ΕΡΓΟ - ΕΝΕΡΓΕΙΑ ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ

Σχετικά έγγραφα
Στεφάνου Μ. 1 Φυσικός

Στεφάνου Μ. 1 Φυσικός

ΕΡΓΟ - ΕΝΕΡΓΕΙΑ F 2 F 3 F 1 F 4

ΔΥΝΑΜΙΚΗ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ

ΕΡΓΟ ΚΙΝΗΤΙΚΗ ΕΝΕΡΓΕΙΑ - ΙΣΧΥΣ

ΔΥΝΑΜΙΚΗ ΣΕ ΔΥΟ ΔΙΑΣΤΑΣΕΙΣ

ΕΡΓΑΣΙΑ 2 ΕΡΓΟ-ΕΝΕΡΓΕΙΑ

ΕΝΔΕΙΚΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

Συλλογή θεμάτων 3 & 4

ΕΡΓΑΣΙΑ 8 ΚΙΝΗΣΗ ΜΕ ΔΥΝΑΜΕΙΣ ΠΟΥ ΔΕΝ ΕΧΟΥΝ ΤΗΝ ΙΔΙΑ ΔΙΕΥΘΥΝΣΗ ΚΑΙ ΤΡΙΒΗ

Διαγώνισμα Φυσικής Α Λυκείου

ΘΕΩΡΗΜΑ ΕΡΓΟΥ ΚΙΝΗΤΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

9 o Γ.Λ. ΠΕΙΡΑΙΑ ιαγώνισµα ΦΥΣΙΚΗΣ (2) 0. Καλή Επιτυχία. Ονοµατεπώνυµο:... Πειραιάς /5 / 2007

ΚΕΦΑΛΑΙΟ 2.1 ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

ΧΡΗΣΙΜΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ A. Όταν ένα σώμα ισορροπεί η συνισταμένη των δυνάμεων είναι ίση με μηδέν. Πρέπει

υ r 1 F r 60 F r A 1

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Α ΛΥΚΕΙΟΥ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

Λυμένες ασκήσεις. Έργο σταθερής δύναμης

ΧΡΗΣΙΜΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ. Α. Όταν ένα σώμα ολισθαίνει πάνω σε μια μη λεία οριζόντια επιφάνεια,

Έργο-Ενέργεια Ασκήσεις Έργου-Ενέργειας Θεώρηµα Μεταβολής της Κινητικής Ενέργειας. ΘΜΚΕ Μεταβλητή δύναµη και κίνηση

Έργο Δύναμης Έργο σταθερής δύναμης

ΧΡΗΣΙΜΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ A. Όταν ένα σώμα ισορροπεί η συνισταμένη των δυνάμεων είναι ίση με μηδέν. Πρέπει

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου

ΔΙΑΤΗΡΗΣΗ ΤΗΣ ΜΗΧΑΝΙΚΗΣ ΕΝΕΡΓΕΙΑΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2014

Δ3. Ο χρόνος από τη στιγμή που η απόστασή τους ήταν d μέχρι τη στιγμή που ακουμπά η μία την άλλη. Μονάδες 6

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΤΑΞΗ / ΤΜΗΜΑ : Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΥ 2016

2.2. Ασκήσεις Έργου-Ενέργειας. Οµάδα Γ.

γραπτή εξέταση στο μάθημα

ΔΥΝΑΜΕΙΣ ΕΛΕΥΘΕΡΗ ΠΤΩΣΗ

Τα Θέματα που είναι με σκούρο φόντο φέτος (2014) είναι εκτός ύλης

ΘΕΜΑ Β-1. Β. Να δικαιολογήσετε την επιλογή σας.

F Στεφάνου Μ. 1 Φυσικός

ΠΑΡΑΤΗΡΗΣΕΙΣ ΓΙΑ ΤΙΣ ΑΣΚΗΣΕΙΣ

Ισορροπία - Γ Νόμος Newton. 1) Να συμπληρώσετε τον πίνακα για κάθε αλληλεπίδραση. Τριβές αμελητέες. Σ1 Σ2 N S Ν S

Διαγώνισμα Φυσικής Α Λυκείου

Περι-Φυσικής. Θέµα Α. ιαγώνισµα - Ενεργειακά εργαλεία στην Μηχανική. Ονοµατεπώνυµο: Βαθµολογία % (α) µόνο από το µέτρο της δύναµης.

