The conditional CAPM does not explain assetpricing. Jonathan Lewellen & Stefan Nagel. HEC School of Management, March 17, 2005

Σχετικά έγγραφα
9.1 Introduction 9.2 Lags in the Error Term: Autocorrelation 9.3 Estimating an AR(1) Error Model 9.4 Testing for Autocorrelation 9.

Mean-Variance Analysis

& Risk Management , A.T.E.I.

Key Formulas From Larson/Farber Elementary Statistics: Picturing the World, Second Edition 2002 Prentice Hall

Χρονοσειρές Μάθημα 3

Reservoir modeling. Reservoir modelling Linear reservoirs. The linear reservoir, no input. Starting up reservoir modeling

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Γραμμή Αγοράς Αξιογράφου. Υποδείγματα Αποτίμησης Περιουσιακών Στοιχείων

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

4.6 Autoregressive Moving Average Model ARMA(1,1)

Homework 3 Solutions

Lecture 2. Soundness and completeness of propositional logic

Supplementary Appendix

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Lecture 12 Modulation and Sampling

Νεοκλασική Χρηματοοικονομική. Συμπεριφορική Χρηματοοικονομική

Homework for 1/27 Due 2/5

Statistical Inference I Locally most powerful tests

Srednicki Chapter 55

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

CAPM (Capital Asset Pricing Model)

University of Washington Department of Chemistry Chemistry 553 Spring Quarter 2010 Homework Assignment 3 Due 04/26/10

d dt S = (t)si d dt R = (t)i d dt I = (t)si (t)i

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..


The Student s t and F Distributions Page 1

6.003: Signals and Systems

Section 8.3 Trigonometric Equations

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Other Test Constructions: Likelihood Ratio & Bayes Tests

Eleftheria Kostika HIGHER MOMENTS MODELING AND FORECASTING. Thesis by. A dissertation submitted for the degree of Doctor of Philosophy

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Math221: HW# 1 solutions

ΤΟΥΡΙΣΤΙΚΗ ΚΑΙ ΟΙΚΟΝΟΜΙΚΗ ΑΝΑΠΤΥΞΗ: ΜΙΑ ΕΜΠΕΙΡΙΚΗ ΕΡΕΥΝΑ ΓΙΑ ΤΗΝ ΕΛΛΑΔΑ ΜΕ ΤΗΝ ΑΝΑΛΥΣΗ ΤΗΣ ΑΙΤΙΟΤΗΤΑΣ

Predictability and Model Selection in the Context of ARCH Models

Models for Probabilistic Programs with an Adversary

2 Composition. Invertible Mappings

The challenges of non-stable predicates

Levin Lin(1992) Oh(1996),Wu(1996) Papell(1997) Im, Pesaran Shin(1996) Canzoneri, Cumby Diba(1999) Lee, Pesaran Smith(1997) FGLS SUR

Lecture 34 Bootstrap confidence intervals

EE512: Error Control Coding

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Analiza reakcji wybranych modeli

Reward Beta CAPM. CAPM Reward Beta.

ΑΝΑΛΥΣΗ ΚΑΙ ΠΡΟΒΛΕΨΗ ΤΟΥ ΣΥΝΟΛΙΚΟΥ ΑΡΙΘΜΟΥ ΤΩΝ ΓΕΩΡΓΙΚΩΝ ΕΛΚΥΣΤΗΡΩΝ ΤΗΣ ΕΛΛΑΔΑΣ ΜΕ ΣΥΝΑΡΤΗΣΕΙΣ ΧΡΟΝΙΚΗΣ ΤΑΣΗΣ

The Simply Typed Lambda Calculus

ΕΡΓΑΣΙΑ ΜΑΘΗΜΑΤΟΣ: ΘΕΩΡΙΑ ΒΕΛΤΙΣΤΟΥ ΕΛΕΓΧΟΥ ΦΙΛΤΡΟ KALMAN ΜΩΥΣΗΣ ΛΑΖΑΡΟΣ

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Higher Derivative Gravity Theories

ST5224: Advanced Statistical Theory II

ΔΙΑΜΟΡΦΩΣΗ ΣΧΟΛΙΚΩΝ ΧΩΡΩΝ: ΒΑΖΟΥΜΕ ΤΟ ΠΡΑΣΙΝΟ ΣΤΗ ΖΩΗ ΜΑΣ!

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

MATHACHij = γ00 + u0j + rij

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

C.S. 430 Assignment 6, Sample Solutions

Tridiagonal matrices. Gérard MEURANT. October, 2008

Μηχανική Μάθηση Hypothesis Testing

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

1. A fully continuous 20-payment years, 30-year term life insurance of 2000 is issued to (35). You are given n A 1

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

Homework 8 Model Solution Section

Δθαξκνζκέλα καζεκαηηθά δίθηπα: ε πεξίπησζε ηνπ ζπζηεκηθνύ θηλδύλνπ ζε κηθξνεπίπεδν.

