ΜΕΡΟΣ Β. ΛΟΓΟΣ ΕΥΘΥΓΡΑΜΜΩΝ ΤΜΗΜΑΤΩΝ 7. ΛΟΓΟΣ ΕΥΘΥΓΡΑΜΜΩΝ ΤΜΗΜΑΤΩΝ Ίσα τμήματα μεταξύ παραλλήλων ευθειών Αν παράλληλες ευθείες ορίζουν ίσα τμήματα σε μια ευθεία, τότε θα ορίζουν ίσα τμήματα και σε οποιαδήποτε άλλη ευθεία που τις τέμνει. Αν τότε Α Β Β Γ ε ε ε3 Γ Β Α ε ε Α Β Γ Αν από το μέσο μιας πλευράς ενός τριγώνου φέρουμε ευθεία παράλληλη προς μια άλλη πλευρά του, τότε αυτή διέρχεται από το μέσο της τρίτης πλευράς του. Αν ΑΜ ΜΒ τότε ΑΝ ΝΓ Διαίρεση ευθυγράμμου τμήματος σε ν ίσα τμήματα Από το σημείο Α φέρουμε μια τυχαία ημιευθεία Αx και πάνω σ αυτήν παίρνουμε με το διαβήτη τρία (ή όσα θέλουμε) διαδοχικά ίσα ευθύγραμμα τμήματα ΑΕ, ΕΖ, ΖΗ. Ενώνουμε τα σημεία Β, Η και από τα σημεία Ζ, Ε, Α φέρνουμε ΖΔ, ΕΓ, Αy παράλληλες προς τη ΒΗ. Οι παράλληλες αυτές ορίζουν στην Αx ίσα τμήματα, οπότε θα ορίζουν ίσα τμήματα και στην. Άρα έ- χουμε ΑΓ ΔΒ.
8 ΜΕΡΟΣ Β. ΛΟΓΟΣ ΕΥΘΥΓΡΑΜΜΩΝ ΤΜΗΜΑΤΩΝ Η έννοια του λόγου δύο ευθυγράμμων τμημάτων Ο λόγος ενός ευθυγράμμου τμήματος προς το ευθύγραμμο τμήμα συμβολίζεται και είναι ο αριθμός λ για τον οποίο ισχύει λ. Ο λόγος δύο ευθυγράμμων τμημάτων είναι ίσος με το λόγο των μηκών τους, εφόσον έχουν μετρηθεί με την ίδια μονάδα μέτρησης. Ανάλογα ευθύγραμμα τμήματα Τα ευθύγραμμα τμήματα α, γ είναι ανάλογα προς τα ευθύγραμμα τμήματα β, δ, όταν ισχύει α γ β δ Ιδιότητες αναλογιών Σε κάθε αναλογία το γινόμενο των άκρων όρων είναι ίσο β δ α γ Αν τότε αδ βγ με το γινόμενο των μέσων όρων. α γ α β δ γ Σε κάθε αναλογία μπορούμε Αν τότε ή β δ γ δ β α να εναλλάξουμε τους μέσους ή τους άκρους όρους και να προκύψει πάλι αναλογία. α γ α γ α + γ Λόγοι ίσοι μεταξύ τους είναι Αν τότε β δ β δ β + δ και ίσοι με το λόγο που έχει αριθμητή το άθροισμα των αριθμητών και παρονομαστή το άθροισμα των παρονομαστών. ΠΑΡΑΤΗΡΗΣΕΙΣ Το ευθύγραμμο τμήμα που συνδέει τα μέσα δύο πλευρών τριγώνου είναι παράλ- ΔΕ// ληλο προς την τρίτη πλευρά και ίσο με το μισό της. Η διάμεσος που αντιστοιχεί στην υποτείνουσα ορθογωνίου τριγώνου είναι ίση με το μισό της υποτείνουσας. ΑΔ