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΤΑΞΗ / ΤΜΗΜΑ : Α ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΥ 2016

Κρούσεις. Ομάδα Γ. Κρούσεις Ενέργεια Ταλάντωσης και Ελαστική κρούση Κρούση και τριβές Κεντρική ανελαστική κρούση

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ Ηµεροµηνία: Κυριακή 22 Απριλίου 2012 ΕΚΦΩΝΗΣΕΙΣ

ΚΡΟΥΣΕΙΣ. γ) Δ 64 J δ) 64%]

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ

Στο διάγραμμα αποδίδεται γραφικά η ταχύτητα ενός κινητού οε συνάρτηση με το χρόνο. Α. Να περιγράψετε την κίνηση του κινητού έως τη χρονική στιγμή 20s.

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014

ΘΕΜΑΤΑ.

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2018 Β ΦΑΣΗ

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΟΡΙΖΟΝΤΙΑ ΒΟΛΗ ΚΑΙ ΟΜΑΛΗ ΚΥΚΛΙΚΗ ΚΙΝΗΣΗ

ΣΧΟΛΙΚΟ ΕΤΟΣ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΔΥΝΑΜΙΚΗ. Ονοματεπώνυμο Τμήμα

ΘΕΜΑ Α. Αρχή 1 ης Σελίδας

6. Να βρείτε ποια είναι η σωστή απάντηση.

ΘΕΜΑ Α Στις παρακάτω προτάσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθμό της κάθε μιας και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση:

ΕΝΩΣΗ ΚΥΠΡΙΩΝ ΦΥΣΙΚΩΝ

0. Ασκήσεις επανάληψης.

Ημερομηνία: Πέμπτη 20 Απριλίου 2017 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Α ΤΑΞΗ ΛΥΚΕΙΟΥ ΚΥΡΙΑΚΗ 04/05/ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5) ΕΚΦΩΝΗΣΕΙΣ

Θεώρημα μεταβολής της Κινητικής ενέργειας

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ. m γ. Η μονάδα μέτρησης της επιτάχυνσης στο S.I είναι το 1.

1.1. Μηχανικές Ταλαντώσεις. Ομάδα Ε.

Περι - Φυσικής. Θέµα Α. ιαγώνισµα - Ενεργειακά εργαλεία στην Μηχανική. Ονοµατεπώνυµο: Βαθµολογία % (α) µόνο από το µέτρο της δύναµης.

Γ ΚΥΚΛΟΣ ΠΡΟΣΟΜΟΙΩΤΙΚΩΝ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΣΥΓΧΡΟΝΟ Προτεινόμενα Θέματα Α Λυκείου Φεβρουάριος Φυσική ΘΕΜΑ Α

Κρούσεις. Ομάδα Δ. Κρούσεις Μια κρούση και οι τριβές Κρούση σφαίρας με άλλη ακίνητη.

ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 2

ii) 1

Επιμέλεια : Γαβριήλ Κωνσταντίνος Καθηγητής Φυσικής

Γραπτές προαγωγικές εξετάσεις Ιουνίου 2012

Ύλη: Δυναμική, Διατήρηση της Μηχανικής Ενέργειας

ΜΑΘΗΜΑ / ΤΑΞΗ : Φυσικη Α ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 28/02

4.1. Κρούσεις. Κρούσεις. 4.1.Ταχύτητες κατά την ελαστική κρούση Η Ορμή είναι διάνυσμα. 4.3.Κρούση και Ενέργεια.

2.1. Κυκλική κίνηση Κυκλική κίνηση. Ομάδα Β.

1. Κίνηση Υλικού Σημείου

α) 0-10sec, β) 10-40sec, γ) 40-60sec

[50m/s, 2m/s, 1%, -10kgm/s, 1000N]

ιαγώνισµα Α Τάξης Ενιαίου Λυκείου Τετάρτη 8 Απρίλη 2015 υναµική - Ενέργεια Ενδεικτικές Λύσεις Θέµα Α

Physics by Chris Simopoulos

Δυναμική στο επίπεδο. Ομάδα Γ.

1.1. Μηχανικές Ταλαντώσεις. Ομάδα Ε.

