooth eve though the producto fucto s ot Ths s to be expected sce for 0 the cost mmzg put combato s uque Recall the support fucto theorem Ad just as predcted by the support fucto theorem, cy, = α y = ˆx y,

KC Border Examples of Cost ad Producto Fuctos 2 2 Lear Producto Fucto Wth ths costat returs to scale producto fucto, all puts are perfect substtutes for each other provded uts are chose properly y = α x + + α x, here each α > 0, =,, The Lagragea for the cost mmzato problem s x λ α x y ad the aïve frst order codtos are L x = λα = 0 =,,, hch tae at face value mply α = = α, hch s ulely sce these are all exogeous Ths s a red flag that sgals that the oegatvty costrats are bdg ad that you eed to exame the Kuh Tucer frst order codtos They are ad λα 0, =,,, x > 0 = λα = 0 ad λα > 0 = x = 0 I addto, λ 0 ad λ α x y = 0 Thus α λ =,, The questo s, ca e have strct equalty for each? The aser s o, as that ould mply x = 0 for each ad the output ould be zero, ot y > 0 So the soluto must satsfy ˆλ = m Let satsfy ˆλ = α That s, s a factor that maxmzes bag per buc The codtoal factor demad s gve by: y α = ˆx = 0 mmzes cost, ad the cost fucto s cy, = y m α {,, } α α Ths s the cost fucto eve f s ot uque, but he there s more tha oe such, the codtoal factor demad s o loger a uque put vector, but rather a set of cost mmzg put vectors I fact, the set of cost mmzg put vectors s the covex set: co { y e : = α α ˆλ = m j j α j } v 20605::004

KC Border Examples of Cost ad Producto Fuctos 3 Note that eve though the producto fucto s very smooth, the cost fucto fals to be dfferetable for 2 Ths s to be expected sce the bordered Hessa of the producto fucto s gve by f f f = f f f f f 0 hch s sgular for 2 It has ra 2 3 Cobb Douglas Producto Fucto Ths producto fucto s gve by y = γx α xα, 0 0 α 0 0 α α α 0 here each α > 0, =,, It s homogeeous of degree Lagragea: α = α x λγx α xα y Frst order codtos, usg the bdg costrat y = γx α xα : So But y = γx α x α, so y = γ L y = λα = 0 =,, x x, x = λα y =,, y α λα = γλ α y α α α Solvg ths for λ gves ˆλ = [ γy α ] α /α α = γ /α y α/α α α /α α /α v 20605::004

KC Border Examples of Cost ad Producto Fuctos 4 To smplfy otato a bt, set so b = γ α β = α α, ˆλ = by α/α α β, β Substtutg ths for λ gves the codtoal factor demads for j =,, So the cost fucto s ˆx j y, = by α/α β α y j = α j j by /α cy, = αby /α hch s a Cobb Douglas fucto of th costat returs to scale Note that cy, = by α/α β = y ˆλ, ad cy, j β, β, j = α β j by α/α β = ˆx j y, j 4 Geeralzed Arro Cheery Mhaus Solo Producto Fucto y = γ α x here α > 0, <, 0 Ths producto fucto exhbts costat returs to scale Trust me, ad rerte the costrat as γ α x y = 0 The Lagragea s x λ γ α x y The frst order codtos are: so λγ α x = 0, x = λα γ / v 20605::004

KC Border Examples of Cost ad Producto Fuctos 5 or x = λα γ / / 2 To solve for λ, e eed to substtute ths bac to the producto fucto, hch I ll do steps Solvg for ˆλ: x = λα γ / / x = λα γ / / α x = α λα γ / / α x = λγ / α α / / γ α x = γ λγ / α α / / y = γ λγ / α α / / y = γ λγ / / α α / / = λγ / α ˆλ = y γ α Substtutg 3 to 2 gves ˆx y, = y γ α Thus / } {{ } = y γ α ˆx = y γ α λ ˆx = y γ α ˆx = y γ α α γ α α α v 20605::004 3 4

KC Border Examples of Cost ad Producto Fuctos 6 Or settg β = α ad σ = gves the cost fucto as cy, = yγ β σ σ Ths has the form of a ACMS fucto th parameter σ stead of You ca verfy that cy, = ˆx y, usg 4 But ote that cy, y ˆλ Why ot? v 20605::004