Μαθηµατικά και Φυσικές Επιστήµες µε το Stagecast Creator: Οι µαθητές του ηµοτικού Σχολείου Αγίου Αντωνίου παρουσιάζουν την εργασία τους 12 Ανδρέας Σάββα, Μιχάλης Χριστοφορίδης, Λουκάς Λουκά 3 και οι µαθητές της Στ τάξης του ηµοτικού Σχολείου Αγίου Αντωνίου Περίληψη Στο άρθρο αυτό παρουσιάζουµε πέντε (5) θεµατικές ενότητες τις οποίες χρησιµοποιήσαµε για τη διδασκαλία µαθηµατικών εννοιών και φυσικών φαινοµένων µε µια οµάδας εννέα (9) µαθητών Στ τάξης δηµοτικού σχολείου µε τη χρήση του λογισµικού Stagecast Creator. Οι ενότητες αυτές αφορούν τα µαθηµατικά (πιθανότητες, πρώτοι αριθµοί και γραφικές παραστάσεις) και τις φυσικές επιστήµες (τριβή, διάχυση, ελεύθερη πτώση). Σε αυτή τη συνεδρίαση στρογγυλής τράπεζας οι µαθητές θα παρουσιάσουν τους µικρόκοσµους που οικοδόµησαν µέσα από την εµπλοκή τους µε το λογισµικό Stagecast Creator. Το περιβάλλον Stagecast Creator βοήθησε τους µαθητές µέσα από διάφορες δραστηριότητες να κατασκευάσουν διάφορα µοντέλα που προσοµοίωναν τα φυσικά φαινόµενα και τις µαθηµατικές καταστάσεις που µελετήθηκαν. Λέξεις κλειδιά Stagecast Creator, µαθηµατικά, φυσικές επιστήµες, δηµοτική εκπαίδευση Εισαγωγή Η γνώση στα µαθηµατικά και στις φυσικές επιστήµες περιλαµβάνει την οικοδόµηση και βελτιωτική ρύθµιση αναπαραστάσεων για τα διάφορα φυσικά φαινόµενα και τις µαθηµατικές έννοιες (Golin, 1997, White & Frederiksen, 1998). Η εκµάθηση τόσο στα µαθηµατικά όσο και στις φυσικές επιστήµες περνά µέσα από την οικοδόµηση (νοητικών) αναπαραστάσεων των διαφόρων εννοιών. Πληροφορικά εργαλεία όπως τα ανοικτά εργαλεία µάθησης αποτελούν βοηθήµατα τα οποία µπορούν να υποστηρίξουν αυτή την οικοδόµηση (νοητικών) αναπαραστάσεων µέσα από την οικοδόµηση από τους µαθητές προγραµµάτων που να αναπαριστούν ή/και εµπεριέχουν τις έννοιες των µαθηµατικών και των φυσικών φαινοµένων. Αρκετοί ερευνητές επικεντρώθηκαν στη διερεύνηση της χρήσης λογισµικών δηµιουργίας µικρόκοσµων για οικοδόµηση αναπαραστάσεων φυσικών φαινοµένων (disessa et al, 1991; Louca & Constantinou, 1999; Redish & Wilson, 1993; Sherin, 1996; Sherin et al, 1993; White & Frederiksen, 1998; Wilensky & Resnick, 1999) και µαθηµατικών εννοιών (Papert, 1980; Papert, 1993; Kaput, 1994; Noss & Hoyles, 1996). 1 Συνεδρία στρογγυλής τράπεζας στο πλαίσιο του 5 ου Συνεδρίου του Οµίλου Εκπαιδευτικών-Χρηστών Πληροφορικής τεχνολογίας, Λευκωσία. 2 Η συγγραφή του άρθρου υποστηρίχθηκε από το Ίδρυµα Προώθησης Έρευνας, πρόγραµµα ΗΜΙΟΥΡΓΙΑ, αριθµός χρηµατοδότησης: ΕΝΙΣΧ/0603/09 3 Louca.L@cytanet.com.cy 1
