Black holes: From GR to HS

Σχετικά έγγραφα
Higher Derivative Gravity Theories

Higher spin gauge theories and their CFT duals

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

Geodesic Equations for the Wormhole Metric

Aspects of the BMS/CFT correspondence

Second Order Partial Differential Equations

Parametrized Surfaces

( y) Partial Differential Equations

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Space-Time Symmetries

Example Sheet 3 Solutions

2 Composition. Invertible Mappings

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Homework 8 Model Solution Section

Aspects of the BMS/CFT correspondence

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Lifting Entry (continued)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Symmetry. March 31, 2013

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Cosmological Space-Times

Reminders: linear functions

Differential equations

Forced Pendulum Numerical approach

Exercise 1.1. Verify that if we apply GS to the coordinate basis Gauss form ds 2 = E(u, v)du 2 + 2F (u, v)dudv + G(u, v)dv 2

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

SPECIAL FUNCTIONS and POLYNOMIALS

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Variational Wavefunction for the Helium Atom

Derivation of Optical-Bloch Equations

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Tutorial problem set 6,

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Second Order RLC Filters

Strain gauge and rosettes

The Simply Typed Lambda Calculus

CRASH COURSE IN PRECALCULUS

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

EE512: Error Control Coding

Numerical Analysis FMN011

Dual null formulation (and its Quasi-Spherical version)

( ) 2 and compare to M.

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Matrices and Determinants

Section 8.3 Trigonometric Equations

Space Physics (I) [AP-3044] Lecture 1 by Ling-Hsiao Lyu Oct Lecture 1. Dipole Magnetic Field and Equations of Magnetic Field Lines

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

Symmetric Stress-Energy Tensor

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Spherical Coordinates

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Areas and Lengths in Polar Coordinates

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

Concrete Mathematics Exercises from 30 September 2016

Physics 554: HW#1 Solutions

4.6 Autoregressive Moving Average Model ARMA(1,1)

Integrability of Nonlinear Equations of Motion on Two-Dimensional World Sheet Space-Time

If we restrict the domain of y = sin x to [ π 2, π 2

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

On the Galois Group of Linear Difference-Differential Equations

D Alembert s Solution to the Wave Equation

Relativistic particle dynamics and deformed symmetry

Non-Abelian Gauge Fields

CURVILINEAR COORDINATES

Solutions to Exercise Sheet 5

Uniform Convergence of Fourier Series Michael Taylor

Areas and Lengths in Polar Coordinates

derivation of the Laplacian from rectangular to spherical coordinates

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Homework 3 Solutions

Hartree-Fock Theory. Solving electronic structure problem on computers

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

Nonminimal derivative coupling scalar-tensor theories: odd-parity perturbations and black hole stability

1 String with massive end-points

Srednicki Chapter 55

Torsional Newton-Cartan gravity from a pre-newtonian expansion of GR

A Short Introduction to Tensors

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Lecture 13 - Root Space Decomposition II

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

Congruence Classes of Invertible Matrices of Order 3 over F 2

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Other Test Constructions: Likelihood Ratio & Bayes Tests

Sixth lecture September 21, 2006

J. of Math. (PRC) Banach, , X = N(T ) R(T + ), Y = R(T ) N(T + ). Vol. 37 ( 2017 ) No. 5

Math221: HW# 1 solutions

Statistical Inference I Locally most powerful tests

[Note] Geodesic equation for scalar, vector and tensor perturbations

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

ST5224: Advanced Statistical Theory II

Parallel transport and geodesics

Transcript:

Black holes: From GR to HS V.E. Didenko Lebedev Institute, Moscow Vienna, April 19, 2012

Plan Introduction Unfolded dynamics. GR black holes in d = 4, 5 Algebraic facts. Unfolding formulation. Generalization to higher-spins Strategy. Exact solution in d = 4. Symmetries. Conclusion

Unfolding of pure gravity Einstein equations R ab = 0 R ab,cd = C ab,cd Riemann=Weyl Cartan equations dω ab + ω c a ω cb = C ac,bd e c e d, Unfolding.. De a de a + ω a b e b = 0. DC ab,cd = C ab,cd f e f : = + + Bianchi identities: e b e d DC ab,cd = 0 + = 0 DC ab,cd = (2C abf,cd + C abc,df + C abd,cf )e f

