Maths camp MBA HEC. jan 2016

Σχετικά έγγραφα
5.4 The Poisson Distribution.

Biostatistics for Health Sciences Review Sheet

Μηχανική Μάθηση Hypothesis Testing

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Areas and Lengths in Polar Coordinates

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ


Other Test Constructions: Likelihood Ratio & Bayes Tests

Areas and Lengths in Polar Coordinates

Math 6 SL Probability Distributions Practice Test Mark Scheme

Εργαστήριο στατιστικής Στατιστικό πακέτο S.P.S.S.

FORMULAS FOR STATISTICS 1

Statistical Inference I Locally most powerful tests

Άσκηση 10, σελ Για τη μεταβλητή x (άτυπος όγκος) έχουμε: x censored_x 1 F 3 F 3 F 4 F 10 F 13 F 13 F 16 F 16 F 24 F 26 F 27 F 28 F

Amarousiou Chalandriou Ave, , Paradeisos Amarousiou Athens, Greece Tel: euroskiclub.com

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

Statistics & Research methods. Athanasios Papaioannou University of Thessaly Dept. of PE & Sport Science

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

HISTOGRAMS AND PERCENTILES What is the 25 th percentile of a histogram? What is the 50 th percentile for the cigarette histogram?

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

PENGARUHKEPEMIMPINANINSTRUKSIONAL KEPALASEKOLAHDAN MOTIVASI BERPRESTASI GURU TERHADAP KINERJA MENGAJAR GURU SD NEGERI DI KOTA SUKABUMI

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Οργανωµένες διακοπές Χριστούγεννα Πρωτοχρονιά

ST5224: Advanced Statistical Theory II

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Υπολογιστική Φυσική Στοιχειωδών Σωματιδίων

Distances in Sierpiński Triangle Graphs


Section 8.3 Trigonometric Equations

Περιγραφική στατιστική μεθοδολογία.

The Simply Typed Lambda Calculus

MSM Men who have Sex with Men HIV -

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Instruction Execution Times


ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

Solution Series 9. i=1 x i and i=1 x i.

Inverse trigonometric functions & General Solution of Trigonometric Equations

Lecture 34 Bootstrap confidence intervals

Exercises to Statistics of Material Fatigue No. 5

2 Composition. Invertible Mappings

New bounds for spherical two-distance sets and equiangular lines

CE 530 Molecular Simulation

Partial Differential Equations in Biology The boundary element method. March 26, 2013

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Homework 3 Solutions

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics

η πιθανότητα επιτυχίας. Επομένως, η συνάρτηση πιθανοφάνειας είναι ίση με: ( ) 32 = p 18 1 p

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 13. Συμπεράσματα για τη σύγκριση δύο πληθυσμών

TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Every set of first-order formulas is equivalent to an independent set

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

ΑΝΑΛΥΣΗ Ε ΟΜΕΝΩΝ. 2. Περιγραφική Στατιστική

Probability and Random Processes (Part II)

Approximation of distance between locations on earth given by latitude and longitude

Για να ελέγξουµε αν η κατανοµή µιας µεταβλητής είναι συµβατή µε την κανονική εφαρµόζουµε το test Kolmogorov-Smirnov.

Δείγμα (μεγάλο) από οποιαδήποτε κατανομή

ΕΝ ΕΙΚΤΙΚΕΣ ΑΠΑΝΤΗΣΕΙΣ ΑΣΚΗΣΗΣ 2 (Εργαστήρια µαθήµατος «Στατιστικά Προγράµµατα», τµ. Στατ. & Ασφ. Επιστ., 04-05) (Επιµέλεια: Ελευθεράκη Αναστασία)

