On the summability of divergent power series solutions for certain first-order linear PDEs Masaki HIBINO (Meijo University)

Σχετικά έγγραφα
Differentiation exercise show differential equation

Math221: HW# 1 solutions

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

Inverse trigonometric functions & General Solution of Trigonometric Equations

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

SPECIAL FUNCTIONS and POLYNOMIALS

Second Order Partial Differential Equations

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

D Alembert s Solution to the Wave Equation

On the Galois Group of Linear Difference-Differential Equations

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

2 Composition. Invertible Mappings

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

Example Sheet 3 Solutions

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Statistical Inference I Locally most powerful tests

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

1 String with massive end-points

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Matrices and Determinants

Homework 8 Model Solution Section

4.6 Autoregressive Moving Average Model ARMA(1,1)

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Fourier Analysis of Waves

Solutions to Exercise Sheet 5

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Quadratic Expressions

If we restrict the domain of y = sin x to [ π 2, π 2

Second Order RLC Filters

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

6.3 Forecasting ARMA processes

Other Test Constructions: Likelihood Ratio & Bayes Tests

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

EE512: Error Control Coding

Takeaki Yamazaki (Toyo Univ.) 山崎丈明 ( 東洋大学 ) Oct. 24, RIMS

Chapter 3: Ordinal Numbers

Problem 1.1 For y = a + bx, y = 4 when x = 0, hence a = 4. When x increases by 4, y increases by 4b, hence b = 5 and y = 4 + 5x.

Name: Math Homework Set # VI. April 2, 2010

Solution Series 9. i=1 x i and i=1 x i.

MA 342N Assignment 1 Due 24 February 2016

Finite difference method for 2-D heat equation

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Section 8.2 Graphs of Polar Equations

Trigonometric Formula Sheet

Srednicki Chapter 55

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

3Νο. ασκήσεις Α Ν Α Λ Υ Σ Η 1Ο Κ Ε Φ Α Λ Α Ι Ο. Θετική Τεχνολογική Κατεύθυνση ( ) ( 0)

Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

Iterated trilinear fourier integrals with arbitrary symbols

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

ST5224: Advanced Statistical Theory II

Trigonometry 1.TRIGONOMETRIC RATIOS

5. Choice under Uncertainty

The k-α-exponential Function

Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices

F (x) = kx. F (x )dx. F = kx. U(x) = U(0) kx2

The Simply Typed Lambda Calculus

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

( y) Partial Differential Equations

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Fractional Colorings and Zykov Products of graphs

Homework 3 Solutions

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Lecture 26: Circular domains

Every set of first-order formulas is equivalent to an independent set

Local Approximation with Kernels

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

Homomorphism in Intuitionistic Fuzzy Automata

F19MC2 Solutions 9 Complex Analysis

Finite Field Problems: Solutions

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Homework for 1/27 Due 2/5

CHAPTER 70 DOUBLE AND TRIPLE INTEGRALS. 2 is integrated with respect to x between x = 2 and x = 4, with y regarded as a constant

MathCity.org Merging man and maths

Differential equations

Parametrized Surfaces

Section 8.3 Trigonometric Equations

ECE 468: Digital Image Processing. Lecture 8

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Uniform Convergence of Fourier Series Michael Taylor

The semiclassical Garding inequality

Approximations to Piecewise Continuous Functions

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing

Transcript:

On the summability of divergent power series solutions for certain first-order linear PDEs Masaki HIBINO (Meijo University) 1

1 Introduction (E) {1+x 2 +β(x,y)}y u x (x,y)+{x+b(x,y)}y2 u y (x,y) +u(x,y)=f(x,y) x,y C β,b,f: holomorphic at (x,y) = (,) C 2 (1.1)! û(x,y) = u n (x)y n : n= Problem When is û(x, y) summable? β(x,) b(x,) formal solution of (E) divergent 2

2 Definition and fundamental result Definition 2.1 (1) R>, B(R) ={x C; x R} O[R]: ring of holomorphic functions on B(R) (2) O[R][[y]] = û(x,y) = u n (x)y n ; u n (x) O[R] (3) O[R][[y]] 2 = û(x,y) = n= u n (x)y n O[R][[y]]; C, K > s.t. n= max u n(x) CK n n! (n =,1,2,...) x R (4) θ R, κ>, <ρ + S(θ,κ,ρ) = y; arg(y) θ < κ 2, < y <ρ 3