DC abc,de = C abc,de f e f Bianchi identities C abc,de f Gravity unfolded module C...,... :,,,,... Unfolded equations DC a1...a k+2,b 1 b 2 = ((k+2)c a1...a k+2 c,b 1 b 2 +C a1...a k+2 b 1,b 2 c+c a1...a k+2 b 2,b 1 c)e c Second Bianchi identity [D, D] C ab,cd nonlinear corrections DC a1 a 2 a 3,b 1 b 2 = (3C a1 a 2 a 3 c,b 1 b 2 + C a1 a 2 a 3 b 1,b 2 c + C a1 a 2 a 3 b 2,b 1 c + (Weyl) 2 )e c schematically DC = F a (C)e a solved up to O(C 2 ) in d = 4, M.A. Vasiliev, 89

Black holes in GR. At least two isometries (any d) d = 4 Weyl tensor is of Petrov type D C ± ab,cd (Φ± Φ ± ) ab,cd, Φ ab = Φ ba. d = 3 BTZ black hole is completely determined by an AdS 3 single isometry ξ BT Z = AdS 3 / exp tξ Type of BH is classified by inequivalent ξ with respect to AdS 3 adjoint action ξ MξM 1

Hidden symmetries (Killing-Yano tensor Φ ab ) DΦ ab = v a e b v b e a, Φ ab = Φ ba General decomposition: DΦ ab = Φ ab c e c Φ ab c = + + Absence of and is a manifestation of the hidden symmetry Φ ab entails (on-shell): v a Killing vector, K (ab) = Φ a c Φ cb Killing tensor, K ab v b Killing vector.

Φ ab in AdS (Minkowski) space-time AdS : dω ab + ω a c ω cb = Λe a e b, de a + ω b a e b = 0 embedding - zero curvature representation W AB = (ω ab, Λe a ) dw AB + W C A W CB = 0 Global symmetries δw AB = D 0 ξ AB dξ AB + W C A ξ CB + W C B ξ AC = 0, ξ AB (Φ ab, v a ) Dv a = ΛΦ ab e b DΦ ab = v a e b v b e a ξ AB AdS global symmetry parameter

AdS Black holes from AdS global symmetry parameter d = 3 BTZ black hole from a single AdS 3 isometry factorization (M. Henneaux+BTZ, 93) d=4 AdS Kerr from an AdS isometry µ-deformation (V.D, A.S. Matveev, M.A. Vasiliev) d=5 (V.D) Dv a = ΛΦ ab e b + F(µ, Φ ab, e a ) DΦ ab = v a e b v b e a Integrating flow µ links AdS to BH g BH mn = g AdS mn + f mn (ξ AB ) BH mass m and angular momenta a i are encoded in Casimir invariants T r(ξ n AB ). (m, a i)=rank O(d-1,2)

d=4 Kerr-NUT Black hole

Spinor form for AdS 4 equations: DV α α = 1 2 eγ αφ γα + 1 2 e α γ Φ α γ DΦ αα = λ 2 e α γ V α γ, D Φ α α = λ 2 e γ αv γ α. 1. AdS 4 covariant form K AB = K BA = λ 1 Φ αβ V β α V α β λ 1 Φ α β, Ω AB = Ω BA = ( Ωαβ λe α β λe β α Ω α β ) = D 0 K AB = 0, D 2 0 R 0AB = dω AB + 1 2 Ω A C Ω CB = 0. K AB AdS 4 global symmetry parameter 2. Two first integrals related to two AdS 4 invariants (Casimir operators) C 2 = 1 4 K ABK AB = I 1, C 4 = 1 4 TrK4 = I 2 1 + λ2 I 2

Deformation of AdS 4 black hole unfolded system (Keep the same form of the unfolded equations) DV α α = 1 2 ρ eγ αφ γα + 1 2 ρ e α γ Φ α γ, DΦ αα = e α γ V α γ, D Φ α α = e γ αv γ α. Unlike the AdS 4 case with ρ = λ 2 we assume ρ to be arbitrary Bianchi identities: D 2 R, DR = 0 fix ρ uniquely in the form ρ(g, Ḡ) = MG 3 λ 2 q ḠG 3, G = 1 det Φαβ

