Μάθημα 4 α) QUIZ στην τάξη β) Κοιλάδα β-σταθερότητας γ) Άλφα διάσπαση δ) Σχάση και σύντηξη

Σχετικά έγγραφα
Μάθημα 6 Μοντέλο σταγόνας: Hμιεμπειρικός τύπος μάζας (ή τύπος του Weitzecker). Κοιλάδα β-σταθερότητας

Μάθημα 6 Μοντέλο σταγόνας: Hμιεμπειρικός τύπος Weitzecker Κοιλάδα β-σταθερότητας

Μάθημα 3 α) QUIZ στην τάξη. Μέγεθος πυρήνα από μιονικά άτομα β) Μοντέλο σταγόνας: Hμιεμπειρικός τύπος Weitzecker Κοιλάδα β-σταθερότητας

Πυρηνική και Στοιχειώδη Ι (5ου εξαμήνου) Επανάληψη μέσω ασκήσεων #2: Κοιλάδα σταθερότητας, ενέργεια σύνδεσης, φράγμα Coulomb

Πυρηνική και Στοιχειώδη Ι (5ου εξαμήνου) α-διάσπαση

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Χ. Πετρίδου. Μάθημα 6

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 6β

Μάθημα 5 α) β-διάσπαση β) Ασκήσεις

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 7

Μάθημα 4 α) Άλφα διάσπαση β) Σχάση και σύντηξη

Ασκήσεις #2 Μέγεθος και Μάζα πυρήνα. Ενέργεια σύνδεσης και το Q μιάς αντίδρασης. Κοιλάδα σταθερότητας.

Μάθημα 15 β-διάσπαση B' μέρος (διατήρηση σπίν, επιτρεπτές και απαγορευμένες

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 6

Μάθημα 15 β-διάσπαση Α' μέρος (νετρίνα και ενεργειακές συνθήκες)

Μάθημα 4 α) QUIZ στην τάξη β) Κοιλάδα β-σταθερότητας γ) Άλφα διάσπαση δ) Σχάση και σύντηξη

Ασκήσεις #1 επιστροφή 11/11/2011

Ασκήσεις #1 επιστροφή 11/11/2011

Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό ) Τμήμα T3: Κ. Κορδάς & Σ. Ε. Τζαμαρίας. Μάθημα 7 α-διάσπαση

Πυρηνικές διασπάσεις. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Μάθημα 5 Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Μάθημα 5 Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Μάθημα 2 α) QUIZ στην τάξη. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Μάθημα 5 α) Μέγεθος του πυρήνα β) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας γ) Ασκήσεις σετ #2 - εκφωνήσεις

Μάθημα 2 α) Μέγεθος του πυρήνα β) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας γ) Ασκήσεις σετ #2 - εκφωνήσεις

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Χ. Πετρίδου. Μάθημα 9

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 15

Μάθημα 12 α-διάσπαση

Ασκήσεις #1 επιστροφή 15/10/2012

Η κοιλάδα σταθερότητας των πυρήνων

Μάθημα 2 α) QUIZ. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Μάζες Πυρήνων. Διάλεξη 3η Πετρίδου Χαρά

Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό γ) Πυρηνικό μοντέλο των φλοιών

Μάθημα 5 α) QUIZ στην τάξη β) Σχάση και σύντηξη γ) Πρώτο σετ ασκήσεων δ) β-διάσπαση (μέρος Α')

α - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 8

ΡΑΔΙΟΧΗΜΕΙΑ ΚΕΦΑΛΑΙΟ 2. ΝΟΥΚΛΙΔΙΑ 2. ΕΝΕΡΓΕΙΑ ΤΩΝ ΡΑΔΙΟΝΟΥΚΛΙΔΙΩΝ

Ασκήσεις #7 αποδιεγέρσεις γ

Εισαγωγή στην Πυρηνική Φυσική και τα Στοιχειώδη Σωμάτια

Μάθημα 7 α) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό β) Πυρηνικό μοντέλο των φλοιών

Μάθημα 4 Mέγεθος πυρήνα

Μάθημα 2 α) Μέγεθος του πυρήνα β) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας γ) Ασκήσεις σετ #2 - εκφωνήσεις