Beaver, Clark, and Wright (1979) Ball and Brown (1968) DeFond, Hung, and Trezevant, 2007; 1992)

6.3 Forecasting ARMA processes

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Problem Set 3: Solutions

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Time Series Analysis Final Examination

Approximation of distance between locations on earth given by latitude and longitude

5.4 The Poisson Distribution.

Second Order RLC Filters

STARTING STEPS IN GRAMMAR, FINAL TEST C TERM 2012 UNITS 1-18

Multi-dimensional Central Limit Theorem

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0)

Appendix A3. Table A3.1. General linear model results for RMSE under the unconditional model. Source DF SS Mean Square

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Does anemia contribute to end-organ dysfunction in ICU patients Statistical Analysis

Κόστος Κεφαλαίου. Estimating Inputs: Discount Rates

ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. ΘΕΜΑ: «ιερεύνηση της σχέσης µεταξύ φωνηµικής επίγνωσης και ορθογραφικής δεξιότητας σε παιδιά προσχολικής ηλικίας»

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Fractional Colorings and Zykov Products of graphs

derivation of the Laplacian from rectangular to spherical coordinates

ΜΕΤΡΑ ΚΙΝΔΥΝΟΥ ΣΤΗ ΧΡΗΜΑΤΟΟΙΚΟΝΟΜΙΚΗ

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Cointegrated Commodity Pricing Model

«Αποτίμηση μετοχών με τη βοήθεια μακροοικονομικών παραγόντων»


Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Finite Field Problems: Solutions

HW 3 Solutions 1. a) I use the auto.arima R function to search over models using AIC and decide on an ARMA(3,1)

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

RUHR. The New Keynesian Phillips Curve with Myopic Agents ECONOMIC PAPERS #281. Andreas Orland Michael W.M. Roos

( y) Partial Differential Equations

Χρονοσειρές Μάθημα 6

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Assalamu `alaikum wr. wb.

Αποθήκες εδοµένων και Εξόρυξη Γνώσης (Data Warehousing & Data Mining)

Transcript:

The condiional CAPM does no explain assepricing anomalies Jonahan Lewellen & Sefan Nagel HEC School of Managemen, March 17, 005

Background Size, B/M, and momenum porfolios, 1964 001 Monhly reurns (%) Avg. reurns CAPM alphas Porfolio Size B/M R -1,-6 Size B/M R -1,-6 Low 0.71 0.41 0.17 0.07-0.0-0.41 0.74 0.58 0.51 0.16 0.03 0.04 3 0.70 0.66 0.43 0.19 0.17-0.01 4 0.69 0.80 0.5 0.1 0.35 0.08 High 0.50 0.88 0.79 0.11 0.39 0.9 Long shor 0.1 0.47 0.61-0.03 0.59 0.70 -sa 0.91.98.76-0.16 4.01 3.14

Background Explained by he condiional CAPM w/ ime-varying beas? Condiional CAPM E -1 [R i ] = β γ R i = α + β R M + ε α = 0 Empirical ess w/ consan β E[R i ] β γ R i = α + β R M + ε α 0 3

Background Explained by he condiional CAPM w/ ime-varying beas? Theory Jensen (1968) Dybvig and Ross (1985) Hansen and Richard (1987) Applicaion o size, B/M, and momenum Zhang (00) Jagannahan and Wang (1996) Leau and Ludvigson (001) Pekova and Zhang (004) Lusig and Van Nieuwerburgh (004) Sanos and Veronesi (004) Franzoni (004), Adrian and Franzoni (004) Wang (003) 4

Inuiion 1 Alernae beween efficien porfolios A and B 1.40 1.0 B 1.00 0.80 0.60 A Dynamic sraegy.5 A +.5 B 0.40 0.0 0.00.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 5

Inuiion R = β R M + ε, β = β + η, γ = E -1 [R M ], ρ β,γ > 0 0.1 0.10 E[R i R M ] 0.08 0.06 0.04 0.0 R M 0.00-0.08-0.06-0.04-0.0 0.00-0.0 0.0 0.04 0.06 0.08-0.04-0.06-0.08 True Uncond. regression -0.10 6

Rolling beas of value socks, 1930 000 Franzoni (004) 7

Overview Condiional CAPM does no explain anomalies Analysis Perspecive on condiional asse-pricing ess Simple empirical es Condiional CAPM performs nearly as poorly as uncondiional CAPM 8

Noaion Excess reurns: R i, R M Momens γ = E -1 [R M ], = var -1 (R M ), β = cov -1 (R i, R M ) / γ = E[R M ], M = var(r M ), β u = cov(r i, R M ) / β = E[β ] No resricion on join disribuion of reurns M 9

Theory If condiional CAPM holds, wha is α u E[R i ] β u γ? 10

Theory If condiional CAPM holds, wha is α u E[R i ] β u γ? E -1 [R i ] = β γ E[R i ] = β γ + cov(β, γ ) α u = γ(β β u ) + cov(β, γ ) 11