Integrating flow and solution space The flow χ, where χ = (M, q) [d, χ ] = 0 allows one to express BH fields in terms of AdS 4 global symmetry parameter K AB. This identifies the solution space Generic K AB, M-complex Carter-Plebanski class of metrics. Parameters: ReM, ImM, C 2, C 4, q, Λ Kerr-Newman, C 2 > 0, M > 0 Parameters: M, a(c 4 ), q K 2 A B = δ A B Schwarzschild (V 2 < 0), Taub-NUT (V 2 > 0)

metric (Hawking-Hunter) ds 2 = ρ 2 ( dt a sin 2 θ Ξ a d = 5 black holes dφ b cos2 θ ) 2 θ sin 2 θ dψ + Ξ b + ρ2 dr2 + ρ2 dθ 2 + (1 Λr2 ) θ r 2 ρ 2 ρ 2 ( adt r 2 + a 2 Ξ a ( abdt b(r 2 + a 2 ) sin 2 θ Ξ a dφ ) 2 + θ cos 2 θ ρ 2 ( bdt r 2 + b 2 Ξ b dψ ) 2 + dφ a(r2 + b 2 ) cos 2 θ Ξ b dψ ) 2 where = 1 r 2(r2 + a 2 )(r 2 + b 2 )(1 Λr 2 ) 2M, θ = 1 + Λa 2 cos 2 θ + Λb 2 sin 2 θ ρ 2 = r 2 + a 2 cos 2 θ + b 2 sin 2 θ, Ξ a = 1 + Λa 2, Ξ b = 1 + Λb 2 Horizon: (r + ) = 0

AdS 5 unfolded equations Black hole unfolded system Dv αβ = Λ 8 (Φ α γ e γβ Φ β γ e γα ), DΦ αβ = 1 2 (v α γ e γβ + v β γ e γα ) consistency D 2 R ads µ-deformation Dv αβ = Λ 8 (Φ α γ e γβ Φ γ β e γα ) + µ H (Φ 1 α γ e γβ Φ 1 β γ e γα ), DΦ αβ = 1 2 (v α γ e γβ + v β γ e γα ), H = det Φ αβ D 2 R ads + C BH C αβγδ = 32µ H 3 ((Φ 1 ) αβ (Φ 1 ) γδ + (Φ 1 ) αγ (Φ 1 ) βδ + (Φ 1 ) αδ (Φ 1 ) βγ )

Black holes v αβ = v 0 αβ = const, Φ αβ = 1 2 (v α γ x γβ + v β γ x γα ) + Φ 0 αβ, Φ0 αβ = const Type Killing vector Lorentz generator Φ 0 αβ P 2 I 1 I 2 Kerr t aγ xy αβ + bγzu αβ 1 b 2 + a 2 2ab light-like Kerr t + x aγ xy αβ + bγzu αβ 0 a 2 2ab tachyonic Kerr aγ ty αβ +1 a 2 b 2 2ab x αβ + bγzu Classification of Kerr-Schild solutions on 5d Minkowski space according to its Poincare invariants g mn = η mn + 2µ H k mk n

Projectors and Kerr-Schild vectors Projectors: Π ± αβ = 1 2 (ɛ αβ ± X αβ ) X αβ = X βα, X α γ X γ β = δ α β Light-like vectors: Π ± α γ Π ± γβ = Π± αβ, Π± α γ Π γβ = 0, Π+ αβ = Π βα. v + αβ = Π+ αγπ + βδ vγδ, v αβ = Π αγπ βδ vγδ v + v + = v v = 0 Specify X αβ : X 1 αβ = 2r (Φ αβ + HΦ 1 αβ ), r2 = 1 (H Q) 2

Kerr-Schild vectors : k αβ = v+ αβ v + v, n αβ = v αβ v + v, v+ v = 1 4 v+ αβ v αβ k a v a = n a v a = 1, k a k a = n a n a = 0 geodetic condition: k a D a k b = n a D a n b = 0 Kerr-Schild vectors and massless fields φ a1...a s = 1 H k a 1... k as φ a1...a s sd b D (a1 φ a2...a s ) b = Λ 2 (s 1)(s + 2)φ a 1...a s Black holes g mn = g 0 mn + 2µ H k mk n

Towards higher-spin BH d=4 Static BPS HS black hole (V.D, M.A. Vasiliev, 2009) d=4 D-type class of solutions (C. Iazeolla, P. Sundell, 2011) d=3 HS asymptotic symmetries (M. Henneaux, S-J. Rey, A. Campoleoni, S. Fredenhagen, S. Pfenninger, S. Theisen, 2010) d=3 Static sl(3) sl(3) black hole (M. Gutperle, P. Kraus, 2011) sl(n) sl(n), hs(λ) hs(λ) great deal of interest

GR black holes SUGRA black holes HS black holes??? Obstacles: 1. HS does not have decoupled spin-2 sector all higher spins involved in the equations of motion. 2. The interval ds 2 = g µν dx µ dx ν is not gauge invariant quantity in higher spin algebra. Perturbative analysis available HS theory 0-th order vacua AdS 1-st order free field Fronsdal equations... 2-nd order interactions Program for HS black holes vacuum AdS 4 black hole massless fields φ µ1...µ s (x) HS corrections...