Μάθημα 2 α) QUIZ. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Γενικά χαρακτηριστικά των πυρήνων (Φορτίο, Μάζα, Σταθερότητα) Ισότοπα και Πυρηνικές αντιδράσεις Ραδιενέργεια. Α. Λιόλιος Μάθημα Πυρηνικής Φυσικής

Διάλεξη 11-12: Ασκήσεις στην Πυρηνική Φυσική

Μάθημα 7 α) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό β) Πυρηνικό μοντέλο των φλοιών

Διάλεξη 5: Αποδιέγερσεις α και β

Μάθημα 5 - Πυρηνική 1) Ειδη διασπάσεων και Νόμος ραδιενεργών διασπάσεων 2) αλφα, 3) βητα, 4) γαμμα

Πυρηνική και Στοιχειώδη Ι (5ου εξαμήνου) Ασκήσεις Πυρηνικής

Ξ. Ασλάνογλου Τμήμα Φυσικής Ακαδ. Έτος ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ

Aσκήσεις. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Μάθημα 4 Mέγεθος πυρήνα

Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό γ) Πυρηνικό μοντέλο των φλοιών

Μάθημα 5 α) Μέγεθος του πυρήνα β) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας γ) Ασκήσεις σετ #2 - εκφωνήσεις

Πυρηνική και Στοιχειώδη Ι (5ου εξαμήνου) Eπανάληψη μέσω ασκήσεων #1 μέγεθος πυρήνα, ενέργεια σύνδεσης, η μάζα ως μορφή ενέργειας

Μάθημα 2 Πείραμα Rutherford και μέγεθος πυρήνων, Πυρήνες-συμβολισμοί

Η ενέργεια σύνδεσης των νουκλεονίων χαρακτηρίζεται από τα εξής χαρακτηριστικά:

Ακήσεις #1 Μήκος κύματος σωματιδίων, χρόνος ζωής και ραδιοχρονολόγηση, ενεργός διατομή, μέγεθος πυρήνων

Πυρηνική Επιλογής. Τα νετρόνια κατανέμονται ως εξής;

Μάθημα 2 α) QUIZ στην τάξη. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Μάθηµα 2 Πείραµα Rutherford και µέγεθος πυρήνων, Πυρήνες-συµβολισµοί

ΟΙ ΑΣΚΗΣΕΙΣ ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΣΥΓΓΡΑΦΕΑΣ: ΤΣΙΤΣΑΣ ΓΡΗΓΟΡΗΣ

β διάσπαση II Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Μάθημα 6 α) β-διάσπαση β) Χαρακτηριστικά πυρήνων, πέρα από μέγεθος και μάζα

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

Μάθημα 12, 13, 14 Πυρηνικό μοντέλο των φλοιών

ΦΥΣΙΚΗ ΙΑΛΕΞΗ 4: Ο ΑΤΟΜΙΚΟΣ ΠΥΡΗΝΑΣ. ιδάσκων Ευθύµιος Τάγαρης Φυσικός, ρ Περιβαλλοντικών Επιστηµών. ρ Ευθύµιος Α. Τάγαρης

Σχάση. X (x, y i ) Y 1, Y 2 1.1

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

Σύγχρονη Φυσική : Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων 11/04/16

Ε ι σ α γ ω γ ή στo Εργαστήριο Πυρηνικής Φυσικής

Ο Πυρήνας του Ατόμου

Μάζα των πυρήνων. Α. Λιόλιος Μάθημα Πυρηνικής Φυσικής

Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό ) Τμήμα T2: Κ. Κορδάς & Δ. Σαμψωνίδης

Niels Bohr ( ) ΘΕΜΑ Α

β - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

λ Ε Πχ. Ένα σωματίδιο α έχει φορτίο +2 όταν επιταχυνθεί από μια διαφορά Για ακτίνες Χ ή ακτινοβολία γ έχουμε συχνότητα

Το µοντέλο της υγρής σταγόνας

AΠO ΤΑ ΠΡΩΤΟΝΙΑ & ΤΑ ΝΕΤΡΟΝΙΑ ΣΤΟΥΣ ΠΥΡΗΝΕΣ

Σχάση - Σύντηξη. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Μάθημα 10 & 11 Πυρηνικό μοντέλο των φλοιών