6. MAXIMUM LIKELIHOOD ESTIMATION

ΠΕΡΙΕΧΟΜΕΝΑ. Μάρκετινγκ Αθλητικών Τουριστικών Προορισμών 1

Section 7.6 Double and Half Angle Formulas

Example of the Baum-Welch Algorithm

519.22(07.07) 78 : ( ) /.. ; c (07.07) , , 2008

ΤΙΜΟΚΑΤΑΛΟΓΟΣ CLUB MED ΧΕΙΜΩΝΑΣ

Επιστηµονική Επιµέλεια ρ. Γεώργιος Μενεξές. Εργαστήριο Γεωργίας. Viola adorata

Reminders: linear functions

ΠΕΡΙΕΧΟΜΕΝΑ. Κεφάλαιο 1: Κεφάλαιο 2: Κεφάλαιο 3:

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

Lecture 21: Properties and robustness of LSE

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Έλεγχος ύπαρξης στατιστικά σημαντικών διαφορών μεταξύ δύο εξαρτημένων δειγμάτων, που δεν ακολουθούν την κανονική κατανομή (Wilcoxon test)

Statistics. hrs1 Number of hours worked last week. educ Highest year of school completed. sibs NUMBER OF BROTHERS AND SISTERS. N Valid

D Alembert s Solution to the Wave Equation

ΠΩΣ ΕΠΗΡΕΑΖΕΙ Η ΜΕΡΑ ΤΗΣ ΕΒΔΟΜΑΔΑΣ ΤΙΣ ΑΠΟΔΟΣΕΙΣ ΤΩΝ ΜΕΤΟΧΩΝ ΠΡΙΝ ΚΑΙ ΜΕΤΑ ΤΗΝ ΟΙΚΟΝΟΜΙΚΗ ΚΡΙΣΗ

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

6.3 Forecasting ARMA processes

EE101: Resonance in RLC circuits

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

Second Order RLC Filters

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model


p n r

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

CRASH COURSE IN PRECALCULUS

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

; +302 ; +313; +320,.

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Matrices and Determinants

ΑΓΓΛΙΚΑ Ι. Ενότητα 7α: Impact of the Internet on Economic Education. Ζωή Κανταρίδου Τμήμα Εφαρμοσμένης Πληροφορικής

Homework 8 Model Solution Section

ΣΗΜΕΙΩΣΕΙΣ ΣΤΑΤΙΣΤΙΚΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ «ΦΡΟΝΤΙ Α ΣΤΟ ΣΑΚΧΑΡΩ Η ΙΑΒΗΤΗ» 2 ο Μάθηµα

Transcript:

Maths camp MBA HEC jan 201 1

Professor (or Major) Xavier BOUTE boute@hec.fr Military Officer in the Army Academic director

Problem : Research on the ski-pass s price in winter sports station Winter 1999 3

