LP N to BD* C-C = BD C-C to BD* O-H = LP* C to LP* B =5.

Σχετικά έγγραφα
10-π-electron arenes à la carte: Structure. Sr, Ba; n = 6-8) complexes

Hydrogen Sorption Efficiency of Titanium Decorated Calix[4]pyrroles

Enhancing σ/π-type Copper(I) thiophene Interactions by Metal Doping (Metal = Li, Na, K, Ca, Sc)

Supporting Information

Butadiene as a Ligand in Open Sandwich Compounds

Supplementary Information for

Supporting Information

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

Electronic Supplementary Information DFT Characterization on the Mechanism of Water Splitting Catalyzed by Single-Ru-substituted Polyoxometalates

Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design

Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand

Electronic Supplementary Information

Supporting Information. A Combined Crossed Molecular Beams and ab Initio Investigation on the Formation of Vinylsulfidoboron (C 2 H

Carbohydrates in the gas phase: conformational preference of D-ribose and 2-deoxy-D-ribose

Computational study of the structure, UV-vis absorption spectra and conductivity of biphenylene-based polymers and their boron nitride analogues

Table of Contents 1 Supplementary Data MCD

ELECTRONIC SUPPLEMENTARY MATERIAL-RSC Adv.

Dipole-Guided Electron Capture Causes Abnormal Dissociations of Phosphorylated Pentapeptides

Manuscript submitted to the Journal of the American Society for Mass Spectrometry, September 2011.

Zebra reaction or the recipe for heterodimeric zinc complexes synthesis

Supporting Information. Introduction of a α,β-unsaturated carbonyl conjugated pyrene-lactose hybrid

Electronic Supplementary Information (ESI)

stability and aromaticity in the benzonitrile H 2 O complex with Na+ or Cl

Supporting Information

Supporting Information. Crown Ether Complexes of Actinyls: A Computational Assessment of

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. Supplementary to Theoretical Study on the Gas Adsorption Capacity and

Uncovering the impact of capsule shaped amine-type ligands on. Am(III)/Eu(III) separation

Electronic supplementary information (ESI) Bodipy functionalized ortho-carborane dyads for low-energy photosensitization

Supplementary materials

Electronic Supplementary Information:

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, Gliwice, Poland

Supporting Information To. Microhydration of caesium compounds: Journal of Molecular Modeling

Electronic Supplementary Information (ESI)

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. Supporting Information

chlorostibine Iou-Sheng Ke and François P. Gabbai Department of Chemistry, Texas A&M University, College Station, TX

Molecular structure, spectral analysis and hydrogen bonding analysis of ampicillin trihydrate: A combined DFT and AIM approach

Supporting Information

The effect of curcumin on the stability of Aβ. dimers

Solvent effects on structures and vibrations of zwitterionic dipeptides: L-diglycine and L-dialanine

Electronic Supplementary Information (ESI)

January 22, University of Minnesota, Minneapolis, Minnesota , USA

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Novel electroluminescent donor-acceptors based on dibenzo[a,c]phenazine as

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Electronic Supplementary Information for Dalton Transactions. Supplementary Data

Supporting Information

Supporting Information for Substituent Effects on the Properties of Borafluorenes


To whom correspondence should be addressed: Dr. Beat Schwaller, Unit of Anatomy,

of the methanol-dimethylamine complex

Table S1 Selected bond lengths [Å] and angles [ ] for complexes 1 8. Complex 1. Complex 2. Complex 3. Complex 4. Complex 5.

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical

Selecting Critical Properties of Terpenes and Terpenoids through Group-Contribution Methods and Equations of State

DuPont Suva 95 Refrigerant

Electronic Supplementary Information

Si + Al Mg Fe + Mn +Ni Ca rim Ca p.f.u

Figure 1 T / K Explain, in terms of molecules, why the first part of the graph in Figure 1 is a line that slopes up from the origin.