Theory If condiional CAPM holds, wha is α u E[R i ] β u γ? E -1 [R i ] = β γ E[R i ] = β γ + cov(β, γ ) α u = γ(β β u ) + cov(β, γ ) Condiional bea β u γ 1 1 = β + cov( β, γ ) + cov[ β, ( γ γ) ] + cov( β, ) M M M 1

Theory If condiional CAPM holds, wha is α u E[R i ] β u γ? E -1 [R i ] = β γ E[R i ] = β γ + cov(β, γ ) α u = γ(β β u ) + cov(β, γ ) Condiional bea β u γ 1 1 = β + cov( β, γ ) + cov[ β, ( γ γ) ] + cov( β, ) M M Convexiy Cubic Volailiy M 13

14 Theory If condiional CAPM holds, wha is α u E[R i ] β u γ? E -1 [R i ] = β γ E[R i ] = β γ + cov(β, γ ) α u = γ(β β u ) + cov(β, γ ) Condiional bea β u = β + ), cov( 1 ] ) (, cov[ 1 ), cov( M M M β + γ γ β + γ β γ Condiional alpha α u = ), cov( ] ) (, cov[ ), cov( 1 M M M β γ γ γ β γ γ β γ

15 Magniude α u = ), cov( ] ), ( cov[ ), cov( 1 M M M β γ γ γ β γ γ β γ

Magniude α u γ γ γ = 1 cov(, ) cov[ β, ( γ γ) ] cov( β, ) β γ M M M γ / M? 1964 001: γ = 0.47%, M = 4.5% γ / M = 0.011 16

Magniude α u γ γ γ = 1 cov(, ) cov[ β, ( γ γ) ] cov( β, ) β γ M M M γ / M? 1964 001: γ = 0.47%, M = 4.5% γ / M = 0.011 (γ γ)? Suppose γ 0.5% and 0.0% < γ < 1.0%. Then (γ γ) is a mos 0.005 = 0.00005. 17

Magniude α u γ γ γ = 1 cov(, ) cov[ β, ( γ γ) ] cov( β, ) β γ M M M γ / M? 1964 001: γ = 0.47%, M = 4.5% γ / M = 0.011 (γ γ)? Suppose γ 0.5% and 0.0% < γ < 1.0%. Then (γ γ) is a mos 0.005 = 0.00005. α u γ cov( β, γ ) cov( β, ) M 18

1: Consan volailiy α u cov(β, γ ) = ρ β γ ρ = 0.6 β ρ = 1.0 β 0.3 0.5 0.7 0.3 0.5 0.7 Monhly alpha (%) Monhly alpha (%) γ = 0.1 γ = 0.1 0. 0. 0.3 0.3 0.4 0.4 0.5 0.5 19

1: Consan volailiy α u cov(β, γ ) = ρ β γ ρ = 0.6 β ρ = 1.0 β 0.3 0.5 0.7 0.3 0.5 0.7 Monhly alpha (%) Monhly alpha (%) γ = 0.1 γ = 0.1 0. 0. 0.3 0.3 0.4 0.4 0.5 0.5 Economically large Evidence laer Fama and French (199, 1997) 0

1: Consan volailiy α u cov(β, γ ) = ρ β γ ρ = 0.6 β ρ = 1.0 β 0.3 0.5 0.7 0.3 0.5 0.7 Monhly alpha (%) Monhly alpha (%) γ = 0.1 γ = 0.1 0. 0. 0.3 0.3 0.4 0.4 0.5 0.5 Economically large Evidence from predicive regressions Campbell and Cochrane (1999) 1

1: Consan volailiy α u cov(β, γ ) = ρ β γ ρ = 0.6 β ρ = 1.0 β 0.3 0.5 0.7 0.3 0.5 0.7 Monhly alpha (%) Monhly alpha (%) γ = 0.1 γ = 0.1 0. 0. 0.3 0.3 0.4 0.4 0.5 0.5 Arbirary

1: Consan volailiy α u cov(β, γ ) = ρ β γ ρ = 0.6 β ρ = 1.0 β 0.3 0.5 0.7 0.3 0.5 0.7 Monhly alpha (%) Monhly alpha (%) γ = 0.1 0.0 0.03 0.04 γ = 0.1 0.03 0.05 0.07 0. 0.04 0.06 0.08 0. 0.06 0.10 0.14 0.3 0.05 0.09 0.1 0.3 0.09 0.15 0.1 0.4 0.07 0.1 0.17 0.4 0.1 0.0 0.8 0.5 0.09 0.15 0.1 0.5 0.15 0.5 0.35 3