Στο άρθρο αυτό επιχειρούµε µία πρώτη παρουσίαση της εργασίας µίας οµάδας µαθητών Στ ηµοτικού µε το λογισµικό Stagecast Creator, στα µαθηµατικά και στις φυσικές επιστήµες, αποβλέποντας στην παρουσίαση ενός τρόπου χρήσης ανοικτών περιβαλλόντων µάθησης στα µαθηµατικά και στις φυσικές επιστήµες. Κατά την διάρκεια της παρουσίασης οι ίδιοι οι µαθητές θα µας µιλήσουν για την εµπειρία τους µε το Stagecast Creator και την εργασία τους κατά τη διάρκεια της σχολικής χρονιάς 2005-2006. Σκοπός µας είναι η παρουσίαση των µικρόκοσµων που οικοδόµησαν οι µαθητές για αριθµό φαινοµένων και εννοιών από τους ίδιους τους µαθητές. Η εργασία που παρουσιάζουµε στο άρθρο αυτό είναι µέρος ενός µεγαλύτερου ερευνητικού προγράµµατος, το οποίο χρηµατοδοτείται από το Ίδρυµα Προώθησης Έρευνας i, και αποσκοπεί στην αξιοποίηση, µελέτη και τεκµηρίωση της χρήσης τριών λογισµικών δηµιουργίας µικρόκοσµων (Stagecast Creator, Microworlds Logo και Lego Robolab) για την οικοδόµηση αναπαραστάσεων φυσικών φαινοµένων και µαθηµατικών εννοιών από µαθητές 5 ης και 6 ης τάξης δηµοτικού σχολείου, και τη χρήση νέων τεχνολογιών µάθησης στη δηµοτική εκπαίδευση. Ιστορικό και επεξήγηση εφαρµογής Το Stagecast Creator είναι λογισµικό δηµιουργίας µικρόκοσµων σχεδιασµένο για νεαρούς µαθητές που επιτρέπει την οικοδόµηση συµβολικών προσοµοιώσεων µέσω µίας µορφής προγραµµατισµού. Είναι ένα γραφικό σύστηµα αλληλεπίδρασης υπολογιστή - µαθητών (Kiper, et al, 1997; Singh, & Chignell, 1992), και προσφέρει µε βάση τους Smith & Cypher (1999): (i) αναλογική αναπαράσταση αντικειµένων, (ii) διαφοροποίηση µεταξύ φυσικών µεγεθών, (iii) χρήση αντικειµενοστρεφούς διακείµενου, και (vi) οικοδόµηση µικρόκοσµων µέσω επίδειξης µε τη χρήση µόνο ποντικιού, χωρίς επιπρόσθετη ανάγκη εκµάθησης γλώσσας προγραµµατισµού. Στο Stagecast Creator οι µαθητές µπορούν να κατασκευάσουν δικές του εντολές χρησιµοποιώντας µόνο γραφικά χωρίς να είναι απαραίτητη η χρήση της γλώσσας, κατασκευάζοντας κανόνες για τη συµπεριφορά χαρακτήρων, µε κάθε ένα κανόνα να ανταποκρίνεται σε µία συµπεριφορά. Ο προγραµµατισµός υποστηρίζεται µε συγκεκριµένη δοµή από το λογισµικό, παρέχοντας δύο παράθυρα δηµιουργίας κανόνων. Στο πρώτο παράθυρο οι µαθητές πρέπει να καθορίσουν τις συνθήκες («Αν...»), οι οποίες όταν ικανοποιούνται εφαρµόζεται ο κανόνας, και στο δεύτερο καθορίζεται η ενέργεια που θα επιτελεί ο κανόνας («τότε...»), όταν ικανοποιούνται οι συγκεκριµένες συνθήκες. Μεθοδολογία Στην εργασία αυτή περιγράφουµε τα προγράµµατα που δηµιούργησαν µία οµάδα από 9 µαθητές Στ τάξης που εργαζόταν µε το λογισµικό Stagecast Creator (Smith & Cypher, 1999). Οι µαθητές συµµετείχαν σε ένα απογευµατινό όµιλο που οργανώνεται στο σχολείο τους από τον σύνδεσµο γονέων. Κατά τη διάρκεια των µαθηµάτων (διάρκειας 90 λεπτών, µία φορά την εβδοµάδα), τα παιδιά εργάζονταν στον Η.Υ σε οµάδες των 2 ατόµων. Σε µερικά σηµεία του µαθήµατος (ανάλογα µε την περίπτωση) γίνονταν συζητήσεις µε σκοπό την επικοινωνία ιδεών, εισηγήσεων και σχολιασµό των διαφόρων πιθανών λύσεων της κάθε οµάδας. Σε κάθε συνάντηση ήταν παρόν δύο από εµάς: ένας εκπαιδευτικός (πρώτος ή δεύτερος συγγραφέας) και ένας ερευνητής (τρίτος συγγραφέας). Ο εκπαιδευτικός συντόνιζε τη συζήτηση και προσπαθούσε να προωθήσει τα παιδιά να 2
