Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους
|
|
- Εὐνίκη Μαρκόπουλος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Μια εισαγωγή στα Μαθηματικά για Οικονομολόγους
2 Μαθηματικά Ικανές και αναγκαίες συνθήκες Έστω δυο προτάσεις Α και Β «Α είναι αναγκαία συνθήκη για την Β» «Α είναι ικανή συνθήκη για την Β» Α is ecessary for B Α is sufficiet for B A B A B «Α είναι ικανή και αναγκαία συνθήκη για την Β» A if-f B or A is ecessary ad sufficiet for B A B
3 Μαθηματικά Θεωρήματα και αποδείξεις Τα θεωρήματα έχουν συνήθως τη μορφή A B Α = προϋπόθεση Για να αποδείξουμε το θεώρημα θα πρέπει να δείξουμε την ορθότητα του Β = συμπέρασμα συμπεράσματος, Β, χρησιμοποιώντας την αλήθεια της προϋπόθεσης, Α, με όρους βασικής λογικής costructive proof: A B cotrapositive proof: ~ A ~ B proof by cotradictio: Υποθέσεις: Α αληθές και Β όχι αληθές τότε να καταλήξουμε σε ΑΤΟΠΟ
4 Μαθηματικά Θεωρία Συνόλων Ένα σύνολο S είναι υποσύνολο (subset) ενός άλλου συνόλου Τ : S T x S x T υο σύνολα είναι ισα, εάν περιέχουν ακριβώς τα ίδια στοιχεία: Κενό σύνολο S = T x S x T ad x T x S S T ad T S Συμπλήρωμα (complemet) συνόλου S T x\ x S or x T Ένωση (uio) συνόλων { } S T x\ x S ad x T Τομή (itersectio) συνόλων { }
5 Μαθηματικά Θεωρία Συνόλων S T (,)\ s t s S, t T Γινόμενο (product of two sets) συνόλων: { } Στη Μικροοικονομική Θεωρία περιοριζόμαστε στα υποσύνολα: ++ + Θα γράφω x 0 ή x και θα εννοώ x 0, i= 1,2.. + x>> 0 ή x και θα εννοώ x > 0, i= 1, i i
6 Μαθηματικά Covex Set Κυρτά σύνολα (covex sets) στον S είναι κυρτό σύνολο εάν για κάθε 1 x S και 2 x S 1 2 tx t x S t [ ] + (1 ), 0,1
7 Μαθηματικά Fuctios f : A B A = domai B = rage f ( a) = b a A = όρισμα της f, b B = τιμή, εικόνα της f στο α
8 Μαθηματικά Fuctios Μια συνάρτηση f : A B λέγεται 1-1 ή αμφιμονοσήμαντη, όταν αντιστοιχίζει κάθε όρισμα σε αποκλειστικά δική του τιμή ή αλλιώς, όταν διαφορετικά ορίσματα απεικονίζονται σε διαφορετικές τιμές: αν a a τότε f ( a) f( a ) Μια συνάρτηση f : A B λέγεται επί (oto), όταν δεν υπάρχει στοιχείο στο Β που να μην είναι η εικόνα κάποιου στοιχείου του Α: b B, a A: b= f( a) Μια συνάρτηση είναι αντιστρέψιμη ( f 1 ) αν είναι 1-1 και επί: 1 1 f B A f b = a b= f a : ( ) ( )
9 Μαθηματικά Topology Μετρική είναι απλά ένα μέγεθος μέτρησης της απόστασης Μετρικός χώρος είναι ένα σύνολο στο οποίο έχει οριστεί μια έννοια απόστασης (μια μετρική). Μετρικοί χώροι Μετρική {( x, x )\ x, x } 2 = {( x, x,.. x )\ x, i 1,2... } 1 2 i = = dx (, x) = x x dx (, x) = ( x x) + ( x x) dx (, x) = ( x x) ( x x)
10 Μαθηματικά Topology Defiitio: Ope ad Closed ε-balls 1. The ope ε-ball with ceter 0 x ad radius ε > 0 (a real umber) is the subset of poits i : { ε} B x x d x x < 0 0 ε ( ) \ (, ) 2. The closed ε-ball with ceter 0 x ad radius ε > 0 (a real umber) is the subset of poits i : { ε} 0 0 Bε x x d x x ( ) \ (, )
11 Μαθηματικά Topology Defiitio: Ope sets i S is a ope set if, for all x S, there exists some ε > 0 such that B ( x) S ε Theorem: O Ope Sets i 1. is a ope set 2. is a ope set 3. The uio of ope sets is a ope set 4. The itersectio of ay fiite collectio of ope sets is a ope set
12 Μαθηματικά Topology Defiitio: Closed sets i S is a closed set if, its complemet c S, is a ope set Theorem: O Closed Sets i 1. is a closed set 2. is a closed set 3. The uio of ay fiite collectio of closed sets is a closed set 4. The itersectio of closed sets is a closed set
13 Μαθηματικά Topology Defiitio: Bouded sets i A set S is called bouded if it is etirely cotaied withi some ε-ball (either ope or closed). That is S is bouded if there exists some ε > 0 such that S B ( x) x. for some ε
14 Μαθηματικά Topology Defiitio (Heie Borel): Compact sets i A set S is called compact if it is closed ad bouded
15 Μαθηματικά Real Valued Fuctio Defiitio: Caushy cotiuity Let m D ad let f : every ε > 0, there is a δ > 0 such that: D. The fuctio f is cotiuous at the poit 0 0 ( δ( ) ) ε ( ( )) f B x D B f x 0 x D if for If f is cotiuous at every poit x D, the it is called a cotiuous fuctio.