1: Consan volailiy α u cov(β, γ ) = ρ β γ ρ = 0.6 β ρ = 1.0 β 0.3 0.5 0.7 0.3 0.5 0.7 Monhly alpha (%) Monhly alpha (%) γ = 0.1 0.0 0.03 0.04 γ = 0.1 0.03 0.05 0.07 0. 0.04 0.06 0.08 0. 0.06 0.10 0.14 0.3 0.05 0.09 0.1 0.3 0.09 0.15 0.1 0.4 0.07 0.1 0.17 0.4 0.1 0.0 0.8 0.5 0.09 0.15 0.1 0.5 0.15 0.5 0.35 B/M porfolio: 0.59% Momenum porfolio: 1.01% 4

1: Consan volailiy β ~ N[1.0, 0.7], γ ~ N[0.5%, 0.5%], ρ = 1.0 0.10 0.08 E[R i R M ] 0.06 0.04 0.0 0.00 R M -0.08-0.06-0.04-0.0 0.00-0.0 0.0 0.04 0.06 0.08-0.04-0.06-0.08 True Uncond. regression -0.10 5

: Time-varying volailiy α u γ cov( β, γ ) cov( β, ) M Effecs of ime-varying γ and offse (if hey move ogeher) 6

7 : Time-varying volailiy α u ), cov( ), cov( M β γ γ β Effecs of ime-varying γ and offse (if hey move ogeher) Meron (1980): γ = λ ), cov( M u γ β α γ < cov(β, γ )

: Time-varying volailiy α u γ cov( β, ) = γ ρ β v (where v = M / M) ρ = 0. β ρ = 0.5 β 0.3 0.5 0.7 0.3 0.5 0.7 Alpha (%) Alpha (%) v = 1.0-0.03-0.05-0.07 v = 1.0-0.06-0.10-0.14 1.3-0.04-0.07-0.09 1.3-0.08-0.13-0.18 1.6-0.05-0.08-0.11 1.6-0.10-0.16-0. 1.9-0.06-0.10-0.13 1.9-0.11-0.19-0.7. -0.07-0.11-0.15. -0.13-0. -0.31 γ = 0.50 8

Tesing he condiional CAPM Tradiional ess R i = α i + β i R M + ε i β i = b i0 + b i1 Z 1,-1 + b i Z,-1 + 9

Tesing he condiional CAPM Tradiional ess R i = α i + β i R M + ε i β i = b i0 + b i1 Z 1,-1 + b i Z,-1 + Cochrane (001) Models such as he CAPM imply a condiional linear facor model wih respec o invesors informaion ses. The bes we can hope o do is es implicaions condiioned on variables ha we observe. Thus, a condiional facor model is no esable! 30

Our ess R i = α i + β i R M + ε i Shor-window regressions Esimae α i, β i every monh, quarer, half-year, or year Are condiional alphas zero? 31

Our ess Shor-window regressions beas 1.4 1. 1.0 0.8 0.6 0.4 0. 1 61 11 181 41 301 361 41 481 541 Days 3

Our ess R i = α i + β i R M + ε i Shor-window regressions Esimae α i, β i every monh, quarer, half-year, or year Are condiional alphas zero? 33

Our ess R i = α i + β i R M + ε i Shor-window regressions Esimae α i, β i every monh, quarer, half-year, or year Are condiional alphas zero? Assumes only ha bea is relaively slow moving 34

Our ess R i = α i + β i R M + ε i Shor-window regressions Esimae α i, β i every monh, quarer, half-year, or year Are condiional alphas zero? Assumes only ha bea is relaively slow moving Don need precise esimaes of individual α i, β i 35

Our ess R i = α i + β i R M + ε i Shor-window regressions Esimae α i, β i every monh, quarer, half-year, or year Are condiional alphas zero? Assumes only ha bea is relaively slow moving Don need precise esimaes of individual α i, β i Microsrucure issues 36

Microsrucure issue 1 Horizon effecs (compounding) Daily alphas, beas monhly alphas, beas 37

Microsrucure issue 1 Horizon effecs (compounding) Daily alphas, beas monhly alphas, beas β (N) i 1.5 = E[(1+ R i )(1 + R E[(1+ R M M )] ) N E[1 + R i] N ] E[1 + R N M E[1 + R N ] M ] N 1.51 1.50 1.49 Days (N) 1 6 11 16 1 6 31 36 41 46 51 56 61 38

Microsrucure issue Nonsynchronous prices Daily / weekly esimaes of bea miss full covariance 39

Microsrucure issue Bea esimaes, horizons from 1 o 45 days, 1964 001 1.4 1. Small socks 1.0 Value socks 0.8 0.6 1 5 9 13 17 1 5 9 33 37 41 45 Horizon (days) 40

Microsrucure issue Parial soluion Use value-weighed porfolios and NYSE / Amex socks Dimson (1979) beas: R i, = α i + β i0 R M, + β i1 R M,-1 + + β ik R M,-k + ε i, β i = β i0 + β i1 + + β ik 41

Microsrucure issue Bea esimaes Daily beas R i, = α i + β i0 R M, + β i1 R M,-1 + β i [(R M,- + R M,-3 + R M,-4 )/3] + ε i, Weekly beas R i, = α i + β i0 R M, + β i1 R M,-1 + β i R M,- + ε i, Monhly beas R i, = α i + β i0 R M, + β i1 R M,-1 + ε i, 4