Divergent synthesis of various iminocyclitols from D-ribose

DuPont Suva 95 Refrigerant

Supporting Information. Generation Response. Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi , China. China , USA

Supporting information

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte

2. Chemical Thermodynamics and Energetics - I

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

Supporting Information

ELECTRONIC SUPPORTING INFORMATION

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Supporting Information

Supporting information. Influence of Aerosol Acidity on the Chemical Composition of Secondary Organic Aerosol from β caryophyllene

# Institute of Chemistry of the Academy of Sciences of Republic of Moldova, Academiei Str. 3,

Supporting Information: Design principles for α-tocopherol analogues

Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

Supporting Information. Evaluation of spin-orbit couplings with. linear-response TDDFT, TDA, and TD-DFTB

Comparison of carbon-sulfur and carbon-amine bond in therapeutic drug: -S-aromatic heterocyclic podophyllum derivatives display antitumor activity

Fused Bis-Benzothiadiazoles as Electron Acceptors

Supporting Information

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Supporting Information

Extremely Strong Halogen Bond. The Case of a Double-Charge-Assisted Halogen Bridge

Supporting Information

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Decomposition of Condensed Phase Energetic Materials: Interplay between Uni- and Bimolecular Mechanisms Supporting Information

SUPPLEMENTARY DATA. Waste-to-useful: Biowaste-derived heterogeneous catalyst for a green and sustainable Henry reaction

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

Copper(II) complexes of salicylaldehydes and 2 hydroxyphenones: Synthesis, Structure,

Supporting Information for. Department of Chemistry, Vanderbilt University, Nashville, TN 37235

A new ent-kaurane diterpene from Euphorbia stracheyi Boiss

SUPPLEMENTARY INFORMATION

Supplementary Appendix


Review: Molecules = + + = + + Start with the full Hamiltonian. Use the Born-Oppenheimer approximation

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Electronic Supplementary Information

Transcript:

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2016 MS No.: CP-ART-03-2016-002134.R1 Optical Response and Gas Sequestration Properties of Metal Cluster Supported Graphene Nanoflakes Debdutta Chakraborty and Pratim Kumar Chattaraj* Department of Chemistry and Centre for Theoretical Studies Indian Institute of Technology, Kharagpur 721302, West Bengal, India * To whom correspondence should be addressed. E-mail: pkc@chem.iitkgp.ernet.in, Telephone: +91 3222 283304, Fax: 91-3222-255303. Supplementary Information Table Table S1. Free energy change (ΔG, kcal/mol) and reaction enthalpy change ( H, kcal/mol) at 298K for the process: CO/NO/CH 3 OH + GR/BGR/BNGR CO/NO/GR/BGR/BNGR; ZPE corrected dissociation energy (D 0, kcal/mol) for the dissociation process: CO/NO/GR/BGR/BNGR CO/NO/CH 3 OH + GR/BGR/BNGR; HOMO-LUMO gap (Gap) (in ev), Polarizability ( ) (in a.u. 3 ); most important stabilizing donor-acceptor interaction (E(2)) (in kcal/mol) as given by second order perturbation theory analysis of Fock matrix in the NBO basis for the CO/NO/GR/BGR/BNGR moieties; NBO charges on adsorbate molecules (Q K (Ad)); distance in between the adsorbates and adsorbent (R Ad-Surface ) (in Ǻ); important bond lengths of the CO/NO/CH 3 OH molecules at the adsorbed state on CO/NO/CH 3 OH @GR/BGR/BNGR (in Ǻ). Systems G H D 0 Gap E(2) Q K (Ad) R Ad- R Ad Surface GR 4.35-3.05 3.47 3.95 684.19 BD C-C to LP* C =0.75 O=- 0.51, C= 0.51 C-C= 3.29 C-O= 1.14 1