ΜΕΡΟΣ Β. ΛΟΓΟΣ ΕΥΘΥΓΡΑΜΜΩΝ ΤΜΗΜΑΤΩΝ 9 ΕΡΩΤΗΣΕΙΣ ΚΑΤΑΝΟΗΣΗΣ. Στο διπλανό σχήμα είναι ε // ε // ε 3. Να υπολογίσετε τo x. Είναι : ή x ( η 0 ιδιότητα αναλογιών) ή x. x. Αν ΒΒ // ΓΓ // ΔΔ και η διάμετρος του δεύτερου ημικυκλίου είναι cm, τότε να βρείτε το μήκος του ευθυγράμμου τμήματος. Εφόσον τα ευθύγραμμα τμήματα ΑΓ,, ΔΒ είναι ίσα επειδή περιέχονται μεταξύ παραλλήλων οι οποίες ορίζουν ίσα τμήματα πάνω στην Αx που τις τέμνει και το ΑΓ+Γ+ΔΒ3. 3. cm 3. Στο τραπέζιο του διπλανού σχήματος είναι η ΕΖ παράλληλη προς τις βάσεις του ;Να αιτιολογήσετε την απάντησή σας. ΑΕ ΕΔ Επειδή, η ΕΖ δεν είναι παράλληλη προς τις βάσεις του ΒΖ 6 ΖΓ τραπεζίου.. Να συμπληρώσετε τις ισότητες α) β) γ ) ΑΓ δ ) ΑΓ
0 ΜΕΡΟΣ Β. ΛΟΓΟΣ ΕΥΘΥΓΡΑΜΜΩΝ ΤΜΗΜΑΤΩΝ cm cm α), β) 3, γ ) cm 3 cm cm 3 δ ) ΑΓ 6cm. Αν ΔΕ, να συμπληρώσετε τις ισότητες ΒΔ α) β) ΑΔ ΒΕ ΑΓ γ ) ΑΕ ΑΓ ε ) ΓΕ ΑΕ δ ) cm ΑΓ 6cm, α) Αφού ΑΔ3 τότε ΑΔ 3 3 ΑΕ,Ομοίως είναι και ΒΔ ΑΓ ΑΓ β), γ ), δ ), ε ) ΒΕ 3 ΑΕ ΓΕ 6. Να χαρακτηρίσετε τις παρακάτω προτάσεις με (Σ), αν είναι σωστές ή με (Λ), αν είναι λανθασμένες : α) Aν 8 cm και cm, τότε 3 β) Aν τότε cm και 3 cm. 3 γ ) Ο λόγος δύο πλευρών τετραγώνου είναι ίσος με. δ) Aν τότε το ευθύγραμμο τμήμα είναι μικρότερο από το ε) Ο λόγος της ακτίνας ενός κύκλου προς τη διάμετρό του είναι. ΑΜ στ) Αν Μ είναι το μέσο του ευθυγράμμου τμήματος, τότε. ζ) Ο λόγος μιας πλευράς ισοπλεύρου τριγώνου προς την περίμετρό του είναι. 3
ΜΕΡΟΣ Β. ΛΟΓΟΣ ΕΥΘΥΓΡΑΜΜΩΝ ΤΜΗΜΑΤΩΝ α) Η α είναι Σωστή (Σ), γιατί ο λόγος δύο ευθυγράμμων τμημάτων είναι ένας αριθμός που εκφράζει τη σχέση που συνδέει τα μήκη τους. β) Η β είναι Λάθος (Λ),για τον ίδιο λόγο που αναφέραμε στο προηγούμενο ερώτημα. α γ) Η γ είναι Σωστή (Σ), γιατί, όπου α η πλευρά του τετραγώνου. α δ) Η δ είναι Σωστή (Σ), γιατί ή ρ ρ ε) Η ε είναι Λάθος (Λ),γιατί δ ρ ΑΜ στ) Η στ είναι Σωστή (Σ), γιατί AM AM ζ) Η ζ είναι Σωστή (Σ),γιατί αν α η πλευρά του ισοπλεύρου 7. Βλέποντας την αναλογία. α 3α 3 η Μαρία ισχυρίστηκε ότι και,ενώ η Ελένη ισχυρίστηκε ότι το είναι τετραπλάσιο του. Ποια από τις δύο έχει δίκιο ; Την σωστή απάντηση έδωσε η Ελένη,γιατί ή ΠΡΟΤΕΙΝΟΜΕΝΕΣ ΑΣΚΗΣΕΙΣ-ΠΡΟΒΛΗΜΑΤΑ ΑΣΚΗΣΗ. Στο διπλανό σχήμα είναι // ΔΕ // ΗΘ και // ΕΖ // ΘΙ. Αν ΑΔ ΔΗ, να υπολογίσετε το x και το y. Επειδή ΑΔ ΔΗ πρέπει και τα τμήματα των και ΓΙ που είναι μεταξύ των παραλλήλων να είναι ίσα, επομένως x 3 και y.
