SIMPLE ONE LINE DIAGRAM FAULT IMPEDANCE INPUT DATA

Σχετικά έγγραφα
Matrices and Determinants

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Section 8.3 Trigonometric Equations

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Homework 8 Model Solution Section

10.7 Performance of Second-Order System (Unit Step Response)

EE101: Resonance in RLC circuits

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Second Order RLC Filters

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Cable Systems - Postive/Negative Seq Impedance

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Sampling Basics (1B) Young Won Lim 9/21/13

NPI Unshielded Power Inductors

Differential equations

Inverse trigonometric functions & General Solution of Trigonometric Equations

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Surface Mount Aluminum Electrolytic Capacitors

= 0.927rad, t = 1.16ms

Section 7.6 Double and Half Angle Formulas

MINIATURE ALUMINUM ELECTROLYTIC CAPACITORS. Characteristics. Leakage Current(MAX) I=Leakage Current(µA) C=Nominal Capacitance(µF) V=Rated Voltage(V)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

IXBH42N170 IXBT42N170

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Other Test Constructions: Likelihood Ratio & Bayes Tests

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΜΗΧΑΝΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ. Πτυχιακή εργασία

Example Sheet 3 Solutions

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

+85 C Snap-Mount Aluminum Electrolytic Capacitors. High Voltage Lead free Leads Rugged Design. -40 C to +85 C

The ε-pseudospectrum of a Matrix

Homework 3 Solutions

0.5W SMD Zener Diodes TLZJ2.0A TLZJ W SMD Zener Diodes. Features. MiniMelf. Mechanical Data

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

High Frequency Chip Inductor / CF TYPE

Numerical Analysis FMN011

Lecture 23. Impedance, Resonance in R-C-L Circuits. Preparation for the Final Exam

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Partial Differential Equations in Biology The boundary element method. March 26, 2013

ΑΝΙΧΝΕΥΣΗ ΓΕΓΟΝΟΤΩΝ ΒΗΜΑΤΙΣΜΟΥ ΜΕ ΧΡΗΣΗ ΕΠΙΤΑΧΥΝΣΙΟΜΕΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Μηχανική Μάθηση Hypothesis Testing

Accu-Guard II. SMD Thin-Film Fuse ELECTRICAL SPECIFICATIONS

Multilayer Ceramic Chip Capacitors

Capacitors - Capacitance, Charge and Potential Difference

Concrete Mathematics Exercises from 30 September 2016

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

THICK FILM LEAD FREE CHIP RESISTORS

Surface Mount Multilayer Chip Capacitors for Commodity Solutions

Breaking capacity: ~200kA Rated voltage: ~690V, 550V. Operating I 2 t-value (A 2 s) Power

Aluminum Electrolytic Capacitors

IES LM Report. Form. No. GLW-0001-F / 21 P.2 P.2 P.3 P.5 P.6 P.7

Multilayer Ceramic Chip Capacitors

Aluminum Electrolytic Capacitors (Large Can Type)

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Technical Data Catalog

Parametrized Surfaces

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Summary of Specifications

Polymer PTC Resettable Fuse: KMC Series

Second Order Partial Differential Equations

Thin Film Chip Resistors

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

Srednicki Chapter 55

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

the total number of electrons passing through the lamp.

C (3) (4) R 3 R 4 (2)

derivation of the Laplacian from rectangular to spherical coordinates

Tridiagonal matrices. Gérard MEURANT. October, 2008

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

6.4 Superposition of Linear Plane Progressive Waves

w o = R 1 p. (1) R = p =. = 1

500mW Zener Diodes TZXJ2.0A TZXJ mW Zener Diodes. Features. Mechanical Data. Maximum Ratings (T Ambient=25ºC unless noted otherwise)

[1] P Q. Fig. 3.1

38 Te(OH) 6 2NH 4 H 2 PO 4 (NH 4 ) 2 HPO 4

Thermistor (NTC /PTC)

Metal Oxide Varistors (MOV) Data Sheet

Daewoo Technopark A-403, Dodang-dong, Wonmi-gu, Bucheon-city, Gyeonggido, Korea LM-80 Test Report

Graded Refractive-Index

+85 C General Purpose Radial Lead Aluminum Electrolytic Capacitors

Reminders: linear functions

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Model: MTZ22. Data. Cylinder count: 1 Displacement [m³/h]: 6,63 Cylinder capacity [cm³]: 38,1 RPM [min -1 ]: 2900 Weight [kg]: 21 Oil charge [dm³]: 1

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

65W PWM Output LED Driver. IDLV-65 series. File Name:IDLV-65-SPEC

Prepolarized Microphones-Free Field

Technical Report. General Design Data of a Three Phase Induction Machine 90kW Squirrel Cage Rotor

MathCity.org Merging man and maths

F19MC2 Solutions 9 Complex Analysis

( ) 2 and compare to M.