(5) û(x,y) = ρ<+ ρe iθ κ 2 ρ = + θ θ u n (x)y n O[R][[y]] 2 isborelsummable inθ n= S(θ,κ,ρ) (κ>π) u(x,y): holomorphoic onb(r) S(θ,κ,ρ) (< r R) s.t. N 1 u(x,y) u n (x)y n C K N N! y N max x r n= y S(θ,κ,ρ), N = 1,2,... û: Borel summable inθ u: unique Borelsumofûinθ κ 2 4

Definition2.2 û(x,y) = n= u n (x)y n O[R][[y]] 2 ˆB[û](x, ) = u n (x) n : formalboreltransform ofû n! n= ˆB[û](x,): holomorphic at (x,) = (,) Theorem2.1 û(x,y) O[R][[y]] 2 û(x, y): Borel summable in θ (BS) ˆB[û](x,): continued analytically tob(r ) S(θ,κ,+) ( r, κ ) C, δ> s.t. max ˆB[û](x,) Ce δ, S(θ,κ,+) x r Borel sum ofûinθ: u(x,)= 1 y e iθ e /y ˆB[û](x,)d 5

3 Motivation (3.1) A(x,y) u x (x,y)+b(x,y) u y (x,y)+u(x,y)=f(x,y) A,B,f: holomorphic at (x,y) = (,) C 2 (3.2) (3.3) (3.4) A(x,) A y (,)= B(x,) B y (x,) Remark 3.1 (3.2), (3.3), (3.4) (A,B) (x, y) = (x,y)=(,) A y (,) (nilpotent type) 6

Theorem 3.1(1999) (3.2), (3.3), (3.4)! û(x,y) = u n (x)y n O[R][[y]] 2 ( R): formal solution of (3.1) Problem θ: given n= Whenisû(x,y)Borelsummable inθ? (When does ˆB[û](x, ) satisfy(bs)?) Remark 3.2 û(x, y): Borel summable Borel sum u(x, y): holomorphic solution 7

(3.1) is rewritten (3.5) {α(x)+β(x,y)}y u x (x,y)+{a(x)+b(x,y)}y2 u y (x,y) +u(x,y)=f(x,y) (3.6) (3.7) α,β,a,b,f: holomorphic at the origin α()= β(x,) b(x,) 26 α(x): general, a(x) a(constant) 28 α(x) α(constant), a(x): general 21 α(x)=α +α 1 x, a(x): general In this talk we consider the case (3.8) α(x)=1+x 2, a(x)=x 8

4 Mainresult (E) {1+x 2 +β(x,y)}y u x (x,y)+{x+b(x,y)}y2 u y (x,y) +u(x,y)=f(x,y) Assumptions We define the regionω θ,κ by Ω θ,κ = tan[arcsin(τ)]; τ S(θ,κ,+) In order to assure the well-definedness ofω θ,κ we assume (A1) θ=,π (A2) f(x,y): C, δ> s.t. x Ω θ,κ (4.1) continued analytically toω θ,κ {y C; y c} ( c>) max f(x,y) Cexp δ sin(arctanx) y c 9

(A3) β(x,y),b(x,y): continued analytically toω θ,κ {y C; y c} K, L>, p>1 s.t. x Ω θ,κ, m = 1, 2,... (4.2) (4.3) (4.4) 1 m β 1+x 2 y m(x,) KLm m! cos(arctanx) m x m β 1+x 2 y m(x,) m! cos(arctanx) m+1 KLm {1+ sin(arctanx) } p m b y m(x,) m! cos(arctanx) m+1 KLm {1+ sin(arctanx) } p Main theorem (A1), (A2), (A3) The formal solutionû(x,y) of (E) is Borel summable inθ 1