9 o Γ.Λ. ΠΕΙΡΑΙΑ Test ΦΥΣΙΚΗΣ. (2) υ 2. υ 1. Καλή Επιτυχία. Ονοµατεπώνυµο:... Πειραιάς 19/2 / 2008

Κ Ι Ν Η Σ Ε Ι Σ ΑΣΚΗΣΕΙΣ

ΘΕΜΑ Δ-1 Δ1. Δ2. Δ3. Δ4. Δ3. Δ4.

ΣΥΝΤΗΡΗΤΙΚΕΣ ΔΥΝΑΜΕΙΣ

ΕΛΑΣΤΙΚΗ ΚΡΟΥΣΗ. =1 kg που κινείται προς τα δεξιά με ταχύτητα μέτρου u 1. =8m /s συγκρούεται κεντρικά

Για τις επόμενες τέσσερες ερωτήσεις ( 1η έως και 4η)) να επιλέξετε την σωστή πρόταση, χωρίς δικαιολόγηση

Σχέση μεταξύ της τριβής ( οποιασδήποτε μορφής ) και της δύναμης F

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ. Άσκηση 1. (Κινητική ενέργεια λόγω περιστροφής. Έργο και ισχύς σταθερής ροπής)

ΨΗΦΙΑΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΒΟΗΘΗΜΑ «ΦΥΣΙΚΗ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ» 5 o ΔΙΑΓΩΝΙΣΜΑ ΜΑΡΤΙΟΣ 2017: ΘΕΜΑΤΑ

ΕΥΘΥΓΡΑΜΜΗ ΚΙΝΗΣΗ ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΦΡΟΝΤΙΣΤΗΡΙΟ ΕΠΙΛΟΓΗ

Δυναμική στο επίπεδο. Ομάδα Γ.

Περι - Φυσικής. Επαναληπτικό ιαγώνισµα Φυσικής Α Τάξης Ενιαίου Λυκείου Κυριακή 17 Μάη Θέµα Α. Ενδεικτικές Λύσεις

ΕΚΦΩΝΗΣΕΙΣ. Για τις παρακάτω ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που αντιστοιχεί στην σωστή απάντηση

4.1.α. Κρούσεις. Κρούσεις Ενέργεια Ταλάντωσης και Ελαστική κρούση Κρούση και τριβές Κεντρική ανελαστική κρούση

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2017 Β ΦΑΣΗ ÅÐÉËÏÃÇ

Δυναμική στο επίπεδο. Ομάδα Γ.

ΦΥΣΙΚΗ. α) η επιτάχυνση του σώματος έχει κατεύθυνση αντίθετη από την κατεύθυνση της ταχύτητας.

Φυσική Α Λυκείου. Καραβοκυρός Χρήστος

Ασκήσεις Επαγωγής. i) Να υπολογιστεί η ροή που περνά από το πλαίσιο τη χρονική στιγµή t 1 =0,5s καθώς και η ΗΕ από

Δt 1 x=υo t+ α t 1.2 Εξισώσεις κίνησης

Τελική Εξέταση Φυσικής Α Λυκείου Κυριακή 11 Μάη 2014 Σύνολο Σελίδων : (7) Πρόχειρες Λύσεις. Θέµα Α

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014

Transcript:

ΕΡΓΟ - ΕΝΕΡΓΕΙΑ ΣΤΕΦΑΝΟΥ Μ. ΦΥΣΙΚΟΣ

Προσοχή στα παρακάτω!!!!! 1. Σχεδιάζουμε το σώμα σε μια θέση της κίνησής του, (κατά προτίμηση τυχαία) και σημειώνουμε εκεί όλες τις δυνάμεις που ασκούνται στο σώμα. 2. Υπολογίζουμε τώρα το έργο που κάνει κάθε δύναμη. Είναι δυνατόν μια ή περισσότερες δυνάμεις να είναι άγνωστες. Εμείς και πάλι προσπαθούμε να εκφράσουμε τα έργα τους με ην βοήθεια αντίστοιχων συμβόλων, όποτε αυτό είναι δυνατόν. Βεβαιωθείτε ότι χρησιμοποιείτε σωστά τα πρόσημα. Όταν μια δύναμη έχει μια συνιστώσα (ή ίδια) στην ίδια κατεύθυνση με την μετατόπιση τότε το έργο της είναι Θετικό, όταν η κατεύθυνση της είναι αντίθετη με την μετατόπιση, το έργο της είναι αρνητικό. Όταν η δύναμη είναι κάθετη στη μετατόπιση, το έργο είναι μηδέν. 3. Επιλέγουμε την αρχική και την τελική θέση της κίνησης, που θεωρούμε ότι προσφέρονται για να υπολογιστούν τα ζητούμενα μεγέθη από την εκφώνηση του προβλήματος και ελέγχουμε αν το σώμα έχει αρχική ή τελική ταχύτητα. Γράφω τη σχέση του Θ.Μ.Κ.Ε : Κτελ- Καρχ= ΣW 4. Χρησιμοποιείται το Θ.Μ.Κ.Ε όταν στο σώμα ενεργούν δυνάμεις σταθερές ή μεταβλητές, συντηρητικές ή μη συντηρητικές και για κάθε είδος κίνησης! 5. Υπολογίζω από το Θ.Μ.Κ.Ε, ταχύτητες, μετατοπίσεις, έργα δυνάμεων, κινητικές ενέργειες. (εκτός από χρόνο!) 6. Όταν δίνεται ή ζητείται χρόνος εφαρμόζω τις εξισώσεις της αντίστοιχης κίνησης! 7. Όταν ένα σώμα κινείται αρχικά επιταχυνόμενα και μετά επιβραδυνόμενα τη στιγμή που αλλάζει η κίνηση, το σώμα έχει τη μέγιστη ταχύτητα. Στη θέση αυτή ισχύει ΣF=0. Αντίθετα αν κινείται αρχικά επιβραδυνόμενα και μετά επιταχυνόμενα τη στιγμή που αλλάζει η κίνηση, το σώμα έχει τη ελάχιστη ταχύτητα. Στη θέση αυτή ισχύει ΣF=0. 8. Ρυθμοί μεταβολής κινητικής και δυναμικής ενέργειας ΔΚ W ΣF.Δχ ΔU -W -mg.δχ ΣF mg = = =ΣF.υ, = = =-mg.υ Δt Δt Δt Δt Δt Δt Κ U Όταν αναφέρεται σε χρονικό διάστημα t : = ;, = ; t t T Ενέργεια που μετατρέπεται σε θερμότητα : Q=W T T. και = ; W t Q t 1