ΜΕΡΟΣ Β. ΛΟΓΟΣ ΕΥΘΥΓΡΑΜΜΩΝ ΤΜΗΜΑΤΩΝ ΑΣΚΗΣΗ α) Με κανόνα και διαβήτη να διαιρέσετε ένα ευθύγραμμο τμήμα 7 cm σε πέντε ίσα ευθύγραμμα τμήματα και πάνω σε μια ευθεία ε να σχεδιάσετε τα διαδοχικά ευθύγραμμα τμήματα, ΔΖ και ΖΗ 6. β) Να υπολογίσετε τους λόγους i) ΔΖ ii) iii) ΖΗ α) Από το σημείο Α φέρουμε μια τυχαία ημιευθεία Αx και πάνω σ αυτήν παίρνουμε με το διαβήτη πέντε διαδοχικά ίσα ευθύγραμμα τμήματα ΑΗ, ΗΘ, ΘΙ, ΙΚ, ΚΛ. Ενώνουμε τα σημεία Β, Λ και από τα σημεία Κ, Ι, Θ, Η φέρνουμε ΚΖ, ΙΕ, ΘΔ, ΗΓ παράλληλες προς τη ΒΛ. Οι παράλληλες αυτές ορίζουν στην Αx ίσα τμήματα, οπότε θα ορίζουν ίσα τμήματα και στην. Άρα έ- χουμε ΑΓ ΔΕ ΕΖ ΖΒ. Πάνω στην (ε) με την βοήθεια του διαβήτη μετράμε τμήμα πάνω στο του προηγούμενου σχήματος ίσο με το ΑΔ που είναι δύο από τα πέντε μέρη που χωρίστηκε το και πάνω στην ε δημιουργούμε το σημείο Δ. Μετά παίρνουμε το διαβήτη και μετράμε τμήμα ίσο με το Α ΖΗ iv) ΔΖ Γ Δ Ε Ζ Η Θ Ι v). ΖΗ ΔΖ δηλαδή το τμήμα ΑΖ που είναι τέσσερα από τα πέντε μέρη που χωρίστηκε το δημιουργώντας το Ζ. Τέλος με τον διαβήτη μετράμε τμήμα ίσο με το και ΖΗ 6 δηλαδή ολόκληρο το και ένα μέρος ακόμα π.χ το ΑΓ και δημιουργούμε το Η. Κ Λ Β Γ Δ Ζ Η x
ΜΕΡΟΣ Β. ΛΟΓΟΣ ΕΥΘΥΓΡΑΜΜΩΝ ΤΜΗΜΑΤΩΝ 3 β) i) Αντικαθιστούμε το με το ίσο του από το προηγούμενο ερώτημα. ii) Αντικαθιστούμε τα ΔΖ και με τα ίσα του από το προηγούμενο ερώτημα και απλοποιούμε. iii) Αντικαθιστούμε το ΖΗ με το ίσο του από το προηγούμενο ερώτημα και απλοποιούμε. iv) Αντικαθιστούμε τα ΔΖ και ZH με τα ίσα του από το προηγούμενο ερώτημα και απλοποιούμε. v) Αντικαθιστούμε τα και ZH με τα ίσα του από το προηγούμενο ερώτημα και απλοποιούμε. i) ΔΖ ii) iii) ΖΗ iv) ΖΗ ΔΖ v) ΖΗ AB 6 AB 6 AB 6.. 6 3 AB.6 3. ΑΣΚΗΣΗ 3 Στο ορθογώνιο τρίγωνο Γ του διπλανού σχήματος να βρείτε τους λόγους ΑΓ α) β) γ). ΑΓ Από το Πυθαγόρειο θεώρημα έχουμε : () () + (ΑΓ) (cm) + (cm) cm + cm cm. Επομένως cm cm. Τότε : cm α), β) ΑΓ cm cm cm, γ) ΑΓ cm cm ( )