ακούσουν κριτικά τα όσα έχουν να πουν οι συµµαθητές τους και να διατυπώσουν µε ακρίβεια και ενάργεια τα όσα ήθελαν να πουν. Από τον Οκτώβρη 2005 µέχρι αρχές Ιανουαρίου 2006 οι µαθητές εξοικειώθηκαν µε το Stagecast Creator µέσα από τον ελληνοποιηµένο οδηγό εκµάθησης του λογισµικού. H ελληνοποίηση του οδηγού εκµάθησης έχει γίνει από την Ερευνητική οµάδα Μάθησης στις Φυσικές και Περιβαλλοντικές Επιστήµες και είναι διαθέσιµος δωρεάν από το διαδίκτυο ii. Κατά τη διάρκεια των µηνών Φεβρουαρίου 2006 µέχρι τέλη Μαΐου 2006, οι µαθητές ασχολήθηκαν µε διάφορες µαθηµατικές έννοιες και φυσικά φαινόµενα και χρησιµοποιούσαν το λογισµικό για να οικοδοµήσουν αναπαραστάσεις των εννοιών και των φαινοµένων αυτών. Παραδείγµατα εφαρµογών Οι µαθητές θα µας παρουσιάσουν τα µοντέλα που οικοδόµησαν για τα φυσικά φαινόµενα της διάχυσης, της ελεύθερης πτώσης. Για τα µαθηµατικά θα παρουσιάσουν προγράµµατα που σχετίζονται µε τις έννοιες των πρώτων αριθµών και των πιθανοτήτων. Ο µικρόκοσµος που οικοδόµησαν οι µαθητές για την τριβή περιλαµβάνει και δραστηριότητα που σχετίζεται µε τη γραφική παράσταση. Όλο το διδακτικό υλικό που χρησιµοποιήσαµε, σηµειώσεις προς εκπαιδευτικούς, φύλλα εργασίας για τους µαθητές και παραδείγµατα έτοιµων µικρόκοσµων είναι διαθέσιµα από την ιστοσελίδα του προγράµµατος iii. Παρακάτω περιγράφουµε τους µικρόκοσµους που θα παρουσιάσουν οι µαθητές για κάθε ένα από τα πιο πάνω θέµατα. 1. ιάχυση Η µελέτη του φαινοµένου της διάχυσης ξεκίνησε µε την παρατήρηση του φαινοµένου στον πραγµατικό φυσικό κόσµο. Παρουσιάσαµε στους µαθητές µία λεκάνη µε νερό στην οποία τοποθετήσαµε ένα πορτοκαλί κόκκο διχρωµικού καλίου. Ο κόκκος αρχίζει σιγάσιγά να διαλύεται και να διαχέεται σε όλο τον χώρο που καταλαµβάνει το νερό. Ακολούθησε συζήτηση για το πώς συµβαίνει αυτό, υπογραµµίζοντας στους µαθητές ότι µας ενδιέφερε τι θα παρατηρούσαµε αν ήµασταν µέσα στο νερό. Στη συζήτηση που ακολούθησε οι µαθητές πρότειναν διάφορες εξηγήσεις για το φαινόµενο, άλλες επιστηµονικά ορθές και άλλες (εν µέρη) λανθασµένες τις οποίες στη συνέχεια προσπάθησαν να εφαρµόσουν κατά την οικοδόµηση ενός µοντέλου του φαινοµένου στο Stagecast Creator. Μετά από µία σειρά συζητήσεων για τα διάφορα µοντέλα που οικοδόµησαν οι διάφορες οµάδες των µαθητών, η πρώτη οµάδα κατέληξε σε ένα µοντέλο στο οποίο όλα τα µόρια του νερού κινούνται, ο κόκκος διχρωµικού καλίου απελευθερώνει µόρια, τα οποία ακολουθούν τους ίδιους κανόνες συµπεριφοράς µε τους κόκκους του νερού. Το αποτέλεσµα φαίνεται στην εικόνα 2. Εικόνα 1. ιάχυση 3
4