Prix du forfait jour (Price, in FF) STATION Price Region STATION Price Region STATION Price Region Max 110 Pyrénées Vars 152 Alpes du sud La Norma 115 Savoie Eaux Bonnes Courette 100 Pyrénées Avoriaz 18 Haute Savoie Notre Dame de Bellecombe 110 Savoie Font Romeu 0 Pyrénées Les Carroz Haute Savoie La Plagne 223 Savoie Luz 113 Pyrénées Chamonix 241 Haute Savoie Pralognan 112 Savoie La Mongie 138 Pyrénées Chatel 153 Haute Savoie La Rosière 5 Savoie Piau Engaly 119 Pyrénées La Clusaz 153 Haute Savoie Les Saisies 119 Savoie Saint Lary 135 Pyrénées Combloux 110 Haute Savoie St François Longchamp 124 Savoie La Bonhomme 85 Vosges Les Contamines 159 Haute Savoie St Martin de Belleville 189 Savoie La Bresse 12 Vosges Flaine 13 Haute Savoie St Sorlin d'arves 109 Savoie Gérardmer 80 Vosges Les Gets 150 Haute Savoie La Tania 192 Savoie St Maurice Moselle 80 Vosges Le Grand Bornand 2 Haute Savoie Tignes 224 Savoie Ventron 110 Vosges Les Houches 8 Haute Savoie La Toussuire 122 Savoie Métabief 104 Jura Megève 17 Haute Savoie Val Cenis 92 Savoie Monts Jura 109 Jura Morillon Haute Savoie Valfréjus 95 Savoie Les Rousses 108 Jura Morzine 150 Haute Savoie Val d'isère 224 Savoie Super Besse 110 Auvergne Praz sur Arly 10 Haute Savoie Valloire 8 Savoie Mont Dore 110 Auvergne Praz de Lys 85 Haute Savoie Val Meinier 8 Savoie Le Lioran 101 Auvergne St Gervais 188 Haute Savoie Valmorel la Belle 152 Savoie Auron 120 Alpes du sud Samoens Haute Savoie Val Thorens 8 Savoie Beuil 130 Alpes du sud Thollon 8 Haute Savoie Alpe d'huez 197 Dauphiné Isère Isola 2000 122 Alpes du sud Les Aillons 99 Savoie Alpe du Grand Serre 107 Dauphiné Isère Montgenèvre 5 Alpes du sud Les Arcs 215 Savoie Auris 104 Dauphiné Isère Orcières Merlette 5 Alpes du sud Areches Beaufort 110 Savoie Autrans 78 Dauphiné Isère Les Orres 135 Alpes du sud Aussois 90 Savoie Chamrousse 13 Dauphiné Isère Pra Loup 154 Alpes du sud Bessans 70 Savoie Le Collet d'allevard 99 Dauphiné Isère Puy Saint Vincent 125 Alpes du sud Bonneval sur arc 110 Savoie Les 2 Alpes 188 Dauphiné Isère Risoul 152 Alpes du sud Le Corbier 122 Savoie Lans en Vercors 78 Dauphiné Isère Sauze Super Sauze 12 Alpes du sud Courchevel 192 Savoie Meaudre 78 Dauphiné Isère Serre Chevalier 185 Alpes du sud Crest Voland Corennoz 102 Savoie St Pierre de Chartreuse 95 Dauphiné Isère Super Dévoluy La Joue du Loup 132 Alpes du sud Flumet 50 Savoie Les 7 Laux 135 Dauphiné Isère Valberg 130 Alpes du sud Les Karellis 98 Savoie Vaujany 118 Dauphiné Isère La Foux Val d'allos 154 Alpes du sud Les Menuires 189 Savoie Villard de Lans 135 Dauphiné Isère Le Seignus Val d'allos 122 Alpes du sud Meribel 192 Savoie 4

Description for a qualitative variable : region Région Valid Alpes du sud Auvergne Dauphiné Isère Haute Savoie Jura Pyrénées Savoie Vosges Total Cumulative Frequency Percent Valid Percent Percent 1 1,3 1,3 1,3 3 3,1 3,1 19,4 13 13,3 13,3 32,7 19 19,4 19,4 52,0 3 3,1 3,1 55,1 7 7,1 7,1 2,2 32 32,7 32,7 94,9 5 5,1 5,1 100,0 98 100,0 100,0 Visualization? 5