Daa NYSE / Amex socks, 1964 001 VW porfolios 5 size-b/m porfolios (S, B, V, G) 10 momenum porfolios, 6-monh reurns (W, L) 43

Summary saisics, 1964 001 Monhly, % Size B/M Momenum Small Big S-B Grwh Value V-G Losrs Winrs W-L Excess reurns Avg. Day 0.57 0.49 0.08 0.3 0.81 0.49-0.10 0.87 0.97 Wk 0.63 0.50 0.13 0.37 0.84 0.47-0.04 0.91 0.95 Mon 0.71 0.50 0.1 0.41 0.88 0.47 0.01 0.91 0.90 Sd err. Day 0.8 0.0 0.19 0.7 0.3 0.13 0.33 0.8 0.6 Wk 0.6 0.18 0.18 0.6 0. 0.1 0.30 0.6 0.5 Mon 0.34 0.19 0.3 0.30 0.6 0.16 0.35 0.8 0.7 44

Summary saisics, 1964 001 Uncondiional alphas Size B/M Momenum Small Big S-B Grwh Value V-G Losrs Winrs W-L Es. Day 0.09 0.10-0.01-0.1 0.39 0.60-0.64 0.35 0.99 Wk 0.05 0.10-0.05-0. 0.37 0.59-0.66 0.37 1.03 Mon 0.07 0.11-0.03-0.0 0.39 0.59-0.63 0.38 1.01 Sd err. Day 0.15 0.06 0.17 0.10 0.1 0.1 0.18 0.13 0.6 Wk 0.14 0.06 0.16 0.09 0.11 0.11 0.17 0.1 0.5 Mon 0.18 0.07 0.0 0.11 0.13 0.14 0.19 0.13 0.8 Uncondiional beas Es. Day 1.07 0.87 0.0 1.18 0.94-0.5 1. 1.17-0.06 Wk 1.5 0.86 0.39 1.7 1.03-0.4 1.33 1.16-0.17 Mon 1.34 0.83 0.51 1.30 1.05-0.5 1.36 1.14-0. Sd err. Day 0.03 0.01 0.03 0.0 0.03 0.0 0.03 0.0 0.05 Wk 0.03 0.01 0.04 0.0 0.03 0.03 0.04 0.03 0.06 Mon 0.05 0.0 0.06 0.03 0.04 0.04 0.06 0.04 0.08 45

Shor-window regressions Tess Q1: Are condiional alphas zero? Q: How volaile are beas? Q3: Do beas covary wih he marke risk premium and variance? 46

Tes 1 Are condiional alphas zero? Tess based on he ime series of shor-window α i Fama-MacBeh approach Four versions of he shor-window regressions Quarerly (daily reurns) Semiannually (daily and weekly reurns) Annually (monhly reurns) 47

Condiional CAPM, 1964 001 Condiional vs. uncondiional alphas (%) Size B/M Momenum Small Big S-B Grwh Value V-G Losrs Winrs W-L Uncondiional alphas Day 0.09 0.10-0.01-0.1 0.39 0.60-0.64 0.35 0.99 Wk 0.05 0.10-0.05-0. 0.37 0.59-0.66 0.37 1.03 Monh 0.07 0.11-0.03-0.0 0.39 0.59-0.63 0.38 1.01 Average condiional alpha Quarerly 0.4 0.00 0.4-0.01 0.49 0.50-0.79 0.55 1.33 Semi 1 0.6 0.00 0.6-0.08 0.40 0.47-0.61 0.39 0.99 Semi 0.16 0.01 0.15-0.1 0.36 0.48-0.83 0.53 1.37 Annual -0.06 0.08-0.14-0.0 0.3 0.53-0.56 0.1 0.77 48

Condiional CAPM, 1964 001 Condiional vs. uncondiional alphas (%) Size B/M Momenum Small Big S-B Grwh Value V-G Losrs Winrs W-L Uncondiional alphas Day 0.09 0.10-0.01-0.1 0.39 0.60-0.64 0.35 0.99 Wk 0.05 0.10-0.05-0. 0.37 0.59-0.66 0.37 1.03 Monh 0.07 0.11-0.03-0.0 0.39 0.59-0.63 0.38 1.01 Average condiional alpha Quarerly 0.4 0.00 0.4-0.01 0.49 0.50-0.79 0.55 1.33 Semi 1 0.6 0.00 0.6-0.08 0.40 0.47-0.61 0.39 0.99 Semi 0.16 0.01 0.15-0.1 0.36 0.48-0.83 0.53 1.37 Annual -0.06 0.08-0.14-0.0 0.3 0.53-0.56 0.1 0.77 49