Αλληλεπίδραση ακτίνων-χ με την ύλη

ΡΑΔΙΟΧΗΜΕΙΑ ΚΕΦΑΛΑΙΟ 4. ΤΕΧΝΗΤΑ ΡΑΔΙΟΝΟΥΚΛΙΔΙΑ ΔΙΑΧΕΙΡΙΣΗ ΡΑΔΙΕΝΕΡΓΩΝ ΑΠΟΒΛΗΤΩΝ ΤΟΞΙΚΟΤΗΤΑ ΡΑΔΙΕΝΕΡΓΩΝ ΙΣΟΤΟΠΩΝ. Τμήμα Χημικών Μηχανικών

Μάθημα 3α Ενεργός διατομή και μέση ελεύθερη διαδρομή

Ασκήσεις διασπάσεις. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

ΣΤΟΙΧΕΙΑ ΠΥΡΗΝΙΚΗΣ ΦΥΣΙΚΗΣ & ΑΚΤΙΝΟΒΟΛΙΩΝ ΦΥΣΙΚΗ & ΤΕΧΝΗΤΗ ΡΑΔΙΕΝΕΡΓΕΙΑ ΣΤΟ ΠΕΡΙΒΑΛΛΟΝ

β - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Μάθημα 1 α) Ύλη, τρόπος διαβάσματος και εξέτασης β) Εισαγωγή στο αντικείμενο γ) Πείραμα Rutherford, μονάδες, χρόνος ζωής ενεργός διατομή και ορισμοί

Μάθημα 2 Σχετικιστική μηχανική, μoνάδες, εκτίμηση μεγέθους ατόμων και πυρήνων, πυρήνες-συμβολισμοί

Answers to Ηomework set Μάζα του 8Ο. = Μάζα του. = ατομικές μονάδες u

Μάθημα 14 β-διάσπαση B' μέρος

Αναπληρωτής Καθηγητής Τμήμα Συντήρησης Αρχαιοτήτων και Έργων Τέχνης Πανεπιστήμιο Δυτικής Αττικής - ΣΑΕΤ

Το άτομο του Υδρογόνου

Μάθημα 1 α) Ύλη, τρόπος διαβάσματος και εξέτασης β) Εισαγωγή στο αντικείμενο γ) Πείραμα Rutherford, μονάδες, χρόνος ζωής ενεργός διατομή και ορισμοί

ΝΟΜΟΣ ΤΗΣ ΠΕΡΙΟ ΙΚΟΤΗΤΑΣ : Οι ιδιότητες των χηµικών στοιχείων είναι περιοδική συνάρτηση του ατοµικού τους αριθµού.

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 20 ΜΑΪΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

γ-διάσπαση Διάλεξη 17η Πετρίδου Χαρά Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου

ΠΥΡΗΝΙΚΕΣ ΑΝΤΙΔΡΑΣΕΙΣ

β διάσπαση II Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

ΠΥΡΗΝΙΚΗ 5ου εξαμήνου. 10 διευκρινήσεις και σημαντικά σημεία (όχι σ' όλη την ύλη) Κ. Κορδάς, ακ. έτος

ΠΥΡΗΝΙΚΑ ΜΟΝΤΕΛΑ Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής

Transcript:

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 4 α) QUIZ στην τάξη β) Κοιλάδα β-σταθερότητας γ) Άλφα διάσπαση δ) Σχάση και σύντηξη Λέκτορας Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Πυρηνική & Στοιχειώδη Ι, Αριστοτέλειο Παν. Θ/νίκης, 4 Νοεμβρίου 2011

Σήμερα Κοιλάδα β-σταθερότητας Βιβλίο C&G, Κεφ. 4, παρ. 4.5-4.7. Σημειώσεις Πυρηνικής, Κεφ. 3, παρ 3.2, 3.3 α-διάσπαση Βιβλίο C&G, Κεφ. 6, παρ. 6.1, 6.2 και 6.3 Σημειώσεις Πυρηνικής, Κεφ. 5, παρ 5.1 Αυθόρμητη σχάση Βιβλίο C&G, Κεφ. 6, παρ. 6.3 Σημειώσεις Πυρηνικής, Κεφ. 7 Σύντηξη Βιβλίο C&G, Κεφ. 10, παρ. 10.1 Ιστοσελίδα: http://www.physics.auth.gr/course/show/125 2