GR -2.65-9.23 9.77 4.68 628.09 LP N to BD* C-C =0.24 N= 0.21, O= - 0.20 N-C= 3.13 N-O= 1.15 GR 3.01-6.27 6.72 3.96 688.30 BD C-C to BD* O-H =0.78 O=- 0.76, H a =0.49, C=-0.32, H b =0.22, 0.19, 0.19 O-C= 3.26, H a -C= 2.60 O- H a =0.96, C-O= 1.40, C- H b = 1.10 BGR 3.92-2.87 3.32 3.08 859.82 LP* C to LP* B =5.98 O=- 0.51, C= 0.51 C-B= 3.25 C-O= 1.14 BGR -13.50-21.59 22.01 4.74 639.08 LP* B to BD* N-O =16.14 N= 0.24, O= - 0.18 N-B= 2.93 N-O= 1.15 BGR 1.04-8.71 9.02 3.13 847.91 BD C-C to BD* O-H =1.19 O=- 0.77, H a =0.50, C=-0.32, H b =0.21, 0.19, 0.19 H a -C= 2.54, O-C= 3.47 O- H a =0.96, C-O= 1.41, C- H b = 1.09 BNGR 3.19-2.94 3.45 3.67 705.99 LP* C to LP* B =5.60 O=- 0.50, C= 0.51 C-N= 1.14 C-O= 1.14 BNGR -8.74-14.98 15.56 4.89 603.01 LP N to BD* B-N =0.76 N= 0.20, O= - 0.19 N-N= 2.96 N-O= 1.15 BNGR 1.03-8.20 8.64 3.67 707.83 LP O to BD* C-H =9.44 O=- 0.76, H a =0.49, C=-0.33, H b =0.20, 0.20, 0.22 O-B= 3.00, H a -B= 2.96 O- H a =0.96, C-O= 1.42, C- H b = 1.09 2

Table S2. NBO charges on M 3 O + moieties (Q K (M 3 O + )); distance in between the O/M centres of the M 3 O + moieties from the host surface (R + M3O -Surface ) (in Ǻ) in the CO/NO/M 3 O + GR/BGR/BNGR complexes. Systems Q K (M 3 O + ) R + M3O -Surface Q Li =0.78, 0.74, 0.82 Li-C= 2.49 Li 3 O + GR Q O =-1.01 Q Li =0.81, 0.88, 0.78 Li-C= 2.49 Li 3 O + GR Q O =-0.98 Q Li =0.81, 0.80, 0.80 Li-C= 2.57 Li 3 O + GR Q O =-1.52 Q Na =0.81, 0.79, 0.83 Na-C= 2.78 Na 3 O + GR Q O =-1.02 Q Na =0.90, 0.87, 0.90 Na-C= 2.69 Na 3 O + GR Q O =-0.57 Q Na =0.87, 0.86, 0.81 Na-C= 2.85 Na 3 O + GR Q O =-1.58 Q K =0.81, 0.83, 0.82 O-C= 2.96 K 3 O + GR Q O =-0.97 Q K =0.89, 0.92, 0.93 K-C= 2.99 K 3 O + GR Q O =-0.66 Q K =0.85, 0.82, 0.86 K-C= 3.20 K 3 O + GR Q O =-1.53 Q Li =0.90, 0.81, 0.72 O-B= 1.58, Li-C Avg = 2.43 Li 3 O + BGR Q O =-1.23 Q Li =0.89, 0.82, 0.79 O-B= 1.59, Li-C Avg = 2.45 Li 3 O + BGR Q O =-1.26 Q Li =0.89, 0.80, 0.85 O-B= 1.57, Li-C Avg = 2.37 Li 3 O + BGR Q O =-1.23 Q Na =0.91, 0.88, 0.83 O-B= 1.55, Na-C Avg = 2.49 Na 3 O + BGR Q O =-1.58 Q Na =0.93, 0.87, 0.88 O-B= 1.53, Na-C Avg = 2.55 Na 3 O + BGR Q O =-1.25 Q Na =0.91, 0.89, 0.92 O-B= 1.54, Na-C Avg = 2.51 Na 3 O + BGR Q O =-1.23 Q K =0.88, 0.90, 0.91 O-B= 1.52, K-C Avg = 2.81 K 3 O + BGR Q O =-1.16 Q K =0.89, 0.92, 0.92 O-B= 3.84, K-C Avg = 3.00 K 3 O + BGR Q O =-0.56 Q K =0.92, 0.93, 0.90 O-B= 1.51, K-C Avg = 2.80 K 3 O + BGR Q O =-1.18 Li 3 O + BNGR Q Li =0.89, 0.90, 0.70 Q O =-1.29 O-B= 1.54, Li-N Avg = 2.14, Li-C= 2.16 Li 3 O + BNGR Q Li =0.82, 0.89, 0.82 Q O =-1.30 O-B= 1.53, Li-N Avg = 2.12, Li-C= 2.21 Li 3 O + BNGR Q Li =0.82, 0.90, 0.84 Q O =-1.30 O-B= 1.53, Li-N Avg = 2.13, Li-C= 2.29 Na 3 O + BNGR Q Na =0.92, 0.87, 0.83 Q O =-1.27 O-B= 1.48, Na-N Avg = 2.47, Na- C= 2.47 Na 3 O + BNGR Q Na =0.93, 0.88, 0.86 Q O =-1.26 O-B= 1.46, Na-N Avg = 2.52, Na- C= 2.65 Na 3 O + BNGR Q Na =0.93, 0.89, 0.88 Q O =-1.27 O-B= 1.48, Na-N Avg = 2.48, Na- C= 2.55 Q K =0.91, 0.88, 0.90 O-B= 1.45, K-N avg = 2.82, K-C= 3