Kerr-Schild fields from free HS theory

Free HS equations HS field strengths HS potentials w(y, ȳ x) = C(y, ȳ x) = n,m=0 n,m=0 1 n!m! C α(n), α(m)y α... y α ȳ α... ȳ α 1 n!m! w α(n), α(m)y α... y α ȳ α... ȳ α Equations of motion: D 0 C dc w 0 C + C w 0 = 0 twisted-adjoint D 0 w dw [w 0, w] = R 1 (C) adjoint f(y, ȳ) = f( y, ȳ) twist operator w 0 (y, ȳ x) AdS 4 vacuum connection matter fields: scalar s = 0 C(x), fermion s = 1/2 C α (x) C α (x) HS fields: potentials ω α(s 1), α(s 1), strengths C α(2s) C α(2s)

Star-product operation Let Y A = (y α, ȳ α ) be commuting variables. (f g)(y) = associative algebra with f(y + U)g(Y + V)e U AV A dudv [Y A, Y B ] = 2ɛ AB

AdS 4 vacuum Introduce 1-form w 0 o(3, 2) sp(4) w 0 = 1 8 (ω ααy α y α + ω α α ȳ α ȳ α 2λe α α y α ȳ α ), dw 0 w 0 w 0 = 0 Equiv. to dω αα + 1 2 ω α γ ω γα = λ2 2 e α γ e α γ AdS 4 Riemann tensor de α α + 1 2 ω α γ e γ α + 1 2 ω α γ h α γ = 0 zero torsion

Kerr-Schild HS solution Fix AdS 4 global symmetry parameter K AB = K BA D 0 K AB = 0 D 0 K AB Y A Y B dk AB Y A Y B [w 0, K AB Y A Y B ] = 0 any function f(k AB Y A Y B ) is a HS global symmetry parameter D 0 f(k AB Y A Y B ) = 0 Solving for linearized C(y, ȳ x) in the curvature sector dc w 0 C + C w 0 = 0, C = 2πf( 1 2 K ABY A Y B ) δ (2) (y) K AB = K BA = λ 1 Φ αβ V β α V α β λ 1 Φ α β C(y, ȳ x) = d 2 uf( 1 2 Φ αβu α u β + V α α u α ȳ α + 1 2 Φ α βȳ α ȳ β ) exp(iuα y α )

Reality condition (C(y, ȳ x)) = C( y, ȳ x) Generic f( 1 2 K ABY A Y B ) does not meet reality condition for C Choose f in the form f = M exp 1 2 K ABY A Y B C = C K A C K C B = δa B V α α time-like, M = M Schwarzschild V α α space-like, M = M Taub-NUT

Higher-spin curvatures: C = M r exp (1 2 Φ 1 ααy α y α + 1 1 Φ 2 α αȳ α ȳ α iφ 1 αγ v γ αy α ȳ α ) C α(2n) = M r (Φ 1 αα) n, C α(2n) = M r ( Φ 1 α α )n Connections: φ µ1...µ n = M r k µ 1... k µn BH Fronsdal fields

Nonlinear HS equations w(y, ȳ x) W (y, ȳ, z, z x), C(y, ȳ x) B(y, ȳ, z, z x) Pure gauge compensator 1-form S(Z, Y x) = S α dz α + S α dz α Introducing A = d + W + S, HS nonlinear equations take the form A A = R(B, v, v), [B, A] = 0 Component form (bosonic eqs.) dw W W = 0, db W B + B W = 0, ds α [W, S α ] = 0, d S α [W, S α ] = 0, S α S α = 2(1 + B v), S α S α = 2(1 + B v), [S α, S α ] = 0, B S α + S α B = 0, B S α + S α B = 0, Dynamical potentials and field strengths: W (Y, Z x) Z=0, B(Y, Z x) Z=0