5 Proofof MainTheorem (easycase: f(x,y)=f(x),β(x,y) b(x,y) ) (E) (y+x 2 y) u x (x,y)+xy2 u y (x,y)+u(x,y)=f(x) û(x,y): formal solution of (E) ˆB[û](x,): formal Borel transform ofû ˆB[û](x,) =f tan arcsin sin(arctanx)+cos(arctanx) (A1)θ=,π; (A2)f(x) can be continued analytically to Ω θ,κ ={ tan[arcsin(τ)]; τ S(θ,κ,+)} with the estimate f(x) C exp δ sin(arctan x),x Ω θ,κ (BS) ˆB[û](x,) can be continued analytically to B(r ) S(θ,κ,+) ( r, κ ) and satisfies max ˆB[û](x,) C e δ, S(θ,κ,+) ( C, δ ) x r 11

6 Proofof MainTheorem For simplicity, we consider the caseβ(x,y) : (E) {1+x 2 }yd x u(x,y)+{x+b(x,y)}y 2 D y u(x,y) +u(x,y)=f(x,y) D x = x, D y= y û(x, y): formal solution of (E) v(x,) = ˆB[û](x,): formal Borel transform ofû It is sufficient to prove thatv(x,) satisfies (BS): (BS)v(x,) can be continued analytically tob(r ) S(θ,κ,+) ( r, κ ) and satisfies max v(x,) C e δ, S(θ,κ,+) ( C, δ ) x r 12

Step 1. Formal Borel transform of equation (E) formal Borel transform? A(x,y)yB(x,y) yd y C(x,y) D ˆB[C](x,) v(x, ) satisfies {1+x 2 } (6.1) + ˆB[A](x, t) ˆB[B](x,t)dt v x (x,t)dt+x t v (x,t)dt ˆB[b](x, t) t v (x,t)dt+v(x,) = ˆB[f](x,) (E) {1+x 2 }yd x u(x,y)+{x+b(x,y)}y 2 D y u(x,y) +u(x,y)=f(x,y) integration by parts (6.1) (6.2) 13

(6.2) {1+x 2 } + = ˆB[f](x,) v x (x,t)dt+x t v (x,t)dt ˆB[b] (x, t) t v(x,t)dt ˆB[b](x, t)v(x,t)dt+v(x,) (6.1) {1+x 2 } + v x (x,t)dt+x t v (x,t)dt ˆB[b](x, t) t v (x,t)dt+v(x,) = ˆB[f](x,) (6.2) D (6.3): 14

(6.3) {(1+x 2 )D x +(1+x)D }v(x,) = ˆB[b] (x,) v(x,) ˆB[b] (x, t) t v(x,t)dt + ˆB[b] (x, t)v(x,t)dt+ ˆB[f] (x,) v(x, ) = f(x, ) (integro-differential equation) (6.2) {1+x 2 } + = ˆB[f](x,) v x (x,t)dt+x t v (x,t)dt ˆB[b] (x, t) t v(x,t)dt ˆB[b](x, t)v(x,t)dt+v(x,) 15

(6.3) v(x,) = ˆB[b] (x,) v(x,) ˆB[b] (x, t) t v(x,t)dt + ˆB[b] (x, t)v(x,t)dt+g(x,) v(x, ) = f(x, ) (integro-differential equation) (6.4) = (1+x 2 )D x +(1+x)D g(x,) = ˆB[f] (x,) Does v(x, ) satisfy(bs)? 16

Step 2. Integro-differential equation Integral equation w(x,) =k(x,) (6.5) w(x,) = l tan (x,) + k w(x,) =l(x) tan (x, z), (x, z) z (x,) = arcsin sin(arctanx)+cos(arctanx) (x,) = cos(arctanx) cos( (x,)) (6.5) integration by substitution (6.3) (6.6) (x, z)dz 17

(6.6) v(x,) = f tan (x,), + + i=1 g tan (x, z), (x, z) z 3 I i v(x,) (integralequation) (x, z)dz I 1 v(x,) = (x, z) 2 z ˆB[b] tan (x, z), v tan (x, z), (x, z) z dz z I 2 v(x,) = (x, z) 3 ˆB[b] tan (x, z), (x, z) (z s) s v tan (x, z), (x, z) s dsdz z I 3 v(x,) = (x, z) 2 ˆB[b] tan (x, z), (x, z) (z s) v tan (x, z), (x, z) s dsdz Does asolutionv(x,) of(6.6) satisfy (BS)? 18