K 3 O + BNGR Q O =-1.22 2.81 K 3 O + BNGR Q K =0.92, 0.92, 0.93 Q O =-0.74 O-B= 1.54, K-N= 2.94, K-C= 2.96 K 3 O + BNGR Q K =0.91, 0.90, 0.94 Q O =-1.23 O-B= 1.44, K-N avg = 2.84, K-C= 2.85 Table S3. Electron density descriptors (in a.u.) at the bond critical points (BCP) for the CO/NO/M 3 O + GR/BGR/BNGR moieties. Herein, subscripts MOL-G, M-G, MOL-M, MOL refer to the BCPs belonging to the adsorbate-gr/bgr/bngr, M 3 O + - GR/BGR/BNGR, adsorbate- M 3 O + and adsorbate moieties respectively. Systems BCP ρ(r c ) 2 (r c ) H(r c ) -G(r c )/V(r c ) ELF GR O-C MOL-G 1.28 C-C MOL-G 1.39 0.47 1.45-0.76 0.59 GR O-C MOL-G 1.23 N-C MOL-G 1.19 N-O MOL 0.58-2.07-1.09 0.80 GR H-C MOL-G 1.30 O-C MOL-G 1.22 O-H MOL 0.37-2.11-0.61 0.12 0.98 0.26-0.47-0.39 0.41 0.57 BGR C-C MOL-G 1.37 O-C MOL-G 1.30 0.47 1.44-0.76 0.60 BGR N-C MOL-G 1.07 0.07 O-C MOL-G 1.19 N-O MOL 0.58-2.13-1.12 0.80 BGR C-C MOL-G 1.32 4

H-C MOL-G 1.25 0.27-0.49-0.39 0.41 0.58 O-H MOL 0.37-2.12-0.61 0.11 0.98 BNGR C-N MOL-G 1.29 0.47 1.44-0.77 0.60 BNGR N-N MOL-G 1.22 N-O MOL 0.58-2.07-1.09 0.34 0.80 BNGR O-N MOL-G 1.06 C-N MOL-G 1.27 0.26-0.44-0.38 0.42 0.56 O-H MOL 0.37-2.11-0.61 0.12 0.98 Li 3 O + GR O-C M-G 1.06 Li-C M-G 1.28 0.38 0.09-0.63 0.51 0.43 -M 0.26-0.33-0.38 0.44 0.51 O-Li MOL-M 0.27 1.27 Li 3 O + GR O-C M-G 1.06 Li-C M-G 1.30 N-O MOL 0.37-0.61-0.40 0.38 0.83 N-O MOL-M 0.29-0.24-0.25 0.43 0.78 O-Li MOL-M 0.24 1.27 O-C M-G 1.04 Li 3 O + GR Li-C M-G 1.31 0.24-0.31-0.44 0.51 O-H MOL 0.36-2.15-0.61 0.11 0.98 O-Li MOL-M 0.19 1.32 5