16 Μαθηματικά Real Valued Fuctio Theorem: Cotiuity ad iverse images Let m D. The followig coditios are equivalet: 1. f : D is cotiuous 2. For every ope ball B i, f 1 ( B) is ope i D 3. For every ope S 1, f ( S) is ope i D Theorem: The Cotiuous Image of a Compact Set is a Compact Set Let m D ad let f : D be a cotiuous fuctio. If S D (closed ad bouded) the its image f ( S) is a compact set. is compact
17 Μαθηματικά Real Valued Fuctio Theorem (Weierstrass): Existece of Extreme Values Let f : S be a cotiuous real-valued fuctio, where S is a oempty compact subset of. The there exists a vector x S ad a vector x S such that: f ( x ) f( x) f( x), x S
18 Μαθηματικά Real Valued Fuctio Defiitio: Real Valued Fuctios f : D R is a real-valued fuctio if D is ay set ad R Defiitio: Icreasig Real Valued Fuctios Let f : D, where D. The ( ) ( ) 0 1 f is icreasig if f x f x wheever x x 0 1 ( ) ( ) 0 1 f is strictly icreasig if f x > f x wheever x >> x 0 1 f is strogly icreasig if 0 1 ( ) f ( x ) f x > wheever x x ad 0 1 x x 0 1
19 Μαθηματικά Real Valued Fuctio Defiitio: Decreasig Real Valued Fuctios Let f : D, where D. The ( ) ( ) 0 1 f is decreasig if f x f x wheever x x 0 1 ( ) ( ) 0 1 f is strictly decreasig if f x < f x wheever x >> x 0 1 f is strogly decreasig if 0 1 ( ) f ( x ) f x < wheever x x ad 0 1 x x 0 1
20 Μαθηματικά Level Sets Defiitio: Level Sets 0 L( y ) is a level set of the real-valued fuctio f : D R if-f { } 0 0 L( y ) = x\ x D, f ( x) = y, where 0 y R Defiitio: Superior ad Iferior Sets 1. S ( y 0 ) { x \ x D, f ( x ) y 0 } is called the superior set for level 2. I ( y 0 ) { x \ x D, f ( x ) y 0 } is called the iferior set for level > is called the strictly superior set for level 3. S ( y 0 ) { x \ x D, f ( x ) y 0 } < is called the strictly iferior set for level 4. I ( y 0 ) { x \ x D, f ( x ) y 0 } 0 y 0 y 0 y 0 y
21 Μαθηματικά Level Sets Defiitio: Superior ad Iferior Sets 1. S ( y 0 ) { x \ x D, f ( x ) y 0 } is called the superior set for level 2. I ( y 0 ) { x \ x D, f ( x ) y 0 } is called the iferior set for level > is called the strictly superior set for level 3. S ( y 0 ) { x \ x D, f ( x ) y 0 } < is called the strictly iferior set for level 4. I ( y 0 ) { x \ x D, f ( x ) y 0 } 0 y 0 y 0 y 0 y
22 Μαθηματικά Cocave Fuctio Defiitio: Cocave Fuctio f : D R is a cocave fuctio if for all 1 2 x, x D f x tf x + t f x t 1 2 ( ) ( ) (1 ) ( ) [0,1] where 1 2 = + (1 ) deotes the covex combiatio of x tx t x x, x 1 2
23 Μαθηματικά Cocave Fuctio Theorem: Poits o ad below the Graph of a Cocave fuctio always form a Covex Set Let A {( x, y)\ x D, f ( x) y} be the set of poits o ad below the graph of f : D R, where D is a covex set ad R. The f is cocave fuctio A is a covex set
24 Μαθηματικά Cocave Fuctio Defiitio: Strictly Cocave Fuctios f : D R is a strictly cocave fuctio if-f for all x x i D: f ( tx + (1 t) x ) > tf( x ) + (1 t) f ( x ) t (0,1) 1 2
25 Μαθηματικά Quasi - Cocave Fuctio Defiitio: Quasi-Cocave Fuctio f : D R is quasi-cocave if-f for all ( ) Quasi-Cocave Fuctios 1 2 x, x D: + (1 ) mi ( ), ( ) [0,1] f tx t x f x f x t
26 Μαθηματικά Quasi - Cocave Fuctio Theorem: Quasi-Cocavity ad the Superior Sets f : D is a quasi-cocave fuctio if-f S( y ) is a covex set for all y
27 Μαθηματικά Quasi - Cocave Fuctio Quasi-Cocave Fuctios Defiitio: Strictly Quasi-Cocave Fuctio f : D R is strictly quasi-cocave if-f for all 1 2 x x D: ( ) + (1 ) > mi ( ), ( ) (0,1) f tx t x f x f x t Theorem: Strictly Quasi-Cocavity ad the Superior Sets f : D is a strictly quasi-cocave fuctio if-f S( y ) is a strictly covex set for all y
28 Μαθηματικά Quasi - Cocave Fuctio
29 Μαθηματικά Quasi - Cocave Fuctio Theorem: Cocavity implies Quasi-cocavity A (strictly) cocave fuctio is always (strictly) quasi-cocave Theorem: Cobb-Douglas Fuctio a b Every Cobb-Douglas fuctio f ( x1, x2) = Ax1x2 with A, ab>0, is quasi-cocave.