2. Ελεύθερη Πτώση Για το φαινόµενο της ελεύθερης πτώσης, οι µαθητές δηµιούργησαν µία προσοµοίωση στην οποία µία µπάλα πέφτει από ψηλά στο έδαφος (Εικόνα 2). Μετά από µία σειρά µοντέλων και κριτική για το κατά πόσο παρουσιάζουν το τι γίνεται στην πραγµατικότητα, οι µαθητές καταλήγουν σε µοντέλα «αυξανόµενης» ταχύτητας όπως την ονόµασαν, στα οποία προγραµµατίζουν την µπάλα να συµπεριφορά που να αυξάνει την ταχύτητά της στη µονάδα του χρόνου. 3. Τριβή Στο κεφάλαιο της τριβής κατασκευάσαµε για τους µαθητές ένα αρχικό περιβάλλον στο οποίο υπήρχαν διάφορες επιφάνειες εδάφους (γρασίδι, πέτρα, σανός, πάγος και χώµα) στα οποία οι µαθητές καλούνται να κατασκευάσουν κανόνες συµπεριφοράς της µπάλας στην περίπτωση που κάποιος µαθητής την κλωτσήσει στο κάθε είδος εδάφους. Στο πάνω δεξιά µέρος της οθόνης προσθέσαµε µία ακόµα µια αναπαράσταση (γραφική παράσταση) της ταχύτητας της κάθε µπάλας σε σχέση µε το χρόνο. Το πλεονέκτηµα της γραφικής παράστασης στο Stagecast Creator είναι ότι είναι δυναµική και δηµιουργείται κατά τη διάρκεια της κίνησης του φαινοµένου το οποίο µπορεί να γίνεται σε αργή µορφή και οι Εικόνα 2. Ελεύθερη πτώση Εικόνα 3. Τριβή µαθητές να παρατηρούν τις αλλαγές στην ταχύτητα κίνησης. Σε κάθε επιφάνεια, ανάλογα µε τους κανόνες για την κίνηση της µπάλας που δηµιούργησαν οι µαθητές, δηµιουργείται µε διαφορετικό χρώµα (για σκοπούς σύγκρισης) και η ανάλογη γραφική παράσταση. Η συζήτηση που ακολούθησε την κατασκευή των προγραµµάτων των µαθητών εστιάστηκε στο τι προκαλεί τις αλλαγές στην κίνηση της µπάλας σε κάθε έδαφος (όπου οι µαθητές αναφέρθηκαν στην έννοια της τριβής) και συγκρίθηκαν οι γραφικές παραστάσεις που δηµιουργήθηκαν από την µπάλα σε κάθε έδαφος (µε έµφαση στις δεξιότητες ερµηνείας γραφικών παραστάσεων). 5
4. Οι πρώτοι αριθµοί Στον µικρόκοσµο για τους πρώτους αριθµούς κατασκευάσαµε ένα πρόγραµµα το οποίο σβήνει τα πολλαπλάσια όλων των αριθµών αρχίζοντας από τον αριθµό δύο (2). Παρουσιάσαµε το πρόγραµµα στους µαθητές, χωρίς να τους πούµε για τους κανόνες και ζητήσαµε να µας πουν τι κάνει το πρόγραµµα (σβήνει αριθµούς) και πώς νοµίζουν ότι το κάνει (τι κανόνες πρέπει να έχει το πρόγραµµα). Η συζήτηση επεκτάθηκε και στο ποιοι αριθµοί σβήνονται και ποιοι όχι για να καταλήξουµε έτσι σε ένα λειτουργικό ορισµό των πρώτων αριθµών (πρώτοι αριθµοί είναι όσοι Εικόνα 4. Πρώτοι αριθµοί αριθµοί δεν σβήνονται από το πρόγραµµα και άρα δεν διαιρούνται ακριβώς µε κανένα άλλο αριθµό) Στη συνέχεια οι µαθητές καλούνται να δηµιουργήσουν κανόνες οι οποίοι θα διαγράφουν τους αριθµούς που δεν είναι πρώτοι. Μέσα από τους κανόνες αυτούς οι µαθητές εφαρµόζουν πρακτικά την θεωρητική γνώση της έννοιας των πρώτων αριθµών. 5. Πιθανότητες Για το κεφάλαιο των πιθανοτήτων ζητήσαµε από τους µαθητές να κατασκευάσουν ένα παιγνίδι (βλέπε Εικόνα 5) στο οποίο σε κάθε κύκλο του Stagecast Creator να παράγεται τυχαία µία µπάλα (4 διαφορετικά χρώµατα). Όλες οι µπάλες έπρεπε να έχουν ίση πιθανότητα να πέσουν σε οποιοδήποτε από τα 4 πηγάδια. Για να καταλήξουν σ αυτό έπρεπε να δηµιουργήσουν τέτοιους κανόνες που ενεργοποιούσαν την κατανόηση της έννοιας των πιθανοτήτων. Στη συνέχεια, ζητήσαµε από τους µαθητές να τροποποιήσουν το παιγνίδι ώστε η πιθανότητα κάποιας µπάλας να πέσει στα δύο ακρινά πηγάδια να είναι Εικόνα 5. Πιθανότητες µεγαλύτερη (π.