SAW FILTER - RF RF SAW FILTER

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και. Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του. Πανεπιστημίου Πατρών

Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ. Χρήστος Αθ. Χριστοδούλου. Επιβλέπων: Καθηγητής Ιωάννης Αθ. Σταθόπουλος

Transcript:

Exam June Heidi Krohns Student number: nnnnnn heidi.rohns@tut.fi SIMPLE ONE LINE DIAGRAM FAULT IMPEDANCE INPUT DATA δ :=. Voltage Phase Angle er := es := 7 e j δ Source S Voltage es = 69.987 +.344i er := 7 Source R Voltage ZS := 4.4 + j.76 Source S Positive Sequence Impedance ZS := 5.357 + j 54.378 Source S Zero Sequence Impedance ZR :=.58 + j.93 Source R Positive Sequence Impedance ZR := 3 ZR Source S Zero Sequence Impedance ZL :=.35 + j 3.864 Positive Sequence Line Impedance Fault Indicator Charles Kim /5

ZL := 3 ZL Zero Sequence Line Impedance Fault Location m :=.5 Fault Impedances (for AG fault case) INF := Fault Resistance ZFA := + j ZFB := INF + j ZFC := INF + j ZFG :=.85 + j ZFG :=. ZFG :=.4 + j ZFG :=.57 + j ZFG := + j CONSTANTS rad := Operator := π 8 rad a := e j a =.5 +.866i BAL := a one := a Three phase voltages at S and R zero := 69.987 +.344i ES := es BAL ES = 33.83 6.83i 36.57 + 59.939i ER := er BAL ER = 7 35 6.6i 35 + 6.6i CIRCUIT EQUATION In 3-phase matrix form, the equation loos lie this: Fault Indicator Charles Kim /5

How do we form the soure impedance ZS and ZR? Let us consider the lin between 3-phase circuit and symmetrical components Coversion of positive sequence and zero sequence impedances to Self and Mutual impedances zs( z, z) := Conversion Matrix Format z + 3 z zm( z, z) := z z 3 Zzz (, ) := zs( z, z) zm( z, z) zm( z, z) zm( z, z) zs( z, z) zm( z, z) zm( z, z) zm( z, z) zs( z, z) Now Conversion ZS := Z( ZS, ZS) ZL := Z( ZL, ZL) ZR := Z( ZR, ZR) ZS =.88 + 5.643i 7.84 + 4.367i 7.84 + 4.367i 7.84 + 4.367i.88 + 5.643i 7.84 + 4.367i 7.84 + 4.367i 7.84 + 4.367i.88 + 5.643i Source and Line Impedances to the Fault ZSS := ZS + m ZL ZSS = ZRR := ZR + ( m) ZL ZRR =.5 + 8.863i 7.49 + 5.655i 7.49 + 5.655i.76 + 6.44i.69 +.576i.69 +.576i 7.49 + 5.655i.5 + 8.863i 7.49 + 5.655i.69 +.576i.76 + 6.44i.69 +.576i 7.49 + 5.655i 7.49 + 5.655i.5 + 8.863i.69 +.576i.69 +.576i.76 + 6.44i Fault Indicator Charles Kim 3/5

Build System Part of the Impedance Matrix ZTOP := augment( augment( ZSS, zero), one) ZTOP =.5 + 8.863i 7.49 + 5.655i 7.49 + 5.655i 7.49 + 5.655i.5 + 8.863i 7.49 + 5.655i 7.49 + 5.655i 7.49 + 5.655i.5 + 8.863i ZMID := augment( augment( zero, ZRR), one) ZMID =.76 + 6.44i.69 +.576i.69 +.576i.69 +.576i.76 + 6.44i.69 +.576i.69 +.576i.69 +.576i.76 + 6.44i ZSYS := stac( ZTOP, ZMID) ZSYS =.5 + 8.863i 7.49 + 5.655i 7.49 + 5.655i 7.49 + 5.655i.5 + 8.863i 7.49 + 5.655i 7.49 + 5.655i 7.49 + 5.655i.5 + 8.863i.76 + 6.44i.69 +.576i.69 +.576i.69 +.576i.76 + 6.44i.69 +.576i.69 +.576i.69 +.576i.76 + 6.44i Pre-fault conditions: ZPRE := ZS + ZL + ZR ZPRE = 3.777 + 35.33i 8. + 8.3i 8. + 8.3i 8. + 8.3i 3.777 + 35.33i 8. + 8.3i 8. + 8.3i 8. + 8.3i 3.777 + 35.33i ISPRE := ZPRE ( ES ER) ISPRE =.7 +.4i.4.73i.56 +.49i Fault Indicator Charles Kim 4/5