30 Μαθηματικά Covex ad Quasi - Covex Fuctio Defiitio: Covex ad Strictly Covex Fuctios 1. f : D R is a covex fuctio if for all 1 2 x, x D ( ) f tx t x tf x t f x t + (1 ) ( ) + (1 ) ( ) [0,1] 2. f : D R is a strictly covex fuctio if for all 1 2 x x D ( ) f tx t x tf x t f x t + (1 ) < ( ) + (1 ) ( ) (0,1)
31 Μαθηματικά Covex ad Quasi - Covex Fuctio Theorem: Poits o ad Above the Graph of a Cocave fuctio always form a Covex Set Let A {( x, y)\ x D, f ( x) y} be the set of poits o ad above the graph of f : D R, where D is a covex set ad R. The f is covex fuctio A is a covex set
32 Μαθηματικά Covex ad Quasi - Covex Fuctio Defiitio: Quasi-Covex ad Strictly q-covex Fuctio 1. f : D R is quasi-covex if-f for all 1 2 x, x D : ( ) + (1 ) max ( ), ( ) [0,1] f tx t x f x f x t 2. f : D R is strictly quasi-covex if-f for all 1 2 x x D: ( ) + (1 ) < max ( ), ( ) (0,1) f tx t x f x f x t
33 Μαθηματικά Covex ad Quasi - Covex Fuctio Theorem: (Strictly) Quasi-Covex ad the Iferior Sets f : D is a (strictly) quasi-covex fuctio if-f I ( y ) is a (strictly) covex set for all y Theorem: (Strictly) Quasi-Covex ad (Strictly) Quasi-Cocave fuctios f ( x ) is a (strictly) quasi-cocave fuctio if-f f ( x) fuctio is a (strictly) quasi-covex
34 Μαθηματικά Covex ad Quasi - Covex Fuctio
35 Μαθηματικά Calculus Calculus ad Optimizatio Fuctios of a sigle variable
36 Μαθηματικά Calculus
37 Μαθηματικά Calculus Theorem: Calculus ad Optimizatio Fuctios of a sigle variable Suppose f : D R, D, R is twice cotiuously differetiable 1. f is cocave f ( x) 0, x D 2. f is covex f ( x) 0, x D Moreover, 1. if f ( x) < 0, x D the f is strictly cocave 2. if f ( x) > 0, x D the f is strictly covex
38 Μαθηματικά Calculus Calculus ad Optimizatio Fuctios of several variables
39 Μαθηματικά Calculus Calculus ad Optimizatio Fuctios of several variables Theorem: Youg s Theorem For ay twice cotiuously differetiable fuctio f ( x), x : 2 2 f ( x) f ( x) =, i, j x x x x i j j i
40 Μαθηματικά Liear Algebra (Leadig) Pricipal Miors of a Matrix Defiitio: Let A be a matrix. A k k submatrix of A formed by deletig k colums ad the same k rows from A is called a k th order pricipal submatrix of A. The determiat of that pricipal submatrix is called a k th order pricipal mior of A. Defiitio: Let A be a A obtaied by deletig the last matrix. The k th order pricipal submatrix of k rows ad the last k colums from A is called the k th order leadig pricipal submatrix of A. Its determiat is called the k th order leadig pricipal mior of A
41 Μαθηματικά Liear Algebra Defiiteess of a Matrix Theorem: Defiiteess of a matrix Let A be a symmetric matrix (a) A is positive defiite if-f all its leadig pricipal miors are strictly positive (b) A is egative defiite if-f its leadig pricipal miors alterate i sig as follows: A < 0, A > 0, A <
42 Μαθηματικά Liear Algebra Semi-Defiiteess of a Matrix Theorem: Semi-Defiiteess of a matrix Let A be a symmetric matrix (a) A is positive semi-defiite if-f every pricipal mior is 0 (b) A is egative semi-defiite if-f every pricipal mior of odd order 0 ad every pricipal mior of eve order 0
43 Μαθηματικά Liear Algebra Border Matrices H 0 f1 f2... f f1 f11 f12... f 1 = f2 f21 f22... f 2... f f 1 f2... f
44 Μαθηματικά Liear Algebra Border Matrices Theorem: Defiiteess of a bordered matrix Let H be a symmetric bordered matrix (a) H is positive defiite if-f all its bordered pricipal miors are strictly egative i.e 0 f f 0 f H = < 0 H = f f f < 0... H < f1 f11 f2 f21 f22 (b) H is egative defiite if-f its bordered pricipal miors alterate i sig as follows: 0 f f 0 f H = < 0 H = f f f > 0 H < f1 f11 f2 f21 f22