Ενέργεια σύνδεσης - ημιεμπειρικός τύπος Μπυρήνα = ( Z mp + N mn ) - Β Β(Ζ,Ν) = aa - b A2/3 - s (N-Z)2 / A - d Z2 / A1/3 - δ / A1/2 a=15.835 MeV, b=18.33 MeV s=23.20 MeV, d=0.714 MeV +11.2 MeV περιτοί-περιτοί δ= 0 περιτοί-άρτιοι -11.2 MeV άρτιοι-άρτιοι 3

Ενέργεια σύνδεσης - ημιεμπειρικός τύπος Β(Ζ,Ν) = aa - a=15.835 MeV, b=18.33 MeV s=23.20 MeV, d=0.714 MeV +11.2 MeV περιτοί-περιτοί δ= 0 περιτοί-άρτιοι -11.2 MeV άρτιοι-άρτιοι, ( MeV/νουκλεόνιο) - ω σ Ζ ά Α ba το γενικ υ ς ο α τ τ αι ο ν ν ί ν ο ε ό γ ν μ έ ε λ s (N-Z)2 / A δ η Δια α που ρτησ ά γμ 2 1/ 3 ν ά υ ρ dz /A σ π Α / /2, Β Α Ζ= ε το, 1/ 2. δ/a (π.χ νουμ κά 2/ 3 Β/Α - ) στ ό Α Άρτιο Ζ, άρτιο Ν 4

Ενέργεια σύνδεσης - ημιεμπειρικός τύπος Β(Ζ,Ν) = 56 Fe aa - b A2/3 - s (N-Z)2 / A - d Z2 / A1/3 - δ / A1/2 a=15.835 MeV, b=18.33 MeV s=23.20 MeV, d=0.714 MeV ΠΡΟΣΟΧΗ: Η περιγραφή είναι γενικά καλή αλλά όχι τέλεια! +11.2 MeV περιτοί-περιτοί δ= 0 περιτοί-άρτιοι -11.2 MeV άρτιοι-άρτιοι Άρτιο Ζ, άρτιο Ν 5

Ενέργεια σύνδεσης - ημιεμπειρικός τύπος Β(Ζ,Ν) = 56 Fe aa - b A2/3 - s (N-Z)2 / A - d Z2 / A1/3 - δ / A1/2 a=15.835 MeV, b=18.33 MeV s=23.20 MeV, d=0.714 MeV ς ω μ ό ; ε ή μ φ ξα ιγρα έ λ ρ ια ε δ π ό Ζ ωστή ι ο Π σ η τ α ι γ ΠΡΟΣΟΧΗ: Η περιγραφή είναι γενικά καλή αλλά όχι τέλεια! +11.2 MeV περιτοί-περιτοί δ= 0 περιτοί-άρτιοι -11.2 MeV άρτιοι-άρτιοι Άρτιο Ζ, άρτιο Ν 6

Κοιλάδα β-σταθερότητας Η απάντηση στο ερώτημα: για κάθε Α, ποιό Ζ δίνει το σταθερότερο στοιχείο; 7

Κοιλάδα β-σταθερότητας: Για κάθε Α, ποιό Ζ δίνει το σταθερότερο στοιχείο; Ενέργεια σύνδεσης πυρήνα: Β(Ζ,Ν) = a A - b A2/3 - s (N-Z)2 / A - d Z2 / A1/3 - δ / A1/2 Αντικαθιστώντας Ν=Α-Ζ, έχουμε Β(Α,Ζ) αντί για Β(Ζ,Ν): Β(A,Z) = a A - b A2/3 - s (Α-2Z)2 / A - d Z2 / A1/3 - δ / A1/2 B(A,Z) = c1 + c2 * Z + c3 * Z2 = παραβολή (για Α=σταθ.) Β(Ζ Α=σταθ.) Το Β ως συνάρτηση του Ζ, για Α=σταθ. Ζ 8

β-σταθερό = τo σταθερότερο Ζ σε κάθε Α: μέγιστη ενέργεια σύνδεσης Μέγιστο Β(Α,Ζ), για κάθε Α=σταθερό: Άρα το Ζ που δίνει το μέγιστο Β(Α,Ζ), για κάθε Α είναι: Z= A 2 d /2s A s=23.20 MeV 2/3 Z= A 2 0.0154 A 2/ 3, d=0.714 MeV Ζ < Α/2 9