«Camembert» 7

STATION Prix forfait (FF) Max 110 Eaux Bonnes Courette 100 Font Romeu 0 Luz 113 La Mongie 138 Piau Engaly 119 Saint Lary 135 La Bonhomme 85 La Bresse 12 Gérardmer 80 St Maurice Moselle 80 Ventron 110 Métabief 104 Monts Jura 109 Les Rousses 108 Super Besse 110 Mont Dore 110 Le Lioran 101 Auron 120 Beuil 130 Isola 2000 122 Montgenèvre 5 Orcières Merlette 5 Les Orres 135 Pra Loup 154 Puy Saint Vincent 125 Risoul 152 Sauze Super Sauze 12 Serre Chevalier 185 Super Dévoluy La Joue du Loup 132 Valberg 130 La Foux Val d'allos 154 Quantitative variable? Le Seignus Val d'allos 122 Vars 152 Avoriaz 18 Les Carroz Chamonix 241 Chatel 153 La Clusaz 153 Combloux 110 Les Contamines 159 Flaine 13 Les Gets 150 Le Grand Bornand 2 Les Houches 8 Megève 17 Morillon Morzine 150 Praz sur Arly 10 Praz de Lys 85 St Gervais 188 Samoens Thollon 8 Les Aillons 99 Les Arcs 215 Areches Beaufort 110 Aussois 90 Bessans 70 Bonneval sur arc 110 Le Corbier 122 Courchevel 192 Crest Voland Corennoz 102 Flumet 50 Les Karellis 98 Les Menuires 189 Meribel 192 La Norma 115 Notre Dame de Bellecombe 110 La Plagne 223 Pralognan 112 La Rosière 5 Les Saisies 119 St François Longchamp 124 St Martin de Belleville 189 St Sorlin d'arves 109 La Tania 192 Tignes 224 La Toussuire 122 Val Cenis 92 Valfréjus 95 Val d'isère 224 Valloire 8 Val Meinier 8 Valmorel la Belle 152 Val Thorens 8 Alpe d'huez 197 Alpe du Grand Serre 107 Auris 104 Autrans 78 Chamrousse 13 Le Collet d'allevard 99 Les 2 Alpes 188 Lans en Vercors 78 Meaudre 78 St Pierre de Chartreuse 95 Les 7 Laux 135 Vaujany 118 Villard de Lans 135 8

--------- EFFECTIFS ----------- ABSOLU %/TOTAL %/EXPR. % CUM. HISTOGRAMME DES POIDS -------------------------------------------------------------------- 10. Prix forfait jour 50.000 1 1.02 1.02 1.02 * 70.000 1 1.02 1.02 2.04 * 78.000 3 3.0 3.0 5.10 ** 80.000 2 2.04 2.04 7. * 85.000 2 2.04 2.04 9.18 * 8.000 1 1.02 1.02 10.20 * 90.000 1 1.02 1.02 11.22 * 92.000 1 1.02 1.02 12.24 * 95.000 2 2.04 2.04.29 * 98.000 1 1.02 1.02 15.31 * 99.000 2 2.04 2.04 17.35 * 100.000 1 1.02 1.02 18.37 * 101.000 1 1.02 1.02 19.39 * 102.000 1 1.02 1.02 20.41 * 104.000 2 2.04 2.04 22.45 * 10.000 1 1.02 1.02 23.47 * 107.000 1 1.02 1.02 24.49 * 108.000 1 1.02 1.02 25.51 * 109.000 2 2.04 2.04 27.55 * 110.000 8 8.1 8.1 35.71 **** 112.000 1 1.02 1.02 3.73 * 113.000 1 1.02 1.02 37.7 * 115.000 1 1.02 1.02 38.78 * 118.000 1 1.02 1.02 39.80 * 119.000 2 2.04 2.04 41.84 * 120.000 1 1.02 1.02 42.8 * 122.000 4 4.08 4.08 4.94 ** 124.000 1 1.02 1.02 47.9 * 125.000 1 1.02 1.02 48.98 * 12.000 2 2.04 2.04 51.02 * 9