45 Μαθηματικά Liear Algebra Border Matrices Theorem: Semi-Defiiteess of a bordered matrix Let H be a symmetric bordered matrix (a) H is positive semi-defiite if-f every bordered pricipal mior is 0 (b) H is egative semi-defiite if-f every bordered pricipal mior of odd order 0 ad every bordered pricipal mior of eve order 0
46 Μαθηματικά Liear Algebra (Border) Matrices ad (Quasi) Cocavity/Covexity Theorem: Cocavity Covexity i May Variables Let D be a covex subset of o which f is twice cotiuously differetiable f is cocave (covex) H ( x ) is egative (positive) semi-defiite, x D Moreover If H ( x ) is egative (positive) defiite x D the f is strictly cocave (covex)
47 Μαθηματικά Liear Algebra Theorem: Cocavity Covexity ad Secod-Order Ow Partial Derivatives Let f : D R be a twice cotiuously differetiable fuctio 1. If f cocave fii ( x) 0 i = 1, 2,... x 2. If f covex fii ( x) 0 i = 1, 2,... x
48 Μαθηματικά Liear Algebra (Border) Matrices ad (Quasi) Cocavity/Covexity Theorem: Quasi-Cocavity (Covexity) i may variables Let D be a covex subset of o which f is twice cotiuously differetiable f is quasi cocave (covex) H ( x ) is egative (positive) semi-defiite, x D Moreover If ( ) H x is egative (positive) defiite x D the f is strictly quasi -cocave (quasi-covex)
49 Μαθηματικά Homogeeous Fuctio Homogeeous Fuctios Defiitio: Homogeeous Fuctios A real-valued fuctio f ( x ) is called homogeeous of degree k, if f ( tx) = t k f ( x) t > 0
50 Μαθηματικά Homogeeous Fuctio Homogeeous Fuctios Theorem: Partial Derivatives of Homogeeous Fuctios If f ( x ) is h.o.d. k, its partial derivatives are h.o.d. k-1 Theorem: Euler s Theorem Let f ( x ) be a cotiuously differetiable homogeeous fuctio of degree k o The for all x + f ( x) f ( x) f ( x) x + x x = kf ( x) x x x
51 Μαθηματικά Optimizatio Optimizatio Maxima ad miima for sigle-variable fuctios Cosider the fuctio of a sigle-variable f ( x) = y ad assume it is differetiable whe we say the fuctio achieves a local maximum at x, we mea that f x f x x B x ( ) ( ), ε ( ) whe we say the fuctio achieves a global maximum at x, we mea that f ( x ) f ( x), x D uique local maximum at x if f ( x ) > f ( x), x x B ( x ) ε uique global maximum at x if f ( x ) > f ( x), x x D
52 Μαθηματικά Optimizatio Optimizatio Maxima ad miima for sigle-variable fuctios Theorem: (a) If f ( x0) = 0 ad f ( x0) < 0 the x 0 is local max of f (b) If f ( x0) = 0 ad f ( x0) > 0 the x 0 is local mi of f (c) If f ( x0) = 0 ad f ( x0) = 0 the x 0 ca be max, mi, or either
53 Μαθηματικά Optimizatio Optimizatio Maxima ad miima for sigle-variable fuctios If f ( x ) is a twice cotiuously differetiable fuctio whose domai is a iterval I, the (a) If f ( x0 ) = 0 ad f ( x) < 0, x I the x 0 is a global max of f (b) If f ( x0 ) = 0 ad f ( x) > 0, x I the x 0 is a global mi of f
54 Μαθηματικά Optimizatio Optimizatio Real-valued fuctios of -variables Defiitio: Let f : D, D (1) A poit x D is a global max if f ( x ) f ( x), x D (1) A poit x D is a uique global max if f ( x ) > f ( x), x D ad x x (2) A poit x D is a local max if f ( x ) f ( x), x Bε ( x ) D (2) A poit x D is a uique local max if f ( x ) > f ( x), x Bε ( x ) D ad x x
55 Μαθηματικά Optimizatio Theorem: Optimizatio Real-valued fuctios of -variables Let f : D, D be a twice cotiuously differetiable fuctio If x D is a local max or mi of f ad if x is a iterior poit of D, the x solves the system f x x... ( ) 1 ( ) f x x 2 ( ) f x x = = = 0 0 0