Condiional CAPM, 1964 001 Saisical ess Size B/M Momenum Small Big S-B Grwh Value V-G Losrs Winrs W-L Condiional alphas Quarerly 0.4 0.00 0.4-0.01 0.49 0.50-0.79 0.55 1.33 Semi 1 0.6 0.00 0.6-0.08 0.40 0.47-0.61 0.39 0.99 Semi 0.16 0.01 0.15-0.1 0.36 0.48-0.83 0.53 1.37 Annual -0.06 0.08-0.14-0.0 0.3 0.53-0.56 0.1 0.77 Sandard error Quarerly 0.0 0.06 0. 0.1 0.14 0.14 0.0 0.13 0.6 Semi 1 0.1 0.06 0.3 0.1 0.14 0.15 0.19 0.14 0.5 Semi 0.1 0.06 0.3 0.14 0.15 0.16 0.0 0.15 0.7 Annual 0.6 0.07 0.9 0.16 0.17 0.14 0.1 0.17 0.9 50

Condiional CAPM Why are condiional and uncondiional alphas similar? α u γ cov( β, γ ) cov( β, ) M 51

Tes How volaile are beas? b = β + e var(β ) = var(b ) var(e ) 5

Condiional beas (semiannual, daily reurns), 1964 001 Small minus Big 1. 0.9 0.6 0.3 0.0-0.3-0.6-0.9 1964. 1971. 1978. 1985. 199. 1999. 53

Condiional beas (semiannual, daily reurns), 1964 001 Value minus Growh 0.7 0.4 0. 0.0-0. -0.4-0.7-0.9-1.1 1964. 1971. 1978. 1985. 199. 1999. 54

Condiional beas (semiannual, daily reurns), 1964 001 Winner minus Losers. 1.6 1.1 0.5 0.0-0.5-1.1-1.6 1964. 1971. 1978. 1985. 199. 1999. 55

Condiional beas, 1964 001 Uncondiional beas Size B/M Momenum Small Big S-B Grwh Value V-G Losrs Winrs W-L Day 1.07 0.87 0.0 1.18 0.94-0.5 1. 1.17-0.06 Wk 1.5 0.86 0.39 1.7 1.03-0.4 1.33 1.16-0.17 Monh 1.34 0.83 0.51 1.30 1.05-0.5 1.36 1.14-0. Average condiional beas Quarerly 1.03 0.93 0.10 1.17 0.98-0.19 1.19 1.4 0.05 Semi 1 1.07 0.93 0.14 1.19 0.99-0.0 1.0 1.4 0.05 Semi 1.3 0.91 0.3 1.5 1.06-0.19 1.33 1.19-0.14 Annual 1.49 0.83 0.66 1.36 1.17-0.19 1.38 1.4-0.14 Implied sd deviaion of rue beas Quarerly 0.3 0.13 0.33 0.19 0.8 0.5 0.36 0.33 0.63 Semi 1 0.9 0.1 0.30 0.18 0.8 0.4 0.30 0.30 0.55 Semi 0.31 0.10 0.3 0.16 0.31 0.9 0.36 0.3 0.6 Annual 0.35 -- 0.5 0.04 0.37 0.19 0.19 0.9 0.5 56

Condiional beas, 1964 001 Uncondiional beas Size B/M Momenum Small Big S-B Grwh Value V-G Losrs Winrs W-L Day 1.07 0.87 0.0 1.18 0.94-0.5 1. 1.17-0.06 Wk 1.5 0.86 0.39 1.7 1.03-0.4 1.33 1.16-0.17 Monh 1.34 0.83 0.51 1.30 1.05-0.5 1.36 1.14-0. Average condiional beas Quarerly 1.03 0.93 0.10 1.17 0.98-0.19 1.19 1.4 0.05 Semi 1 1.07 0.93 0.14 1.19 0.99-0.0 1.0 1.4 0.05 Semi 1.3 0.91 0.3 1.5 1.06-0.19 1.33 1.19-0.14 Annual 1.49 0.83 0.66 1.36 1.17-0.19 1.38 1.4-0.14 Implied sd deviaion of rue beas Quarerly 0.3 0.13 0.33 0.19 0.8 0.5 0.36 0.33 0.63 Semi 1 0.9 0.1 0.30 0.18 0.8 0.4 0.30 0.30 0.55 Semi 0.31 0.10 0.3 0.16 0.31 0.9 0.36 0.3 0.6 Annual 0.35 -- 0.5 0.04 0.37 0.19 0.19 0.9 0.5 57