2

Β ΘΕΜΑΤΑ 1. 2. 3. 3

4. 5. 6. 4

7. 8. 5

Δ ΘΕΜΑΤΑ 1. 2. 6

3. 4. 7

5. 6. 8

ΕΡΓΟ - ΕΝΕΡΓΕΙΑ 1. Σώμα μάζας m=2 kg μεταφέρεται από τη βάση κεκλιμένου κλίσης θ (ημθ=0,6, συνθ=0.8 ) στην κορυφή με την βοήθεια δύναμης που ασκεί ένας άνθρωπος. Η δύναμη έχει μέτρο 40Ν και διεύθυνση παράλληλη με το κεκλιμένο. Ο συντελεστής τριβής μεταξύ σώματος και κεκλιμένου είναι μ=0,5. Να βρεθεί το έργο κάθε δύναμης, που ασκείται στο σώμα, για μετατόπιση χ=10 m. Δίνεται g=10 m/s 2. (400 J, -120 J, -80 J) 2. Ένα σώμα μάζας m=5 kg κινείται με σταθερή ταχύτητα με την βοήθεια της δύναμης F,η οποία σχηματίζει γωνία κλίσης θ (ημθ=0,8, συνθ=0.6 ) με το επίπεδο κίνησης. Αν στο σώμα ενεργεί τριβή ολίσθησης με συντελεστή μ =0,5, να βρεθεί το έργο κάθε δύναμης, που ασκείται στο σώμα για διάστημα s=12 m. Δίνεται g=10m/sec 2. 3. Σε σώμα μάζας m=10 kg, που αρχικά ηρεμεί σε οριζόντια επιφάνεια, ασκείται σταθερή οριζόντια δύναμη F=100N, που σχηματίζει γωνία θ (ημθ=0,6,συνθ=0.8 ) με την οριζόντια επιφάνεια. Ο συντελεστής τριβής είναι μ=0,5. Να υπολογιστεί το έργο της δύναμης F και της τριβής α) για μετατόπιση 10 m β) κατά την διάρκεια των δυο πρώτων δευτερολέπτων της κίνησης. (Δίνεται g=10m/sec 2.) (800J, -200J, 960J, -240J) 4. Σε σώμα μάζας m=1 kg, που αρχικά ηρεμεί σε οριζόντια επιφάνεια, ασκείται οριζόντια δύναμη F, που το μέτρο της μεταβάλλεται με τη μετατόπιση όπως στο σχήμα. Ο συντελεστής τριβής ολίσθησης είναι μ=0,5. Να υπολογιστεί το έργο της δύναμης F και της τριβής για μετατόπιση 2 m. Δίνεται g=10m/sec 2. 5. Σε σώμα μάζας m=2 kg, που αρχικά ηρεμεί σε οριζόντια επιφάνεια και στη θέση χ=0, ασκείται οριζόντια δύναμη F, που το μέτρο της μεταβάλλεται με τη μετατόπιση σύμφωνα με τη σχέση F=20-2x (N,m). Ο συντελεστής τριβής ολίσθησης είναι μ=0,5. Να υπολογιστεί το έργο της δύναμης F και της τριβής για μετατόπιση a) 10 m και β) από τη θέση 5 m μέχρι τη θέση 10 m. Δίνεται g=10m/sec 2 20 10 F(N) 2 x(m) 6. Προσδένουμε σώμα μάζας 4 kg στην άκρη νήματος μήκους L= 2,5 m ώστε να σχηματισθεί εκκρεμές. Συγκρατούμε το σώμα, ώστε το νήμα να σχηματίζει γωνία 60 με την κατακόρυφο. Αν αφήσουμε ελεύθερο το σώμα, να βρεθεί το έργο του βάρους και της τάσης του νήματος μέχρι τη στιγμή που το τεντωμένο νήμα περνάει από την κατακόρυφη θέση. Δίνεται g = 10 m/s 2. 9

7. Ένα σώμα ξεκινάει από την ηρεμία με την επίδραση οριζόντιας δύναμης F=24N. Όταν το σώμα διατρέξει διάστημα s 1 =4m η δύναμη F παύει να ασκείται. Αν ο συντελεστής τριβής είναι μ=0,4 και η μάζα του σώματος είναι m=2 kg, να βρεθούν : α) Η ταχύτητα του σώματος στο τέλος του διαστήματος s 1 β) Το ολικό διάστημα του σώματος μέχρι να σταματήσει στιγμιαία. Δίνεται g = 10 m/s 2. 8. Προσδένουμε σώμα μάζας 4 kg στην άκρη νήματος μήκους L= 2,5 m ώστε να σχηματισθεί εκκρεμές. Συγκρατούμε το σώμα, ώστε το νήμα να σχηματίζει γωνία 60 με την κατακόρυφο. Αν αφήσουμε ελεύθερο το σώμα, να βρεθεί το έργο του βάρους και η ταχύτητα του σώματος τη στιγμή που το τεντωμένο νήμα περνάει από την κατακόρυφη θέση. Δίνεται g = 10 m/s 2. 9. Σε σώμα μάζας 2kg που ηρεμεί σε οριζόντιο επίπεδο ασκείται δύναμη F=10N που σχηματίζει γωνία θ με το επίπεδο. Αν ημθ=0,6 και συνθ=0,8 ενώ ο συντελεστής τριβής ολίσθησης είναι μ=0,5 ζητούνται: i) Η επιτάχυνση που θα αποκτήσει το σώμα. ii) Η μεταβολή της ταχύτητάς του και της κινητικής του ενέργειας από t 1=4s μέχρι t 1=6s. iii) Τα έργα όλων των δυνάμεων στο παραπάνω χρονικό διάστημα. iv) Ποιες ενεργειακές μετατροπές έχουμε στο παραπάνω χρονικό διάστημα; Δίνεται g=10m/s 2. 10. Σώμα μάζας m = 5kg ηρεμεί πάνω σε οριζόντιο επίπεδο και τη χρονική στιγμή t o =0, δέχεται την επίδραση σταθερής δύναμης μέτρου F = 50N, που σχηματίζει με την οριζόντια διεύθυνση γωνία φ ( με ημφ= 0,6 και συνφ = 0,8). Ο συντελεστής τριβής ολισθήσεως μεταξύ σώματος και οριζοντίου επιπέδου είναι μ = 0,5. Όταν το σώμα διανύσει διάστημα 3m η δύναμη F καταργείται. α) Να σχεδιάσετε τις δυνάμεις που ασκούνται στο σώμα για το διάστημα των 3m και να υπολογίσετε το μέτρο της τριβής ολίσθησης. β) Να υπολογίσετε την ταχύτητα του σώματος τη στιγμή που καταργείται η δύναμη F. γ) Να υπολογίσετε το συνολικό διάστημα που θα διανύσει το σώμα, από την χρονική στιγμή t ο =0 μέχρι να σταματήσει.. δ) Να υπολογίσετε τη συνολική θερμότητα που αναπτύχθηκε κατά την διάρκεια της κίνησης του σώματος. Δίνεται g=10m/s 2. 11. Ένα σώμα μάζας m=2kg ηρεμεί σε οριζόντιο επίπεδο με το οποίο παρουσιάζει συντελεστή τριβής ολίσθησης μ=0,2. Σε μια στιγμή δέχεται την επίδραση οριζόντιας δύναμης το μέτρο της οποίας μεταβάλλεται με την μετατόπιση σύμφωνα με τη σχέση F=5+0,3x (S.Ι.). Για μετατόπιση του σώματος κατά x=10m, ζητούνται: i) Το έργο της δύναμης F. ii) Η θερμότητα που παράγεται εξαιτίας της τριβής. iii) Η ταχύτητα που αποκτά το σώμα. Δίνεται g=10m/s 2. (65 J, -40 J, 5m/s) 10