H-C MOL-G 1.19 Na 3 O + GR O-C M-G 1.13 Na-C M-G 0.07 1.26 - -0.57 0.50 0.44 -M 0.31-0.25-0.48 0.47 0.47 O-Na MOL-M 0.11 1.19 Na 3 O + GR O-C M-G 1.16 Na-C M-G 0.07 1.26 N-O MOL 0.46-1.03-0.59 0.36 0.85 N-O MOL-M 0.47-1.04-0.59 0.36 0.85 O-C M-G 1.17 Na 3 O + GR Na-C M-G 1.28 0.24-0.28-0.34 0.44 0.50 H-O MOL 0.37-2.15-0.62 0.11 0.98 O-Na MOL-M 0.15 1.27 H-O MOL-M 0.90 0.11 K 3 O + GR O-C M-G 1.14 K-C M-G 1.36 - -0.56 0.50 0.44 -M 0.31-0.20-0.49 0.47 0.46 O-K MOL-M 0.09 1.10 O-C M-G 1.30 K 3 O + GR K-C M-G 0.08 1.11 N-O MOL 0.50-1.20-0.67 0.36 0.85 N-O MOL-M 0.43-0.86-0.52 0.37 0.85 O-C M-G 1.29 6

K 3 O + GR K-C M-G 1.34 H-O MOL-M 0.06 0.86 0.16 O-K MOL-M 0.09 1.14 O-H MOL 0.37-2.13-0.61 0.12 0.98 0.24-0.30-0.34 0.44 0.50 0.12 0.40-0.08 0.69 0.18 Li 3 O + BGR Li-C M-G 0.07 1.19 0.48 1.44-0.79 0.59 C-Li MOL-M 0.07 1.48 C-C MOL-G 1.33 0.12 0.39-0.08 0.69 0.18 Li 3 O + BGR Li-C M-G 0.06 1.32 N-O MOL 0.57-2.02-1.06 0.34 0.81 O-Li MOL-M 1.35 N-O MOL-M 1.05 0.12 0.41-0.08 0.70 0.18 Li 3 O + BGR Li-C M-G 0.10 1.25 O-H MOL 0.37-2.18-0.62 0.11 0.98 0.24-0.25-0.34 0.45 0.48 O-Li MOL-M 0.23 1.35 H-C MOL-G 1.31 0.13 0.44-0.09 0.70 0.19 Na 3 O + BGR Na-C M-G 0.09 1.26 0.47 1.35-0.78 0.59 C-Na MOL-M 1.38 -M 1.23 7

C-C MOL-G 1.42 0.13 0.48-0.09 0.70 0.19 Na 3 O + BGR Na-C MOL-G 0.08 1.28 N-O MOL 0.52-1.61-0.86 0.81 O-C MOL-G 1.11 N-C MOL-G 0.07 1.09 0.20 N-Na MOL-M 1.21 0.13 0.45-0.09 0.70 0.19 Na 3 O + BGR Na-C MOL-G 0.09 1.27 0.25-0.34-0.43 0.52 O-H MOL 0.36-2.14-0.61 0.11 0.98 O-Na MOL-M 0.15 1.24 H-C MOL-G 1.16 0.14 0.49-0.09 0.70 0.20 K 3 O + BGR K-C M-G 0.07 1.24 0.47 1.33-0.77 0.59 -M 1.11 0.06 O-K MOL-M 1.38 K-C M-G 1.27 K 3 O + BGR N-O MOL 0.47-1.03-0.59 0.36 0.85 N-O MOL-M 0.46-1.03-0.59 0.36 0.85 O-K MOL-M 1.11 0.14 0.49-0.09 0.70 0.20 K 3 O + BGR K-C M-G 0.07 1.24 0.25-0.38-0.37 0.42 0.54 O-H MOL 0.37-2.15-0.61 0.11 0.98 8