χ. 30%). Βιβλιογραφικές Αναφορές disessa, A., A., Hammer, D., Sherin, Br., & Kolapakowski, T. (1991). Inventing graphing: Meta-representational Expertise in Children. Journal of Mathematical Behavior, 10, pp.117-160. Golin, G. (1997). Structure of scientific knowledge and curriculum design. Interchange, 28 (2,3), 159-169. Kaput, J. (1994). The representational roles of technology in connecting mathematics with authentic experience. In R. Bieler, R.W.Scholz, R.Strasser, & B. Winkelman(Eds), 6
Mathematics didactics as a scientific discipline. Dordecht, The Netherlands : Kluwer Academic. Kiper, S., D., Howard, E., & Ames, Ch. (1997). Criteria for evaluation of visual programming languages. Journal of Visual Languages and Computing, 8, 175-192. Louca, L. & Constantinou, C. (1999, June). The use of Stagecast Creator in constructing modeling skills in physical science: The case of the single lens camera. Proceedings of the Forth International Conference on Computer-Based Learning in Science, University of Twente, Enschede, The Netherlands. Noss, R. & Hoyles, C.(1996) Windows on mathematical meaning : Learning cultures and computers. Dordrecht, The Netherlands: Kluwer Academic. Papert, S. (1980). Mindstorms. Children, Computers & Powerful Ideas. NY: Basic Books, Inc. Publishers. Papert, S. (1993). The Children s machine: Rethinking school in the age of the computer. NY: Basic Books Redish, E. F. & Wilson, J. M. (1993). Student programming in the introductory physics course: M.U.P.P.E.T. American Journal of Physics, 61 (3), 222-232. Sherin, Br., disessa, A. A., & Hammer, D. (1993). Dynaturtle revisited: Learning physics through collaborative design of a computer model. Interactive Learning Environments, 3 (2), 91-118. Sherin, Br. (1996). The Symbolic Basis of Physical Intuition. A Study of Two Symbol Systems in Physics Instruction. Unpublished dissertation Thesis. Singh, G., & Chignell, M., H. (1992). Components of the visual computer. The Visual Computer, 9, 115-142. Smith, D., C. & Cypher, Al. (1999). Making programming easier for children. In A. Druin (Ed.). The Design of Children s Technology. San Francisco: Morgan Kaufmann Publishers, Inc. White, B. Y. and Frederiksen, J. R. (1998). Inquiry, modeling and metacognition: Making science accessible to all students. Cognition and Instruction, 16 (11), 3-118. Wilensky, Ur., & Resnick, M. (1999). Thinking in Levels: A Dynamic Systems Approach to Making Sense of the World. Journal of Science Education and Technology, 8 (1), 3-19. Σηµειώσεις i Πρόγραµµα ΗΜΙΟΥΡΓΙΑ, αριθµός χρηµατοδότησης: ΕΝΙΣΧ/0603/09 ii http://www.stagecast.com/cgi-bin/templator.cgi?page=shared/software/software#greek iii http://lsg.ucy.ac.cy/research/demiourgia 7