Condiional beas, 1964 001 Uncondiional beas Size B/M Momenum Small Big S-B Grwh Value V-G Losrs Winrs W-L Day 1.07 0.87 0.0 1.18 0.94-0.5 1. 1.17-0.06 Wk 1.5 0.86 0.39 1.7 1.03-0.4 1.33 1.16-0.17 Monh 1.34 0.83 0.51 1.30 1.05-0.5 1.36 1.14-0. Average condiional beas Quarerly 1.03 0.93 0.10 1.17 0.98-0.19 1.19 1.4 0.05 Semi 1 1.07 0.93 0.14 1.19 0.99-0.0 1.0 1.4 0.05 Semi 1.3 0.91 0.3 1.5 1.06-0.19 1.33 1.19-0.14 Annual 1.49 0.83 0.66 1.36 1.17-0.19 1.38 1.4-0.14 Implied sd deviaion of rue beas Quarerly 0.3 0.13 0.33 0.19 0.8 0.5 0.36 0.33 0.63 Semi 1 0.9 0.1 0.30 0.18 0.8 0.4 0.30 0.30 0.55 Semi 0.31 0.10 0.3 0.16 0.31 0.9 0.36 0.3 0.6 Annual 0.35 -- 0.5 0.04 0.37 0.19 0.19 0.9 0.5 58

Condiional beas, 1964 001 Uncondiional beas Size B/M Momenum Small Big S-B Grwh Value V-G Losrs Winrs W-L Day 1.07 0.87 0.0 1.18 0.94-0.5 1. 1.17-0.06 Wk 1.5 0.86 0.39 1.7 1.03-0.4 1.33 1.16-0.17 Monh 1.34 0.83 0.51 1.30 1.05-0.5 1.36 1.14-0. Average condiional beas Quarerly 1.03 0.93 0.10 1.17 0.98-0.19 1.19 1.4 0.05 Semi 1 1.07 0.93 0.14 1.19 0.99-0.0 1.0 1.4 0.05 Semi 1.3 0.91 0.3 1.5 1.06-0.19 1.33 1.19-0.14 Annual 1.49 0.83 0.66 1.36 1.17-0.19 1.38 1.4-0.14 Implied sd deviaion of rue beas Quarerly 0.3 0.13 0.33 0.19 0.8 0.5 0.36 0.33 0.63 Semi 1 0.9 0.1 0.30 0.18 0.8 0.4 0.30 0.30 0.55 Semi 0.31 0.10 0.3 0.16 0.31 0.9 0.36 0.3 0.6 Annual 0.35 -- 0.5 0.04 0.37 0.19 0.19 0.9 0.5 59

Tes 3 Do beas covary wih business condiions? Do beas covary wih γ and? 60

Tes 3 Do beas covary wih business condiions? Marke reurns (6 monhs) Tbill rae Dividend yield Term premium CAY Lagged bea 61

Condiional beas, 1964 001 Correlaion beween beas and sae variables Size B/M Momenum Small Big S-B Grwh Value V-G Losrs Winrs W-L β -1 0.55 0.68 0.43 0.58 0.67 0.51 0.30 0.45 0.37 R M,-6-0.05-0.01-0.05-0.18 0.00 0.14-0.53 0.47 0.56 TBILL -0.04 0.11-0.08 0.15-0.1-0.5 0.14-0.5-0.1 DY 0. 0.64-0.04 0.37 0.40 0.18 0.13-0.1-0.14 TERM -0.0 0.19-0.7-0.1 0.01 0.10-0.01-0.08-0.04 CAY -0.1 0.50-0.31-0.01 0.17 0.0 0.09-0.09-0.10 Sd. error 0.116 if no auocorrelaion 6

Predicing condiional beas, 1964 001 Slope esimae Size B/M Momenum Small Big S-B Grwh Value V-G Losrs Winrs W-L β -1 0.1 0.05 0.11 0.10 0.1 0.08 0.10 0.15 0. R M,-6 0.05-0.01 0.04 0.0 0.04 0.04-0.19 0.0 0.39 TBILL -0.13-0.0-0.11-0.03-0.14-0.13 0.09-0.14-0.4 DY 0.14 0.05 0.09 0.06 0.16 0.10-0.07 0.11 0.19 TERM -0.10 0.00-0.10-0.0-0.08-0.07 0.07-0.11-0.19 CAY -0.05 0.0-0.08-0.03-0.01 0.03 0.00-0.01-0.01 -saisic β -1 3.53 3.99.83 4.4 3.88.6 3.03 5.31 4.49 R M,-6 1.5-0.45 1.17 0.73 1.58 1.41-5.63 7.5 7.63 TBILL -.56-1.39 -.09-1.06-3.19 -.98 1.79-3.41-3. DY.8 3.05 1.74.10 3.64.65-1.50.87.65 TERM -.40-0.5 -.1-0.81 -.40-1.99 1.60-3.07 -.81 CAY -1.3 1.86-1.81-1.34-0.17 0.98 0.07-0. -0.13 Adj R 0.37 0.60 0.6 0.34 0.5 0.3 0.35 0.56 0.53 63