12. Στο σώμα του σχήματος, μάζας m=2 kg, τη στιγμή που η ταχύτητά του είναι υ ο=10 m/s, ενεργεί η δύναμη F=4.x (S.I), μεταβλητή με την μετατόπιση και κάθετη στο επίπεδο στήριξης. Αν στο σώμα υπάρχει τριβή ολίσθησης με συντελεστή μ=0,5, να βρείτε : α) Την εξίσωση της τριβής σε συνάρτηση με την μετατόπιση Τ=f(x) β)την ταχύτητα του σώματος όταν αυτό μετατοπισθεί κατά χ=5 m. Δίνεται g=10m/s 2. F (2x+10, 5 m/s) 13. Στο σώμα του σχήματος, μάζας m=4 kg, ενεργεί η δύναμη F=5.x + 20 (S.I). Το σώμα αρχικά είναι ακίνητο και το επίπεδο είναι λείο. Να βρείτε : Α) Τη θέση χ ο όπου το σώμα θα αποσπασθεί από το οριζόντιο επίπεδο. Β) Την ταχύτητα του σώματος στην παραπάνω θέση. Δίνεται ημφ=4/5, συνφ=3/5. F φ 14. Ένα σώμα μάζας m=10kg ηρεμεί σε λείο οριζόντιο επίπεδο. Τη χρονική στιγμή t=0 αρχίζει να ενεργεί στο σώμα οριζόντια δύναμη η οποία μεταβάλλεται με τη μετατόπιση σύμφωνα με το διάγραμμα του σχήματος. Να βρείτε την ταχύτητα του σώματος στη θέση χ=10 m. (8 m/s) 15. Σώμα αφήνεται ελεύθερο από τη θέση Α του κεκλιμένου επιπέδου γωνίας φ=30 ο και αφού διατρέξει διάστημα s=10m φθάνει στη βάση του κεκλιμένου.αν ο συντελεστής τριβής ολίσθησης είναι μ= 3/4 να βρεθεί η ταχύτητα στη βάση του κεκλιμένου. Δίνεται: g=10m/sec 2, ημ30 ο =1/2, συν30 ο = 3/2 16. Σώμα μάζας m =10 kg είναι ακίνητο στη βάση κεκλιμένου επιπέδου γωνίας κλίσης φ = 30 o. Στο σώμα ασκείται σταθερή δύναμη μέτρου F = 150Ν παράλληλη στο κεκλιμένο επίπεδο με φορά προς τα πάνω. Ο συντελεστής τριβής ολίσθησης μεταξύ σώματος και κεκλιμένου επιπέδου είναι μ = 3/2. Να βρείτε: Α. τα έργα όλων των δυνάμεων που ασκούνται στο σώμα για μετατόπιση ίση με Δχ = 4m Β. την ταχύτητα του σώματος όταν αυτό έχει μετατοπιστεί κατά Δχ = 4m. Δίνεται: g=10m/sec 2, ημ30 ο =1/2, συν30 ο = 3/2 (600 j, -300j, -200j,2 5 m/s ) 11