130.000 2 2.04 2.04 53.0 * 132.000 1 1.02 1.02 54.08 * 135.000 4 4.08 4.08 58.1 ** 13.000 1 1.02 1.02 59.18 * 138.000 1 1.02 1.02 0.20 * 0.000 1 1.02 1.02 1.22 * 2.000 1 1.02 1.02 2.24 * 5.000 3 3.0 3.0 5.31 **.000 3 3.0 3.0 8.37 ** 8.000 4 4.08 4.08 72.45 ** 150.000 2 2.04 2.04 74.49 * 152.000 3 3.0 3.0 77.55 ** 153.000 2 2.04 2.04 79.59 * 154.000 2 2.04 2.04 81.3 * 159.000 1 1.02 1.02 82.5 * 13.000 1 1.02 1.02 83.7 * 18.000 1 1.02 1.02 84.9 * 17.000 1 1.02 1.02 85.71 * 185.000 1 1.02 1.02 8.73 * 188.000 2 2.04 2.04 88.78 * 189.000 2 2.04 2.04 90.82 * 192.000 3 3.0 3.0 93.88 ** 197.000 1 1.02 1.02 94.90 * 215.000 1 1.02 1.02 95.92 * 223.000 1 1.02 1.02 9.94 * 224.000 2 2.04 2.04 98.98 * 241.000 1 1.02 1.02 100.00 * ENSEMBLE 98 100.00 100.00 10

Median M The median M shares the values in two equal parts. x 1 x! 2 x n x 1 x 20 x 21 x 40 M = x 20 + x 21 2 11

Quartiles Q 1, Q 2, Q 3 The quartiles Q 1, Q 2, Q 3 share the values in four equal parts. x 1 x 10 x 11 x 20 x 21 x 30 x 31 x 40 Q 1 Q 2 = M Q 3 25% 25% 25% 25% 12

Some data Annual salary on average (mean) in 2004 : 22 193, in other words 1849 monthly. For example, the monthly salary s median in jan 200 : 1250 13

Dispersions statistics

Problem : Which is the most homogeneous class? Use all the data Red class 4 5 10 15 1 Blue class 7 8 9 10 11 12 13 15

Same mean : 10 µ = 1 Classe rouge 4 5 10 15 1 N N i= 1 x i Classe bleue 7 8 9 10 11 12 13 1

Classe rouge 4 5 10 15 1 N i= 1 0 for both ( µ) x i Classe bleue 7 8 9 10 11 12 13 17

Classe rouge 4 5 10 15 1 i= 1 ( µ) 122 for the red, and 15 for the blue. Problem? N x i 2 Classe bleue 7 8 9 10 11 12 13 18

Classe rouge 4 5 10 15 1 1 N N i= 1 ( x i µ ) 24,5 for the red and 10,4 for the blue. This is the good indicator, called variance. 2 Classe bleue 7 8 9 10 11 12 13 Big Variance = high dispersion Small Variance = low dispersion 19

1 N N i=1 (x i µ) 2 = 1 N N i=1 Standard deviation : x i 2 µ 2 σ = 1 N ( x i µ ) 2 N i= 1 20

Visualisation : histogram 21

«Boîte à moustaches» boxplot Extrem values Q3 Median 50% are here Q1 22

Research on a quantitativ variable X We can calculate on it : Central statistics (mean, median) Dispersion statistics (variance, standard-deviation) 23

Normal distribution (or Laplace-Gauss) 24

Normal distribution (or Laplace-Gauss) 25

Normal distribution N(µ,σ) A variable X is following a normal distribution N(µ, σ) if, for all b, Prob( X b) = b 1 e σ 2π ( t µ ) 2 2σ 2 dt Results : - Mean of X = µ - Variance of X = σ 2-95% of the values of X are between µ - 1.9σ and µ + 1.9σ 2

Normal distribution with parameters µ=132 et σ=37 Inflexion points

We ve got also : 8% of the values are in [µ - σ; µ + σ] 99% of the values are in [µ - 2,58σ; µ + 2,58σ] 99,7% of the values are in [µ - 3σ; µ + 3σ]

Normal distribution

In general : (1-α)% of the values are in [ u σ µ u σ ] µ ; + 1 α / 2 1 α / 2 where u1-α/2 is the fractile (1- α/2) of the standardized normal distribution