56 Μαθηματικά Optimizatio Optimizatio Real-valued fuctios of -variables SECOND ORDER CONDITIONS Theorem: Sufficiet Coditios Let f : D, D be a twice cotiuously differetiable fuctio Suppose that x satisfies f ( x ) = 0, i = 1, 2,... x ad that the leadig pricipal i miors of H ( x ) alterate i sig at x. The H < 0, H > 0, H < x is a uique local max of f
57 Μαθηματικά Optimizatio Optimizatio Real-valued fuctios of -variables SECOND ORDER CONDITIONS Theorem: Necessary Coditios Let f : D, D be a twice cotiuously differetiable fuctio (1) If f ( x ) reaches a local iterior maximum at x the f x x ( ) i = 0, i = 1, 2,... ad H ( x ) is egative semi-defiite (2) If f ( x ) reaches a local iterior miimum at x the ad H ( x ) is positive semi-defiite f ( x ) x i = 0, i = 1, 2,...
58 Μαθηματικά Optimizatio Optimizatio Real-valued fuctios of -variables Theorem: Global Theorem Let f : D, D be a twice cotiuously differetiable fuctio which is [strictly] CONCAVE (covex) o D. The followig statemets are equivalet, where x is a iterior poit of D : (1) f x x ( ) i = 0, for i = 1, 2,... (2) f achieves a [uique] GLOBAL MAXIMUM (global miimum) at x
59 Μαθηματικά Optimizatio Costraied Optimizatio Equality Costraits max f ( x, x ) s.t. g( x, x ) = 0 x, x
60 Μαθηματικά Optimizatio Costraied Optimizatio Equality Costraits max f ( x, x ) s.t. g( x, x ) = 0 x, x Solve: 1. By substitutio
61 Μαθηματικά Optimizatio Costraied Optimizatio Equality Costraits max f ( x, x ) s.t. g( x, x ) = 0 x, x Solve: 1. By substitutio 2. Lagrage s Method
62 Μαθηματικά Optimizatio Costraied Optimizatio Equality Costraits Theorem: Sufficiet Coditios for Local Optima with Equality Costraits Let the objective fuctio be f ( x ) ad the m costraits be j g ( x) = 0, j = 1, 2,... m Let ( x, Λ ) solve the F.O.C. The 1. x is a local maximum of f ( x ) subject to the costraits, if the bordered pricipal miors, evaluated at ( x, Λ ), alterate i sig begiig with egative 2. x is a local miimum of f ( x ) subject to the costraits, if the bordered pricipal miors, evaluated at ( x, Λ ), are all egative
63 Μαθηματικά Optimizatio Costraied Optimizatio Iequality Costraits Theorem: Necessary Coditios for Optima of Real-valued fuctios s.t. Noegative Costraits Let the objective fuctio f ( x ) be cotiuously differetiable 1. If x maximizes f ( x ) s.t. x 0, the x satisfies: (i) f ( x) x i 0, i = 1, 2... (ii) (iii) f( x ) xi = 0, i = 1, 2... xi x 0 i = 1, 2,... i
64 Μαθηματικά Optimizatio Costraied Optimizatio Iequality Costraits KUHN-TUCKER CONDITIONS
65 Μαθηματικά Optimizatio Value Fuctios M ( a) f ( xa ( ), a) Theorem: Theorem of the Maximum If the objective fuctio ad the costrait are cotiuous i the parameters, ad if the domai is a compact set, the M ( a ) ad x( a ) are cotiuous i a
66 Μαθηματικά Optimizatio THE ENVELOPE THEOREM Cosider the problem max f ( x ; a ) s.t. g( x; a) = 0 ad x 0 x ad suppose the objective fuctio ad costrait are cotiuously differetiable i a. For each a, let xa ( ) >> 0 uiquely solve the problem ad assume that it is also cotiuously differetiable i the parameters a. Let Lxaλ (,, ) be the problem s associated Lagragia fuctio ad let ( x( a), λ ( a)) solve the Kuh-Tucker coditios. Fially, let M ( a ) be the problem s associated maximum-value fuctio. The the Evelope Theorem states that M( a) L = j = 1, 2,... m a a j j x( a) λ ( a)
1. For each of the following power series, find the interval of convergence and the radius of convergence:
Math 6 Practice Problems Solutios Power Series ad Taylor Series 1. For each of the followig power series, fid the iterval of covergece ad the radius of covergece: (a ( 1 x Notice that = ( 1 +1 ( x +1.