Step 3. Iteration v (x,) =f tan (x,), + g tan (x, z), (x, z) z (x, z)dz v n+1 (x,) =v (x,)+ 3 I i v n (x,) (n ) i=1 w (x,) =v (x,) w n (x,) =v n (x,) v n 1 (x,) (n 1) Lemma 6.1 w n (x,): continued analytically tob(r ) S(θ,κ,+) ( r, κ > ) C, δ, M > s.t. S(θ,κ,+) max w n (x,) C e δ M n 1+ 1 n n (6.7) x r p 1 n! 19

(A3) β(x,y),b(x,y): continued analytically toω θ,κ {y C; y c} K, L>, p>1 s.t. x Ω θ,κ, m = 1, 2,... (4.2) (4.3) (4.4) 1 m β 1+x 2 y m(x,) KLm m! cos(arctanx) m x m β 1+x 2 y m(x,) m! cos(arctanx) m+1 KLm {1+ sin(arctanx) } p m b y m(x,) m! cos(arctanx) m+1 KLm {1+ sin(arctanx) } p Main theorem (A1), (A2), (A3) The formal solutionû(x,y) of (E) is Borel summable inθ 1

Lemma 6.1 max x r n= w n (x,) C e δ n= M n 1+ 1 n n p 1 n! = C e δ1, S(θ,κ,+) δ 1 =δ +M 1+ 1 p 1 v(x,) = lim n v n(x,) = w n (x,): n= holomorphic solution of (6.6) onb(r ) S(θ,κ,+) max v(x,) C e δ1, S(θ,κ,+) x r 2

Proofof Lemma6.1 (A1)and(A2)= Lemma6.1forn= (A3)and analyticcontinuationpropertyforw n (x,) = analyticcontinuationpropertyfor w n+1 (x,) w n+1 (x,)=i 1 w n (x,)+i 2 w n (x,)+i 3 w n (x,) I 1 w n (x,) = (x, z) 2 z ˆB[b] tan (x, z), w n tan (x, z), (x, z) z dz z I 2 w n (x,) = (x, z) 3 ˆB[b] tan (x, z), (x, z) (z s) s w n tan (x, z), (x, z) s dsdz z I 3 w n (x,) = (x, z) 2 ˆB[b] tan (x, z), (x, z) (z s) w n tan (x, z), (x, z) s dsdz 21

On the estimate(6.7)? max w n (x,) C e δ M n 1+ 1 n n (6.7) x r p 1 n! A(x,y) = = m= A m (x)y m B[A](x, t)v(x,t)dt = m= A m (x) 1 m m= A m (x) m! ( t) m V(x,t)dt V(x, m+1 )d m+1 d 2 d 1 (6.8) w n+1 (x,)= 1 w n (x,)+ 2 w n (x,) 22

1w n (x,) =I 1 w n (x,)+i 2 w n (x,) = b m tan (x, 1 ) (x, 1 ) m+1 m=1 1 m 1 2w n (x,) =I 3 w n (x,) = b m tan m=1 1 m m w n tan (x, 1 ), (x, 1 ) m d m d 2 d 1 (x, 1 ) (x, 1 ) m+1 w n tan (x, 1 ), (x, 1 ) m+1 d m+1 d 2 d 1 b m (x)= 1 m b m! y m(x,) Estimate (6.7)forw n (x,), (4.4),(6.8) = Estimate (6.7)forw n+1 (x,) 23

(A3) β(x,y),b(x,y): continued analytically toω θ,κ {y C; y c} K, L>, p>1 s.t. x Ω θ,κ, m = 1, 2,... (4.2) (4.3) (4.4) 1 m β 1+x 2 y m(x,) KLm m! cos(arctanx) m x m β 1+x 2 y m(x,) m! cos(arctanx) m+1 KLm {1+ sin(arctanx) } p m b y m(x,) m! cos(arctanx) m+1 KLm {1+ sin(arctanx) } p Main theorem (A1), (A2), (A3) The formal solutionû(x,y) of (E) is Borel summable inθ 1