IRPRE := ZPRE ( ER ES) IRPRE =.7.4i.4 +.73i.56.49i Pre_fault voltage at S end VSP := ES ZS ISPRE VRP := ZS IRPRE ER VSP = VRP = 69.97 +.447i 34.597 6.89i 35.37 + 6.37i 7.7.896i 34.3 + 6.85i 35.785 6.89i ES = 69.987 +.344i 33.83 6.83i 36.57 + 59.939i Build the voltage Vector null := ( ) ( ) E := stac stac( ES, ER), null T TS := augment( augment( one, zero), zero) TR := augment( augment( zero, one), zero) Building Fault Part of the Impedance Matrix: E = 69.987 +.344i 33.83 6.83i 36.57 + 59.939i 7 35 6.6i 35 + 6.6i TS = TR = Fault Indicator Charles Kim 5/5

ZFAG := ZFA + ZFG ZFBG := ZFB + ZFG ZFCG := ZFC + ZFG ZFAG =.57 ZFBG = ZF := ZFAG ZFG ZFG ZFG ZFBG ZFG ZFG ZFG ZFCG ZF =.57.57.57.57.57.57.57 FABCG := augment( augment( ZF, ZF), one) FABCG =.57.57.57.57.57.57.57.57.57.57.57.57.57.57 FINAL Z MATRIX Fault Indicator Charles Kim 6/5

ZABCG := stac( ZSYS, FABCG) ZABCG =.5 + 8.863i 7.49 + 5.655i 7.49 + 5.655i.57.57.57 7.49 + 5.655i.5 + 8.863i 7.49 + 5.655i.57.57 7.49 + 5.655i 7.49 + 5.655i.5 + 8.863i.57.57.76 + 6.44i.69 +.576i.69 +.576i.57.57.57.69 +.576i.76 + 6.44i.69 +.576i.57.57.69 +.576i.69 +.576i.76 + 6.44i.57.57 YABCG := ZABCG Fault Currents: IABCG := YABCG E E = 69.987 +.344i 33.83 6.83i 36.57 + 59.939i 7 35 6.6i 35 + 6.6i IABCG =.394.848i.5 +.69i.66 +.9i 4.487 8.8i.5.69i.66.9i 9.33 5.489i 6.93 67.38i 6.44 + 53.86i Fault Indicator Charles Kim 7/5

S - End Fault Currents: IS := TS IABCG IS =.394.848i.5 +.69i.66 +.9i R - End Fault Currents: IR := TR IABCG IR = 4.487 8.8i.5.69i.66.9i S - End Voltages 5.69.8i VS := ES ZS IS VSP = VS = 59.48 66.593i 59.93 + 54.598i R End Voltages * Additional Component for FI VR := ( ZR IR ER) VR = 47.96 + 64.i VRP = 48. 57.5i Line Prefault Load Currents from S Bus 39.64 + 7.74i 69.97 +.447i 34.597 6.89i 35.37 + 6.37i 7.7.896i 34.3 + 6.85i 35.785 6.89i Ia := ISPRE Ia =.75 Ib := ISPRE Ib =.75 Ic := ISPRE Ic =.75 arg( Ia) arg( Ib) arg( Ic) = 8.883.3 8 = 8.344 3.4 =.7 = 38.883 ISPRE = IRPRE =.7 +.4i.4.73i.56 +.49i.7.4i.4 +.73i.56.49i Fault Indicator Charles Kim 8/5