17. Σώμα μάζας m=2 kg αφήνεται να ολισθήσει από τη Θέση Α, που βρίσκεται σε ύψος h=10m, κατά μήκος του λείου κεκλιμένου επιπέδου γωνίας κλίσης θ = 30. Το σώμα, περνώντας από το Γ, στη βάση του κεκλιμένου, συνεχίζει A την κίνησή του στο οριζόντιο επίπεδο. 1) Να βρείτε το έργο του h Δ βάρους στη διαδρομή Α Γ και Γ την κινητική ενέργεια του σώματος στο Γ. 2) Αν το σώμα σταματήσει στο σημείο Δ με (ΓΔ) = 10 m, να βρείτε τον συντελεστή τριβής ολίσθησης μεταξύ σώματος και οριζόντιου επιπέδου. Δίνεται: g=10m/sec 2, ημ30 ο =1/2, συν30 ο = 3/2 18. Σώμα ρίχνεται προς τα πάνω κατά μήκος κεκλιμένου επιπέδου μεγάλου μήκους γωνίας κλίσης φ=30 με ταχύτητα υ ο= 20 m/s, ενώ ο συντελεστής τριβής ολίσθησης σώματος - επιπέδου είναι μ = 5 3/3 1) Να βρείτε το διάστημα s που διανύει το σώμα στο κεκλιμένο επίπεδο μέχρι να σταματήσει στιγμιαία. 2) Αν το σώμα το ρίχναμε με την ίδια αρχική ταχύτητα προς τα κάτω κατά μήκος του κεκλιμένου επιπέδου, ποιος θα υο έπρεπε να είναι ο συντελεστής της τριβής ολίσθησης μεταξύ σώματος και επιπέδου, ώστε το σώμα να σταματήσει αφού διανύσει το ίδιο διάστημα s. Δίνεται: g=10m/sec 2, ημ30 ο =1/2, συν30 ο = 3/2 19. Σώμα μάζας m αφήνεται ελεύθερο να κινηθεί από το σημείο (Α), χωρίς τριβές. Αφού διατρέξει το τεταρτοκύκλιο ακτίνας R =2m ανεβαίνει στο κεκλιμένο επίπεδο γωνίας κλίσης φ = 45 o Να βρεθούν : Α. η ταχύτητα του στη βάση του τεταρτοκυκλίου. Β. η ταχύτητα του αφού διανύσει μετατόπιση ΓΔ = 2 m στο λείο κεκλιμένο δάπεδο. Δίνεται g= 10 m/s 2 ημ45 o = 2 /2 12