ΜΕΡΟΣ Β. ΛΟΓΟΣ ΕΥΘΥΓΡΑΜΜΩΝ ΤΜΗΜΑΤΩΝ ΑΣΚΗΣΗ Σε ορθογώνιο τρίγωνο Γ ( Α 90 0 ) είναι 6 cm και 0 cm. Να υπολογίσετε τους λόγους ΑΓ α) β) γ). ΑΓ Λ Γ Α Από το ορθογώνιο τρίγωνο Γ έχουμε :(ΑΓ) () () (0cm) (6cm) 00cm 36cm 6cm. Άρα ΑΓ 6cm 8cm. Τότε : α) 6 cm 3 0cm, β) ΑΓ 8 cm 0cm, γ) 6 cm 3 ΑΓ 8cm Β ΑΣΚΗΣΗ Να σχεδιάσετε ένα ισόπλευρο τρίγωνο με πλευρά c m. Να υπολογίσετε το λόγο του ύψους του προς την πλευρά του. Β Α Δ Γ Από το ορθογώνιο τρίγωνο Δ στο οποίο cm και ΒΔ cm με εφαρμογή του Πυθαγορείου θεωρήματος έχουμε (ΑΔ) () (ΒΔ) (cm) (cm) 6cm cm cm. Άρα ΑΔ cm cm.3 cm 3 cm 3cm. Ο ζητούμενος λόγος είναι : ΑΔ 3cm AB cm 3.
ΜΕΡΟΣ Β. ΛΟΓΟΣ ΕΥΘΥΓΡΑΜΜΩΝ ΤΜΗΜΑΤΩΝ ΑΣΚΗΣΗ 6 Από το μέσον Μ της διαγωνίου ΑΓ παραλληλογράμμου, να φέρετε ΕΖ // ΑΔ. Να αποδείξετε ότι α) Τα σημεία Ε, Ζ είναι μέσα των πλευρών, ΔΓ αντιστοίχως. β) Τα τμήματα, ΑΓ είναι ανάλογα προς τα τμήματα ΑΕ, ΑΜ. α) Επειδή η ΕΖ είναι παράλληλη προς τις πλευρές ΑΔ και των τριγώνων ΑΔΓ και ΑΓΒ και διέρχεται από το μέσο Μ της ΑΓ θα διέρχεται και από τα μέσα των και. Επομένως τα Ε και Ζ είναι μέσα των και. (ΑΕ) ΑΕ β) Έχουμε :. ΑΓ (ΑΜ) ΑΜ ΑΣΚΗΣΗ 7 Σε τετράπλευρο είναι 0 Β Δ 90. Αν Μ είναι το μέσον της διαγωνίου ΑΓ, να αποδείξετε ότι ΒΜ ΜΔ. Δ A Μ B Γ Στα ορθογώνια τρίγωνα Γ και ΑΔΓ οι ΒΜ και ΜΔ αντίστοιχα είναι διάμεσοι που αντιστοιχούν στην υποτείνουσα και όπως γνωρίζουμε είναι το μισό της υποτείνουσας οπότε είναι ΒΜ ΜΔ.
6 ΜΕΡΟΣ Β. ΛΟΓΟΣ ΕΥΘΥΓΡΑΜΜΩΝ ΤΜΗΜΑΤΩΝ ΑΣΚΗΣΗ 8 Ένα αγρόκτημα έχει το σχήμα ενός τραπεζίου. Ο ιδιοκτήτης του θέλει να μετρήσει την περίμετρό του, προκειμένου να το περιφράξει αλλά τη δεν μπορεί να τη μετρήσει γιατί παρεμβάλλεται ένας νερόλακκος που σχηματίστηκε από την τελευταία βροχόπτωση, όπως φαίνεται στο σχήμα. Πως θα μπορούσε να την υπολογίσει ; Θα μπορούσε να την υπολογίσει ως εξής: Θα φέρει την διάμεσο του τραπεζίου(ή κάποια άλλη παράλ- Λ Κ ληλη πάνω από την διάμεσο) όπως φαίνεται στο διπλανό σχήμα και να πάρει την αναλογία των τμημάτων που σχηματίζονται, δηλαδή : AK ΒΛ AK ΒΛ ή ΚΔ ΛΓ ΚΔ x Με γνωστούς τους τρεις όρους της αναλογίας μπορούμε να βρούμε τον τέταρτο.