Fractiles N(0,1) (extracts) P 0 0.001 0.002 0.003 0.004 0.005 0.00 0.007 0.008 0.009 0.01 0 infini 3.0902 2.8782 2.7478 2.521 2.5758 2.5121 2.4573 2.4089 2.35 2.323 0.99 0.01 2.323 2.2904 2.2571 2.222 2.1973 2.1701 2.44 2.1201 2.099 2.0748 2.0537 0.98 0.02 2.0537 2.0335 2.01 1.9954 1.9774 1.900 1.9431 1.928 1.9110 1.8957 1.8808 0.97 0.03 1.8808 1.83 1.8522 1.8384 1.8250 1.8119 1.7991 1.78 1.7744 1.724 1.7507 0.9 0.04 1.7507 1.7392 1.7279 1.719 1.700 1.954 1.849 1.747 1.4 1.54 1.449 0.95 0.05 1.449 1.352 1.258 1.14 1.072 1.5982 1.5893 1.5805 1.5718 1.532 1.5548 0.94 0.0 1.5548 1.544 1.5382 1.5301 1.5220 1.51 1.503 1.4985 1.4909 1.4833 1.4758 0.93 0.07 1.4758 1.484 1.411 1.4538 1.44 1.4395 1.4325 1.4255 1.4187 1.4118 1.4051 0.92 0.08 1.4051 1.3984 1.3917 1.3852 1.3787 1.3722 1.358 1.3595 1.3532 1.349 1.3408 0.91 0.09 1.3408 1.334 1.3285 1.3225 1.315 1.310 1.3047 1.2988 1.2930 1.2873 1.281 0.90 0.10 1.281 1.2759 1.2702 1.24 1.2591 1.253 1.2481 1.242 1.2372 1.2319 1.225 0.89 0.11 1.225 1.2212 1.210 1.2107 1.2055 1.2004 1.1952 1.1901 1.1850 1.1800 1.1750 0.88 0.12 1.1750 1.1700 1.150 1.101 1.1552 1.1503 1.55 1.07 1.1359 1.1311 1.124 0.87 0.13 1.124 1.1217 1.1170 1.1123 1.1077 1.1031 1.0985 1.0939 1.0893 1.0848 1.0803 0.8 0. 1.0803 1.0758 1.07 1.09 1.025 1.0581 1.0537 1.0494 1.0451 1.0407 1.034 0.85 0.15 1.034 1.0322 1.0279 1.0237 1.0194 1.0152 1.0110 1.009 1.0027 0.998 0.9945 0.84 0.1 0.9945 0.9904 0.983 0.9822 0.9782 0.9741 0.9701 0.91 0.921 0.9581 0.9542 0.83 0.17 0.9542 0.9502 0.943 0.9424 0.9385 0.934 0.9307 0.929 0.9230 0.9192 0.9154 0.82 0.18 0.9154 0.911 0.9078 0.9040 0.9002 0.895 0.8927 0.8890 0.8853 0.881 0.8779 0.81 0.19 0.8779 0.8742 0.870 0.89 0.832 0.859 0.850 0.8524 0.8488 0.8452 0.841 0.80 0.20 0.841 0.8381 0.8345 0.8310 0.8274 0.8239 0.8204 0.819 0.8134 0.8099 0.804 0.79 0.21 0.804 0.8030 0.7995 0.791 0.792 0.7892 0.7858 0.7824 0.7790 0.775 0.7722 0.78 0.22 0.7722 0.788 0.755 0.721 0.7588 0.7554 0.7521 0.7488 0.7454 0.7421 0.7388 0.77 0.23 0.7388 0.735 0.7323 0.7290 0.7257 0.7225 0.7192 0.710 0.7128 0.7095 0.703 0.7 0.24 0.703 0.7031 0.999 0.97 0.935 0.903 0.871 0.840 0.808 0.77 0.745 0.75 0.01 0.009 0.008 0.007 0.00 0.005 0.004 0.003 0.002 0.001 0 P We are looking for u for a probability P. If P < 0.5 (left column; upper row), the fractiles would be negative. IF P > 0.5 (RIGHT COLUMN and LOWER), the fractiles would be positive.

Normality test