20. Ένα σώμα μάζας m=1kg ηρεμεί στο έδαφος. Σε μια στιγμή δέχεται κατακόρυφη δύναμη F, το μέτρο της οποίας μεταβάλλεται όπως στο διπλανό σχήμα. Για την μετακίνηση μέχρι y=8m: a) Πόση ενέργεια προσφέρεται στο σώμα μέσω της F; β) Πόση ενέργεια αφαιρείται μέσω του έργου του βάρους; F (N) F γ) Ποια η αύξηση της δυναμικής ενέργειας του σώματος; δ) Βρείτε την ταχύτητα του σώματος στη θέση 16 y=8m. Δίνεται g=10m/s 2. 4 8 ψ(m) W (96J, -80J, 4 2 m/s) 21. Ένα σώμα μάζας m=2kg ηρεμεί πάνω σε τραχύ οριζόντιο δάπεδο στην αρχή των θέσεων ( x= 0). 0 συντελεστής οριακής τριβής μεταξύ σώματος και δαπέδου είναι μ=0,2, ενώ ο συντελεστής τριβής ολίσθησης μ= 0,15. Στο σώμα ασκείται οριζόντια δύναμη σταθερής κατεύθυνσης της οποίας η αλγεβρική τιμή μεταβάλλεται σύμφωνα με τη σχέση F = 8 + 2x (S.I.). a) Να αποδείξετε ότι όταν εφαρμοστεί η δύναμη F, το σώμα ξεκινά. β) Να υπολογίσετε: 1. το έργο της δύναμης Γ από χ = 0 έως χ 1= 4 m 2. το έργο της τριβής ολίσθησης από χ = Ο έως χ 1= 4 m 3. την ταχύτητα του σώματος στη Θέση χ 1= 4 m γ). Όταν το σώμα είναι στη Θέση χ 1= 4 m, καταργείται η δύναμη F. Να υπολογιστεί η νέα μετατόπιση του κινητού μέχρι την ακινητοποίησή του. Δίνεται g=10m/s 2. 22. Σε σώμα μάζας m=4 kg, που αρχικά ηρεμεί σε οριζόντια επιφάνεια, ασκείται σταθερή κατακόρυφη δύναμη F προς τα πάνω και το σώμα ανυψώνεται, χωρίς επιτάχυνση, σε ύψος 2m από το οριζόντιο επίπεδο. Α) Πόσο έργο της δύναμης απαιτείται για την ανύψωση αυτή ; Β) Ποια η δυναμική ενέργεια του σώματος στο ύψος αυτό; Γ) Αφήνουμε το σώμα να πέσει από αυτό το ύψος στο δάπεδο χωρίς τη δύναμη F. Ποιο το έργο του βάρους ; Δ) Ποια η κινητική ενέργεια του σώματος τη στιγμή που πέφτει στο δάπεδο ; Δίνεται: g = 10 m/s 2 23. Σώμα μάζας m ρίχνεται από το έδαφος κατακόρυφα προς τα πάνω με αρχική ταχύτητα υ ο=40 m/s. a) Σε ποιο ύψος η ταχύτητα του σώματος γίνεται υ 1=20 m/s ; b) Πόση είναι η ταχύτητα του σώματος σε ύψος h=35 m ; c) Σε ποιο ύψος η κινητική ενέργεια είναι τριπλάσια από τη δυναμική ; d) Σε ποιο ύψος η δυναμική ενέργεια είναι τριπλάσια από τη κινητική; Δίνεται g=10m/s 2. 13

24. Ένα σώμα μάζας m=2kg κινείται σε οριζόντιο επίπεδο με το οποίο εμφανίζει συντελεστή τριβής ολίσθησης μ=0,5 με υ(m/s) την επίδραση οριζόντιας δύναμης F. Σε μια στιγμή, έστω t=0 περνά από σημείο Ο με x=0 και στο διπλανό 20 διάγραμμα δίνεται η ταχύτητά του σε συνάρτηση με το χρόνο. Ζητούνται: α) Η επιτάχυνση του κινητού στα διάφορα 10 χρονικά διαστήματα. β) Η θέση του κινητού τη χρονική στιγμή t(s) t 1=10s. 4 10 γ) Το έργο της δύναμης F και της τριβής από 0-10s. δ) Η μέση ισχύς της δύναμης από 0-10s καθώς και η στιγμιαία ισχύς τη χρονική στιγμή t2=3s. Δίνεται g=10m/s 2. 25. Αυτοκίνητο μάζας m=1200 kg ανεβαίνει με σταθερή ταχύτητα υ=20 m/s σε κεκλιμένο επίπεδο γωνίας κλίσης φ=30 ο. Οι αντιστάσεις ισοδυναμούν με σταθερή δύναμη F A=500 N,η οποία έχει φορά αντίθετη της κίνησης. Α) Να βρείτε το έργο όλων των δυνάμεων που ασκούνται στο αυτοκίνητο για μετατόπιση χ=10 m Β) Να υπολογίστε τη δύναμη του κινητήρα Γ) Να βρείτε την ισχύ που αναπτύσσει ο κινητήρας του αυτοκινήτου. 26. Ένα σώμα μάζας m= 50 kg ανυψώνεται κατακόρυφα με σταθερή ταχύτητα, με τη βοήθεια ενός γερανού. Η ισχύς της δύναμης του γερανού είναι Ρ = 500 W. Να υπολογιστούν: Α) η ανυψωτική δύναμη του γερανού Β) η ταχύτητα ανύψωσης Γ) το έργο του βάρους και η μεταβολή της δυναμικής ενέργειας του σώματος, αφού έχει ανυψωθεί κατά h= 20 m. Δίνεται : g= 10 m/s 2 (500 N, 1 m/s, 10000 J ) 14