Predicing condiional beas, 1964 001 Slope esimae Size B/M Momenum Small Big S-B Grwh Value V-G Losrs Winrs W-L β -1 0.1 0.05 0.11 0.10 0.1 0.08 0.10 0.15 0. R M,-6 0.05-0.01 0.04 0.0 0.04 0.04-0.19 0.0 0.39 TBILL -0.13-0.0-0.11-0.03-0.14-0.13 0.09-0.14-0.4 DY 0.14 0.05 0.09 0.06 0.16 0.10-0.07 0.11 0.19 TERM -0.10 0.00-0.10-0.0-0.08-0.07 0.07-0.11-0.19 CAY -0.05 0.0-0.08-0.03-0.01 0.03 0.00-0.01-0.01 -saisic β -1 3.53 3.99.83 4.4 3.88.6 3.03 5.31 4.49 R M,-6 1.5-0.45 1.17 0.73 1.58 1.41-5.63 7.5 7.63 TBILL -.56-1.39 -.09-1.06-3.19 -.98 1.79-3.41-3. DY.8 3.05 1.74.10 3.64.65-1.50.87.65 TERM -.40-0.5 -.1-0.81 -.40-1.99 1.60-3.07 -.81 CAY -1.3 1.86-1.81-1.34-0.17 0.98 0.07-0. -0.13 Adj R 0.37 0.60 0.6 0.34 0.5 0.3 0.35 0.56 0.53 64

Tes 3 Do beas covary wih γ? Wha is α u cov(β, γ )? Two esimaes (1) cov(b, R M ) = cov(β + e, γ + s ) = cov(β, γ ) () cov( b *, R M ) = cov( b *, γ ) 65

Bea and he marke risk premium, 1964 001 Covariance beween esimaed beas and marke reurns Implied α u (%) Size B/M Momenum Small Big S-B Grwh Value V-G Losrs Winrs W-L Esimae Quarerly -0.3 0.07-0.39-0.0-0.1 0.09 0.16-0.3-0.38 Semi 1-0.17 0.07-0.4-0.14-0.03 0.11-0.03-0.07-0.04 Semi -0.1 0.07-0.19-0.10-0.03 0.07 0.15-0.18-0.33 Annual 0.06 0.03 0.03-0.03 0.01 0.04-0.08 0.11 0.0 Sandard error Quarerly 0.08 0.03 0.08 0.05 0.07 0.06 0.09 0.08 0.16 Semi 1 0.07 0.03 0.07 0.04 0.07 0.06 0.08 0.07 0.13 Semi 0.08 0.03 0.08 0.04 0.08 0.07 0.10 0.08 0.15 Annual 0.1 0.03 0.13 0.06 0.10 0.09 0.1 0.10 0.19 66

Bea and he marke risk premium, 1964 001 Covariance beween prediced beas and marke reurns Implied α u (%) Size B/M Momenum Small Big S-B Grwh Value V-G Losrs Winrs W-L Esimae Quarerly -0.06 0.04-0.09-0.01-0.0 0.0 0.06-0.05-0.1 Semi 1-0.07 0.03-0.10-0.0-0.0 0.01 0.05-0.07-0.1 Semi -0.04 0.0-0.05 0.00-0.01 0.00 0.07-0.08-0.14 Annual 0.03 0.01 0.0 0.00 0.01 0.03 0.05-0.03-0.08 Sandard error Quarerly 0.04 0.0 0.04 0.03 0.05 0.04 0.05 0.06 0.10 Semi 1 0.05 0.0 0.04 0.03 0.05 0.04 0.05 0.06 0.10 Semi 0.04 0.0 0.03 0.0 0.05 0.04 0.06 0.05 0.10 Annual 0.05 0.0 0.05 0.03 0.06 0.04 0.06 0.05 0.09 67

Final commens Consumpion CAPM Oher sudies Jagannahan and Wang (1996) Leau and Ludvigson (001) Sanos and Veronesi (004) Lusig and Van Nieuwerburgh (004) 68

Oher sudies Approach E -1 [R ] = β γ E[R] = β γ + cov(β, γ ) 69

Oher sudies Approach E -1 [R ] = β γ E[R] = β γ + cov(β, γ ) Fama-MacBeh regressions: E[R] = θ 0 + θ 1 β + θ cov(β, γ ) 70

Oher sudies Approach E -1 [R ] = β γ E[R] = β γ + cov(β, γ ) Fama-MacBeh regressions: E[R] = θ 0 + θ 1 β + θ cov(β, γ ) Resricions on θ 0, θ 1, and θ are ignored Esimaes of θ seem o be much larger han 1 71

Oher sudies Approach E -1 [R ] = β γ E[R] = β γ + cov(β, γ ) Fama-MacBeh regressions: E[R] = θ 0 + θ 1 β + θ cov(β, γ ) Resricions on θ 0, θ 1, and θ are ignored Esimaes of θ seem o be much larger han 1 Cross-secional R s, wih resricions, aren meaningful Easy o find high R s using size-b/m porfolios Simulaions 90% confidence inerval = [0.1, 0.7] 7

Summary Condiioning relaively unimporan for asse-pricing ess, boh in principle and in pracice Beas vary significanly over ime Condiional alphas are close o uncondiional alphas 73