Κοιλάδα β-σταθερότητας: Για κάθε Α, ποιό Ζ δίνει το σταθερότερο στοιχείο; Αν λάβουμε υπ'όψιν το άτομο ως σύνολο, με μάζα Μ(Α,Ζ): 0 M(A,Z) = Σm B(A,Z) B(Coulomb ηλεκτρονίων) B(Coulomb ηλεκτρονίων) ~ 0 (τάξη μεγέθους ev, ενώ στον πυρήνα έχουμε MeV) ==> M(A,Z) = Z mp + Z me + (A-Z) mn [a A - b A2/3 - s (Α-2Z)2 / A - d Z2 / A1/3 - δ / A1/2 ] M(A,Z) =άλλη παραβολή ως πρός Ζ για Α=σταθ. Μ(Ζ Α=σταθ.) Το Μ ως συνάρτηση του Ζ, για Α=σταθ. Ζ 10

β-σταθερό = τo σταθερότερο Ζ σε κάθε Α: ελάχιστη μάζα (ενέργεια) ατόμου Ελάχιστη μάζα Μ(Α,Ζ) για κάθε Α=σταθερό: Για συγκεκριμένο Α και δ (π.χ., δ=0), το Ζ που δίνει ελάχιστη μάζα είναι: Στο βιβλίο σας Άρα το Ζ που δίνει την ελάχιστη Μ(Α,Ζ), για κάθε Α είναι: m(n) = 939.57 MeV / c2 m(p) = 938.27 MeV /c2 m(e) = 0.511 MeV / c2 s=23.20 MeV, d=0.714 MeV Z= A 1.983 0.0153 A 2/3 Ζ < Α/2 11

β-σταθερό = τo σταθερότερο Ζ σε κάθε Α: ελάχιστη μάζα (ενέργεια) ατόμου Z= A 1.983 0.0153 A 'Οντως, σε κάθε Α, είναι Ζ < Α/2 : 2/3 Ζ < Α/2 Ζ Α 12

Κοιλάδα β-σταθερότητας: Για κάθε Α, ποιό Ζ δίνει το σταθερότερο στοιχείο; Αν λάβουμε υπ'όψιν το άτομο ως σύνολο, με μάζα Μ(Α,Ζ): M(A,Z) = Z mp + Z me + (A-Z) mn - 0 [a A - b A2/3 - s (Α-2Z)2 / A - d Z2 / A1/3 - δ / A1/2 ] M(A,Z) =άλλη παραβολή ως πρός Ζ για Α=σταθ. Μ(Ζ Α=σταθ.) Το Μ ως συνάρτηση του Ζ, για Α=σταθ. Ζ Z= A 1.983 0.0153 A 2/3 13

Κοιλάδα β-σταθερότητας: Για κάθε Α, ποιό Ζ δίνει το σταθερότερο στοιχείο; Αν λάβουμε υπ'όψιν το άτομο ως σύνολο, με μάζα Μ(Α,Ζ): M(A,Z) = Z mp + Z me + (A-Z) mn - 0 [a A - b A2/3 - s (Α-2Z)2 / A - d Z2 / A1/3 - δ / A1/2 ] M(A,Z) =άλλη παραβολή ως πρός Ζ για Α=σταθ. Μ(Ζ Α=σταθ.) Για Α= περιτό, το δ έχει μία τιμή (δ=0) μία καμπύλη μάζας. Το Μ ως συνάρτηση του Ζ, για Α=σταθ. Ζ Z= A 1.983 0.0153 A 2/3 Αλλά για Α=άρτιο, μπορεί να πάρει δύο τιμές δύο καμπύλες μάζας 14

Α περιττός: άρτιος-περιττός πυρήνας, δ=0 Ατομική μάζα Μία παραβολή π.χ., Α=135 Αν υπάρχει Ζ<Ζmin διασπάται με β- β(-) -διάσπαση: (Α,Ζ) (Α,Ζ+1) και Μ(Α,Ζ) > Μ(Α,Ζ+1) ββ+ ββ54 52 Te Αν Ζ>Ζmin θα διασπασθεί με β(+) - I Xe EC 56 Cs Ba Ζ διάσπαση: (Α,Ζ) (Α,Ζ-1) και Μ(Α,Ζ) > Μ(Α,Ζ-1) 58 La Ce Pr Το Ζmin αντιστοιχεί σε Μη διασπώμενο (δηλ. σταθερό) πυρήνα πάνω στην παραβολή των ισοβαρών σε κάθε περιττό Α αντιστοιχεί 1 μόνο σταθερό ισοβαρές 15