L.K.Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 4677 + {JEE Mai 04} Sept 0 Name: Batch (Day) Phoe No. IT IS NOT ENOUGH TO HAVE A GOOD MIND, THE MAIN THING IS TO USE IT WELL Marks:
Introduction of Numerical Analysis #03 TAGAMI, Daisuke (IMI, Kyushu University)
Itroductio of Numerical Aalysis #03 TAGAMI, Daisuke (IMI, Kyushu Uiversity) web page of the lecture: http://www2.imi.kyushu-u.ac.jp/~tagami/lec/ Strategy of Numerical Simulatios Pheomea Error modelize
1. Matrix Algebra and Linear Economic Models
Matrix Algebra ad Liear Ecoomic Models Refereces Ch 3 (Turkigto); Ch 4 5 (Klei) [] Motivatio Oe market equilibrium Model Assume perfectly competitive market: Both buyers ad sellers are price-takers Demad:
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
n r f ( n-r ) () x g () r () x (1.1) = Σ g() x = Σ n f < -n+ r> g () r -n + r dx r dx n + ( -n,m) dx -n n+1 1 -n -1 + ( -n,n+1)
8 Higher Derivative of the Product of Two Fuctios 8. Leibiz Rule about the Higher Order Differetiatio Theorem 8.. (Leibiz) Whe fuctios f ad g f g are times differetiable, the followig epressio holds. r
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
Last Lecture. Biostatistics Statistical Inference Lecture 19 Likelihood Ratio Test. Example of Hypothesis Testing.
Last Lecture Biostatistics 602 - Statistical Iferece Lecture 19 Likelihood Ratio Test Hyu Mi Kag March 26th, 2013 Describe the followig cocepts i your ow words Hypothesis Null Hypothesis Alterative Hypothesis
Biorthogonal Wavelets and Filter Banks via PFFS. Multiresolution Analysis (MRA) subspaces V j, and wavelet subspaces W j. f X n f, τ n φ τ n φ.
Chapter 3. Biorthogoal Wavelets ad Filter Baks via PFFS 3.0 PFFS applied to shift-ivariat subspaces Defiitio: X is a shift-ivariat subspace if h X h( ) τ h X. Ex: Multiresolutio Aalysis (MRA) subspaces
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutions to Problems on Matrix Algebra
MATH 38061/MATH48061/MATH68061: MULTIVARIATE STATISTICS Solutios to Poblems o Matix Algeba 1 Let A be a squae diagoal matix takig the fom a 11 0 0 0 a 22 0 A 0 0 a pp The ad So, log det A t log A t log
IIT JEE (2013) (Trigonomtery 1) Solutions
L.K. Gupta (Mathematic Classes) www.pioeermathematics.com MOBILE: 985577, 677 (+) PAPER B IIT JEE (0) (Trigoomtery ) Solutios TOWARDS IIT JEE IS NOT A JOURNEY, IT S A BATTLE, ONLY THE TOUGHEST WILL SURVIVE
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Tridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Solutions: Homework 3
Solutios: Homework 3 Suppose that the radom variables Y,, Y satisfy Y i = βx i + ε i : i,, where x,, x R are fixed values ad ε,, ε Normal0, σ ) with σ R + kow Fid ˆβ = MLEβ) IND Solutio: Observe that Y
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES
Iteratioal Joural of Avacemets i Research & Techology, Volume, Issue, Jauary-03 ISSN 78-7763 COMMON RANDOM FIXED POINT THEOREMS IN SYMMETRIC SPACES Dr Neetu Vishwakarma a Dr M S Chauha Sagar Istitute of
The challenges of non-stable predicates
The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates
Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function
Fourier Series Periodic uctio A uctio is sid to hve period T i, T where T is ve costt. The ;est vlue o T> is clled the period o. Eg:- Cosider we kow tht, si si si si si... Etc > si hs the periods,,6,..