New ingredients (Y, Z) star-product: Let Y A = (y α, ȳ α ) and Z A = (z α, z α ) be commuting variables. (f g)(y, Z) = f(y + s, Z + s)g(y + t, Z t)e s At A dsdt associative algebra with [Z A, Z B ] = [Y A, Y B ] = 2ɛ AB, [Y A, Z B ] = 0 Klein operators v = exp (z α y α ), v = exp ( z α ȳ α ) v v = v v = 1, v f(y, z) = f( y, z) v, v f(ȳ, z) = f( ȳ, z)

Solving nonlinear HS equations Main idea: Function F K = exp ( 1 2 K ABY A Y B ) generates invariant subspace in the star-product algebra and provides suitable ansatz for solving nonlinear HS equations Properties of F K 1. F K F K = F K, Y A F K = F K Y +A = 0, Y ±A = Π ±A C Y C = 1 2 (δ A B ± K A B )Y B Fock vacuum projector 2. D 0 F K = 0 by definition 3. Generates subalgebra of the form F K φ(a x), where a A = Z A +K B A Y B (F K φ 1 (a x)) (F K φ 2 (a z)) = F K (φ 1 (a x) φ 2 (a x)) * - is Fock induced associative star-product operation on the space of a A - oscillators

* - properties 1. associativity (φ 1 φ 2 ) φ 3 = φ 1 (φ 2 φ 3 ) [a A, a B ] = 2ɛ AB 2. Admits Klein operators of the form K = 1 r exp (1 2 Φ 1 ααa α a α ), K = 1 r exp (1 2 Φ 1 α αā α ā α ) K K = K K = 1, {K, a α } = { K, ā α } = 0 3. Differential Q = ˆd 1 2 dkab 2 a A a B Q(f(a x) g(a x)) = Qf(a x) g(a x) + f(a x) Qg(a x), Q 2 = 0, Qa A = 0, QK = 0

The Ansatz B = MF K δ(y), S α = z α + F K σ α (a x), S α = z α + F K σ α (ā x), W = w 0 (y, ȳ x) + F K (ω(a x) + ω(ā x)), w 0 is the AdS 4 connection HS equations reduce to 3d massive equations : [s α, s β ] = 2ɛ αβ (1 + M K), Qs α [ω, s α ] = 0, Qω ω ω = 0, where s α a α + σ α (a x) - the so called deformed oscillators (Wigner). Note: 3d HS equations around the vacuum B 0 = ν = const were considered by Prokushkin and Vasiliev and were shown to provide massive field dynamics with the mass scale ν

Exact solution S α = z α + MF K a + α r 1 0 dt exp ( t 2 κ 1 ββ aβ a β ), S α = z α + MF K ā + α r 1 0 dt exp ( t 2 κ 1 β β ā βā β ), B = M r exp (1 2 κ 1 αβ yα y β + 1 2 κ 1 α β ȳ α ȳ β κ 1 αγ v γ αy α ȳ α ), W = W 0 +( M 8r F Kdτ αβ π + β α a α a α 1 0 dt(1 t) exp ( t 2 κ 1 ββ aβ a β )+F K f 0 +c.c.),

Symmetries Let ɛ(z, Y x) be a global symmetry parameter B ɛ ɛ B = 0, [S, ɛ] = 0, dɛ [W, ɛ] = 0 ɛ(y x) = m,n=1 f 0A(m),B(n) (x) Y A +... Y A + }{{} m [F K, ɛ] = 0 Y B... Y B +c }{{} 0 (x) =: f(y, Y + ) : +c 0, D 0 f = 0 n Max. finite dimensional subalgebra: T AB = Y (A + Y B), T = Y AY A + su(2) u(1) More (Supersymmetry)! Global SUSY is a quarter of the N = 2 SUSY with two supergenerators Q α A of the AdS 4 vacuum. Vacuum AdS 4 symmetry algebra osp(2, 4) is broken giving BPS HS black hole

Conclusion It is demonstrated that unfolded formulation allows to describe GR black holes in terms of AdS global symmetry parameter in coordinate invariant way. The construction admits natural generalization to higher-spins, resulting in HS Schwarzschild and Taub-NUT exact solutions. Open problems What is black about HS black hole? (Horizons, singularities, entropy, temperature) Black rings, are they within reach of the AdS global symmetry parameter?