Α άρτιος: άρτιος-άρτιος (δ>0) ή περιττός-περιττός (δ<0) πυρήνας Ατομική μάζα Δύο παραβολές π.χ., Α=102 περιττόπεριττό β+ ββ+ β- 2 11.2 MeV A β+ 1/ 2 44 42 Mo β- Tc Ru άρτιο-άρτιο 46 Rh Pd Ag 48 Cd Ζ Σχεδόν όλοι οι περιττοί -περιττοί πυρήνες μπορούν να διασπασθούν με β-διάσπαση σε άρτιουςάρτιους που να είναι σταθεροί Ο πυρήνας με Ζmin στη περίπτωση περιττόςπεριττός (Ζ-Ν) έχει συνήθως δύο δυνατότητες βδιάσπασης (β+ και β-) καταλήγοντας σε δύο διαφορετικού Ζ (άρτιο) σταθερούς πυρήνες Οι μοναδικοί περιττοίπεριττοί πυρήνες που είναι σταθεροί είναι οι τέσσερεις ελαφρύτεροι: 21Η, 63Li, 10 5Bi, 14 7N 16

Ερώτηση: Πόσα β-σταθερά για κάθε Α, και άρα πόσα β-σταθερά μέχρι Α~200; Πρόβλημα 4.9 του βιβλίου σας Με βάση τις διαφορετικές ιδιότητες των πυρήνων με άρτιο Α και με περιττό Α, εξηγήστε γιατί υπάρχουν περίπου 300 β-σταθεροί πυρήνες με μάζες μέχρι αυτή του 209 83 Βi. Ποιός έιναι λοιπόν ο μέσος αριθμός ισοτόπων ανά στοιχείο; 17

Κοιλάδα β-σταθερότητας Σχήμα 4.6 στο βιβλίο σας Ν Ζ < Α/2 Για κάθε Α, τα β-σταθερά νουκλίδια είναι στη μαύρη ζώνη ( κοιλάδα σταθερότητας valuey of stability ). Αυτά που είναι μακρυά απ'την κοιλάδα, πάνε προς αυτήν με διασπάσεις β+ (= e+) ή β- (= e- ) Για A=σταθερό: Οι πυρήνες διαφέρουν ως προς το Ζ (και N) Ζ N unstable to β- decay l va le y of t ili b st a y unstable to β+ decay (or e- capture) Z 18

α και β διάσπαση: οι πυρήνες αλλάζουν Αριθμός νετρονίων Η α διάσπαση μας μεταφέρει πάνω-κάτω στην κοιλάδα σταθερότητας Η β διάσπαση μας μεταφέρει προς την κοιλάδα σταθερότητας Ν+1 β Ν β+ ή σύλληψη ηλεκτρονίου α Ν-1 Ν-2 Ζ-2 Ζ Ζ+1 Αριθμός πρωτονίων 19

Πολλές φορές θα δείτε την κοιλάδα β-σταθερότητας με αντεστραμένους άξονες 20

Η κοιλάδα β-σταθερότητας με αντεστραμένους Πολλοί άξονες N=Z Z=110 N=160 A=σταθ. προτιμούν το Ζ στον άξονα των y. Z=92 (U) N = Z Z Για κάθε Α, τα β-σταθερά νουκλίδια είναι στη μαύρη ζώνη ( κοιλάδα σταθερότητας valuey of stability ). Αυτά που είναι μακρυά απ'την κοιλάδα, πάνε προς αυτήν με β+ ή βdecays Z A=σταθερό: διαφέρουν ως προς το Ζ (και N) N unstable to β+ decay (or ecapture) of y e ll ity va abil st unstable to β- decay N 21

α και β διάσπαση: οι πυρήνες αλλάζουν Αριθμός πρωτονίων Η α διάσπαση μας μεταφέρει πάνω-κάτω στην κοιλάδα σταθερότητας Η β διάσπαση μας μεταφέρει προς την κοιλάδα σταθερότητας Z+1 β Ζ + ή σύλληψη ηλεκτρονίου β α Z-1 Ζ-2 Ν-2 Ν Ν+1 Αριθμός νετρονίων 22