O-K MOL-M 0.08 1.13 H-O MOL - M 0.97 0.06 0.13 0.45-0.09 0.69 0.20 Li 3 O + BNGR Li-C M-G 0.12 1.24 0.48 1.43-0.80 0.59 C-Li MOL-M 0.08 1.44 C-C MOL-G 1.36 0.14 0.46-0.09 0.69 0.20 Li 3 O + BNGR Li-C M-G 0.10 1.25 N-O MOL 0.57-1.96-1.02 0.34 0.81 O-Li MOL-M 0.06 1.35 N-Li MOL-M 1.34 N-O MOL-M 1.02 0.14 0.47-0.09 0.69 0.20 Li 3 O + BNGR Li-C M-G 0.12 1.28 0.25-0.36-0.36 0.43 0.53 O-H MOL 0.36-2.14-0.61 0.10 0.98 O-Li MOL-M 0.20 1.31 H-C MOL-G 1.15 0.15 0.56-0.10 0.70 0.21 Na 3 O + BNGR Na-C M-G 0.09 1.23 0.47 1.37-0.78 0.59 C-Na MOL-M 1.38 O-Na MOL-M 1.44 0.16 0.62-0.11 0.71 0.21 Na 3 O + BNGR Na-C M-G 0.09 1.24 9

N-O MOL 0.53-1.59-0.87 0.82 N-C MOL-G 1.20 0.09 O-C MOL-G 0.06 1.22 N-Na MOL-M 0.09 1.35 0.16 0.58-0.11 0.70 0.21 Na 3 O + BNGR Na-C M-G 0.09 1.24 0.26-0.41-0.37 0.42 0.55 O-H MOL 0.36-2.11-0.60 0.11 0.98 O-Na MOL-M 0.14 1.24 0.17 0.65-0.11 0.71 0.22 K 3 O + BNGR K-C M-G 0.07 1.20 0.47 1.32-0.77 0.59 C-K MOL-M 1.38 -M 1.09 0.06 0.13 0.46-0.08 0.71 0.18 K 3 O + BNGR K-C M-G 1.27 N-O MOL 0.42-0.82-0.49 0.37 0.85 O-K MOL-M 0.09 1.10 N-O MOL-M 0.28-0.22-0.24 0.43 0.78 0.17 0.70-0.12 0.71 0.22 K 3 O + BNGR K-C M-G 0.07 1.21 0.24-0.32-0.34 0.43 0.52 O-H MOL 0.37-2.13-0.61 0.11 0.98 O-K MOL-M 0.06 1.13 H-C MOL-G 1.22 Figures 10

Figure S1: Geometrical alignment of the adsorbed guest@gr/bgr moieties at 500 fs where (a) Li 3 O + @GR, (b) Na 3 O + @GR, (c) K 3 O + @GR, (d) Li 3 O + @BGR and (e) Na 3 O + @BGR respectively. 11

Figure S2: Geometrical alignment of the adsorbed guest@bgr/bngr moieties at 500 fs where (a) K 3 O + @BGR, (b) Li 3 O + @BNGR, (c) Na 3 O + @BNGR and (d) K 3 O + @BNGR respectively. 12

Figure S3. The TDOS plots of (a) GR, (b) BGR and (c) BNGR respectively. 13

Figure S4. The TDOS plots of M 3 O + @GR where (a) Li 3 O + @GR, (b) Na 3 O + @GR and (c) K 3 O + @GR respectively. Here frag1 denotes M 3 O + moieties whereas frag2 denotes GR. The vertical line designates the E F whereas the vertical bars represent occupied and virtual orbitals. 14

Figure S5. The TDOS plots of M 3 O + @BGR where (a) Li 3 O + @BGR, (b) Na 3 O + @BGR and (c) K 3 O + @BGR respectively. Here frag1 denotes M 3 O + moieties whereas frag2 denotes BGR. The vertical line designates the E F whereas the vertical bars represent occupied and virtual orbitals. 15

Figure S6. The TDOS plots of M 3 O + @BNGR where (a) Li 3 O + @BNGR, (b) Na 3 O + @BNGR and (c) K 3 O + @BNGR respectively. Here frag1 denotes M 3 O + moieties whereas frag2 denotes BNGR. The vertical line designates the E F whereas the vertical bars represent occupied and virtual orbitals. 16

Figure S7. The TDOS plots of CO/NO/GR where (a) GR, (b) GR and (c) GR respectively. Here frag1 denotes CO/NO/CH 3 OH moieties whereas frag2 denotes GR. The vertical line designates the E F whereas the vertical bars represent occupied and virtual orbitals. 17