Homework for 1/27 Due 2/5
Name: ID: Homework for /7 Due /5. [ 8-3] I Example D of Sectio 8.4, the pdf of the populatio distributio is + αx x f(x α) =, α, otherwise ad the method of momets estimate was foud to be ˆα = 3X (where
Supplementary Materials: Trading Computation for Communication: Distributed Stochastic Dual Coordinate Ascent
Supplemetary Materials: Tradig Computatio for Commuicatio: istributed Stochastic ual Coordiate Ascet Tiabao Yag NEC Labs America, Cupertio, CA 954 tyag@ec-labs.com Proof of Theorem ad Theorem For the proof
ΚΟΙΛΕΣ KAI ΟΙΟΝΕΙ-ΚΟΙΛΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. R και καθε αριθμο α οριζουμε
page 1 of 12 ΚΟΙΛΕΣ KAI ΟΙΟΝΕΙ-ΚΟΙΛΕΣ ΣΥΝΑΡΤΗΣΕΙΣ Ορισμος Για καθε συναρτηση f : S R και καθε αριθμο α οριζουμε Την καμπυλη αδιαφοριας(idifferece curve, level set) της f I = { x Sfx, ( ) = α} α Το υπερτερο
α β
6. Eerg, Mometum coefficiets for differet velocit distributios Rehbock obtaied ) For Liear Velocit Distributio α + ε Vmax { } Vmax ε β +, i which ε v V o Give: α + ε > ε ( α ) Liear velocit distributio
Lecture 17: Minimum Variance Unbiased (MVUB) Estimators
ECE 830 Fall 2011 Statistical Sigal Processig istructor: R. Nowak, scribe: Iseok Heo Lecture 17: Miimum Variace Ubiased (MVUB Estimators Ultimately, we would like to be able to argue that a give estimator
New bounds for spherical two-distance sets and equiangular lines
New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a
Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.
Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:
Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.
Στα πόμνα θωρούμ ότι όλα συμβαίνουν σ ένα χώρο πιθανότητας ( Ω,,). Modes of covergece: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ. { } ίναι οι ξής: σ μια τ.μ.. Ισχυρή σύγκλιση strog covergece { } lim = =.
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
ΚΟΙΛΕΣ KAI ΟΙΟΝΕΙ ΚΟΙΛΕΣ ΣΥΝΑΡΤΗΣΕΙΣ. R και καθε αριθμο οριζουμε. Την καμπυλη αδιαφοριας(indifference curve,level set) της f
Page 1 of 13 covexity Ορισμος Για καθε συναρτηση ΚΟΙΛΕΣ KAI ΟΙΟΝΕΙ ΚΟΙΛΕΣ ΣΥΝΑΡΤΗΣΕΙΣ f : S R και καθε αριθμο οριζουμε Την καμπυλη αδιαφοριας(idifferece curve,level set) της f I { xs, f( x ) } Το υπερτερο
On Inclusion Relation of Absolute Summability
It. J. Cotemp. Math. Scieces, Vol. 5, 2010, o. 53, 2641-2646 O Iclusio Relatio of Absolute Summability Aradhaa Dutt Jauhari A/66 Suresh Sharma Nagar Bareilly UP) Idia-243006 aditya jauhari@rediffmail.com
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣTHN ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗΣ.
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΤΜΗΜΑ ΟΙΚΟΝΟΜΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΕΤΑΠΤΥΧΙΑΚΟ ΠΡΟΓΡΑΜΜΑ ΣTHN ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΛΥΣΗ ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΜΙΚΡΟΟΙΚΟΝΟΜΙΚΗΣ Διδάσκων: Αθανάσιος Λαπατίνας Ασκήσεις Ι (Σημείωση: Ο αριθμός των αστερίσκων
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
5. Choice under Uncertainty
5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
The ε-pseudospectrum of a Matrix
The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices
Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices Chi-Kwong Li Department of Mathematics The College of William and Mary Williamsburg, Virginia 23187-8795
FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revision B
FREE VIBRATION OF A SINGLE-DEGREE-OF-FREEDOM SYSTEM Revisio B By Tom Irvie Email: tomirvie@aol.com February, 005 Derivatio of the Equatio of Motio Cosier a sigle-egree-of-freeom system. m x k c where m
Lecture 21: Properties and robustness of LSE
Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem
Ψηφιακή Επεξεργασία Εικόνας
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ψηφιακή Επεξεργασία Εικόνας Φιλτράρισμα στο πεδίο των συχνοτήτων Διδάσκων : Αναπληρωτής Καθηγητής Νίκου Χριστόφορος Άδειες Χρήσης Το παρόν εκπαιδευτικό
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max
A Note on Intuitionistic Fuzzy. Equivalence Relation
International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com
On Generating Relations of Some Triple. Hypergeometric Functions
It. Joural of Math. Aalysis, Vol. 5,, o., 5 - O Geeratig Relatios of Some Triple Hypergeometric Fuctios Fadhle B. F. Mohse ad Gamal A. Qashash Departmet of Mathematics, Faculty of Educatio Zigibar Ade
SUPPLEMENT TO ROBUSTNESS, INFINITESIMAL NEIGHBORHOODS, AND MOMENT RESTRICTIONS (Econometrica, Vol. 81, No. 3, May 2013, )
Ecoometrica Supplemetary Material SUPPLEMENT TO ROBUSTNESS, INFINITESIMAL NEIGHBORHOODS, AND MOMENT RESTRICTIONS (Ecoometrica, Vol. 81, No. 3, May 213, 1185 121) BY YUICHI KITAMURA,TAISUKE OTSU, ANDKIRILL
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6
SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES Readig: QM course packet Ch 5 up to 5. 1 ϕ (x) = E = π m( a) =1,,3,4,5 for xa (x) = πx si L L * = πx L si L.5 ϕ' -.5 z 1 (x) = L si