Figure S8. The TDOS plots of CO/NO/BGR where (a) BGR, (b) BGR and (c) BGR respectively. Here frag1 denotes CO/NO/CH 3 OH moieties whereas frag2 denotes BGR. The vertical line designates the E F whereas the vertical bars represent occupied and virtual orbitals. 18

Figure S9. The TDOS plots of CO/NO/BNGR where (a) BNGR, (b) BNGR and (c) BNGR respectively. Here frag1 denotes CO/NO/CH 3 OH moieties whereas frag2 denotes BNGR. The vertical line designates the E F whereas the vertical bars represent occupied and virtual orbitals. 19

Figure S10. The TDOS plots of CO/NO/Li 3 O + GR where (a) Li 3 O + GR, (b) Li 3 O + GR and (c) Li 3 O + GR respectively. Here frag1 denotes CO/NO/CH 3 OH moieties whereas frag2 denotes Li 3 O + @GR. The vertical line designates the E F whereas the vertical bars represent occupied and virtual orbitals. 20

Figure S11. The TDOS plots of CO/NO/Na 3 O + GR where (a) Na 3 O + GR, (b) Na 3 O + GR and (c) Na 3 O + GR respectively. Here frag1 denotes CO/NO/CH 3 OH moieties whereas frag2 denotes Na 3 O + @GR. The vertical line designates the E F whereas the vertical bars represent occupied and virtual orbitals. 21

Figure S12. The TDOS plots of CO/NO/K 3 O + GR where (a) K 3 O + GR, (b) K 3 O + GR and (c) K 3 O + GR respectively. Here frag1 denotes CO/NO/CH 3 OH moieties whereas frag2 denotes K 3 O + @GR. The vertical line designates the E F whereas the vertical bars represent occupied and virtual orbitals. 22

Figure S13. The TDOS plots of CO/NO/Li 3 O + BGR where (a) Li 3 O + BGR, (b) Li 3 O + BGR and (c) Li 3 O + BGR respectively. Here frag1 denotes CO/NO/CH 3 OH moieties whereas frag2 denotes Li 3 O + @BGR. The vertical line designates the E F whereas the vertical bars represent occupied and virtual orbitals. 23

Figure S14. The TDOS plots of CO/NO/Na 3 O + BGR where (a) Na 3 O + BGR, (b) Na 3 O + BGR and (c) Na 3 O + BGR respectively. Here frag1 denotes CO/NO/CH 3 OH moieties whereas frag2 denotes Na 3 O + @BGR. The vertical line designates the E F whereas the vertical bars represent occupied and virtual orbitals. 24

Figure S15. The TDOS plots of CO/NO/K 3 O + BGR where (a) K 3 O + BGR, (b) K 3 O + BGR and (c) K 3 O + BGR respectively. Here frag1 denotes CO/NO/CH 3 OH moieties whereas frag2 denotes K 3 O + @BGR. The vertical line designates the E F whereas the vertical bars represent occupied and virtual orbitals. 25

Figure S16. The TDOS plots of CO/NO/Li 3 O + BNGR where (a) Li 3 O + BNGR, (b) Li 3 O + BNGR and (c) Li 3 O + BNGR respectively. Here frag1 denotes CO/NO/CH 3 OH moieties whereas frag2 denotes Li 3 O + @BNGR. The vertical line designates the E F whereas the vertical bars represent occupied and virtual orbitals. 26

Figure S17. The TDOS plots of CO/NO/Na 3 O + BNGR where (a) Na 3 O + BNGR, (b) Na 3 O + BNGR and (c) Na 3 O + BNGR respectively. Here frag1 denotes CO/NO/CH 3 OH moieties whereas frag2 denotes Na 3 O + @BNGR. The vertical line designates the E F whereas the vertical bars represent occupied and virtual orbitals. 27

Figure S18. The TDOS plots of CO/NO/K 3 O + BNGR where (a) K 3 O + BNGR, (b) K 3 O + BNGR and (c) K 3 O + BNGR respectively. Here frag1 denotes CO/NO/CH 3 OH moieties whereas frag2 denotes K 3 O + @BNGR. The vertical line designates the E F whereas the vertical bars represent occupied and virtual orbitals. 28