On Certain Subclass of λ-bazilevič Functions of Type α + iµ
Tamsui Oxford Joural of Mathematical Scieces 23(2 (27 141-153 Aletheia Uiversity O Certai Subclass of λ-bailevič Fuctios of Type α + iµ Zhi-Gag Wag, Chu-Yi Gao, ad Shao-Mou Yua College of Mathematics ad
Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008
Sequent Calculi for the Modal µ-calculus over S5 Luca Alberucci, University of Berne Logic Colloquium Berne, July 4th 2008 Introduction Koz: Axiomatisation for the modal µ-calculus over K Axioms: All classical
LAD Estimation for Time Series Models With Finite and Infinite Variance
LAD Estimatio for Time Series Moels With Fiite a Ifiite Variace Richar A. Davis Colorao State Uiversity William Dusmuir Uiversity of New South Wales 1 LAD Estimatio for ARMA Moels fiite variace ifiite
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER
ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Presentation of complex number in Cartesian and polar coordinate system
1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:
CHAPTER 103 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES
CHAPTER 3 EVEN AND ODD FUNCTIONS AND HALF-RANGE FOURIER SERIES EXERCISE 364 Page 76. Determie the Fourier series for the fuctio defied by: f(x), x, x, x which is periodic outside of this rage of period.
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
A study on generalized absolute summability factors for a triangular matrix
Proceedigs of the Estoia Acadey of Scieces, 20, 60, 2, 5 20 doi: 0.376/proc.20.2.06 Available olie at www.eap.ee/proceedigs A study o geeralized absolute suability factors for a triagular atrix Ere Savaş
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Uniform Convergence of Fourier Series Michael Taylor
Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Parametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some
Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής
Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Three Classical Tests; Wald, LM(Score), and LR tests
Eco 60 Three Classical Tests; Wald, MScore, ad R tests Suppose that we have the desity l y; θ of a model with the ull hypothesis of the form H 0 ; θ θ 0. et θ be the lo-likelihood fuctio of the model ad
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
Quadratic Expressions
Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots
The Equivalence Theorem in Optimal Design
he Equivalece heorem i Optimal Desig Raier Schwabe & homas Schmelter, Otto vo Guericke Uiversity agdeburg Bayer Scherig Pharma, Berli rschwabe@ovgu.de PODE 007 ay 4, 007 Outlie Prologue: Simple eamples.
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?
Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least
Supplemental Material: Scaling Up Sparse Support Vector Machines by Simultaneous Feature and Sample Reduction
Supplemetal Material: Scalig Up Sparse Support Vector Machies by Simultaeous Feature ad Sample Reductio Weizhog Zhag * 2 Bi Hog * 3 Wei Liu 2 Jiepig Ye 3 Deg Cai Xiaofei He Jie Wag 3 State Key Lab of CAD&CG,
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω
0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
Lecture 13 - Root Space Decomposition II
Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Ενότητα 3: Ακρότατα συναρτήσεων μίας ή πολλών μεταβλητών. Νίκος Καραμπετάκης Τμήμα Μαθηματικών
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 3: Ακρότατα συναρτήσεων μίας ή πολλών μεταβλητών Νίκος Καραμπετάκης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Lecture 15 - Root System Axiomatics
Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
Μαθηματικά Πληροφορικής Συνδυαστικά Θεωρήματα σε Πεπερασμένα Σύνολα
Μαθηματικά Πληροφορικής Συνδυαστικά Θεωρήματα σε Πεπερασμένα Σύνολα Μια διμελής σχέση πάνω σε ένα σύνολο X καλείται μερική διάταξη αν η είναι ανακλαστική, αντισυμμετρική και μεταβατική, δηλαδή: a X, a
Concrete Mathematics Exercises from 30 September 2016
Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)
Homomorphism in Intuitionistic Fuzzy Automata
International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Generating Set of the Complete Semigroups of Binary Relations
Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
The Heisenberg Uncertainty Principle
Chemistry 460 Sprig 015 Dr. Jea M. Stadard March, 015 The Heiseberg Ucertaity Priciple A policema pulls Werer Heiseberg over o the Autobah for speedig. Policema: Sir, do you kow how fast you were goig?
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1
Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the
MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81
1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then
6. MAXIMUM LIKELIHOOD ESTIMATION
6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