Line Prefault Voltages at S Bus Va := VSP Va = 69.97 Vb := VSP Vb = 69.97 arg( Va) arg( Vb) =.366 = 9.634 VSP = 69.97 +.447i 34.597 6.89i 35.37 + 6.37i Vc := VSP Vc = 69.97 arg( Vc) =.366 Line Fault Currents from S Bus Iasf := IS Iasf =.35 Ibsf := IS Ibsf =. arg( Iasf) arg( Ibsf ) = 5.97 = 6.344 IS =.394.848i.5 +.69i.66 +.9i Icsf := IS Icsf =.336 arg( Icsf) = 9.75 Line Fault Currents from R Bus Iarf := IR Iarf = 9.88 Ibrf := IR Ibrf =. arg( Iarf ) arg( Ibrf) = 6.768 = 53.656 IR = 4.487 8.8i.5.69i.66.9i Icrf := IR Icrf =.336 Line Fault Voltages at S Bus arg( Icrf ) = 6.95 VSP = 69.97 +.447i 34.597 6.89i 35.37 + 6.37i Fault Indicator Charles Kim 9/5

Vasf := VS Vasf =.56 arg( Vasf) = 39.9 Vbsf := VS Vbsf = 89.68 Vcsf := VS Vcsf = 8.66 Line Fault Voltage at R Bus arg( Vbsf ) arg( Vcsf) = 3.6 = 37.66 VS = 5.69.8i 59.48 66.593i 59.93 + 54.598i Varf := VR Vbrf := VR Vcrf := VR Varf = 4.364 arg( Varf ) Vbrf = 79.978 arg( Vbrf ) Vcrf = 74.833 arg( Vcrf ) = 68.943 = 53.5 = 49.88 Residual Current and Voltage Vsr, Vrr, Isr, Irr Isrf := IS =.3.387i Irrf := IR = j j j = j = Vsrf := VS = 3.38 4.86i Vrrf := VR = j j j = j = arg( Isrf ) =.899 IRPREr := j = IRPRE = j arg( Irrf ) =.58 ISPREr := j = 4.778 8.479i ISPRE = j 56.569 + 4.56i IS = arg( Vsrf ) =.96.394.848i.5 +.69i.66 +.9i IR = VS = arg( Vrrf) =.5 VR 4.487 8.8i.5.69i.66.9i = 5.69.8i 59.48 66.593i 59.93 + 54.598i 39.64 + 7.74i 47.96 + 64.i 48. 57.5i Fault Indicator Charles Kim /5

VRPr VRP 7.5 5.84i 4 := = VSPr := j j = j = VSP =.4 4 +.3i 4 j Vsrf Zs := = 5.357 54.378i Zr := Isrf Vrrf Irrf =.554 + 5.796i Wattmeteric Method???? SS := Vsrf Isrf SR := Vrrf Irrf Re( SS) = 79.63 Re( SR) = 47.95 So How do we generate digital signals of Voltage and Current of the Simulation 4 Cycles with 768 samples per second (8 samples per cycle in 6HZ system)? For S side :=.. 5 delt :=.3 Van := VSP sin π 6 delt + arg VSP T := delt delt = 7.68 3 768 6 = 8 T := 5 delt + delt T3 := 4 delt + delt Vbn := VSP sin π 6 delt + arg VSP ( 6 delt + arg( VS )) Vcn := VSP sin π 6 delt + arg VSP Vaf := VS sin π Vbf := VS sin π 6 delt + arg VS Vcf := VS sin π 6 delt + arg VS T =.3-4.64-4 3.96-4 5.8-4 Fault Indicator Charles Kim /5

Ian := ISPRE sin π 6 delt + arg ISPRE Ibn := ISPRE sin π 6 delt + arg ISPRE Icn := ISPRE sin π 6 delt + arg ISPRE Iaf := IS sin π 6 delt + arg IS Ibf := IS sin π 6 delt + arg IS Icf := IS sin π 6 delt + arg IS 6.5-4 7.8-4 9.4-4.4-3.7-3.3-3.43-3.56-3.693-3.83-3... Van Vbn Vaf 5 Vbf 5 4 6 3 Ian Ibn Iaf Ibf 3 4 6 Fault Indicator Charles Kim /5

Let us mae Normal (4 cycle)+ Fault (4 cycle) +Normal (4 cycle) Seg := augment( T, Ian, Ibn, Icn, Van, Vbn, Vcn) Seg := augment( T, Iaf, Ibf, Icf, Vaf, Vbf, Vcf) Seg3 := augment( T3, Ian, Ibn, Icn, Van, Vbn, Vcn) Final := stac( Seg, Seg, Seg3) T := Final IaS := Final IrS := IaS + IbS + IcS VrS := VaS + VbS + VcS IbS := Final IcS := Final 3 VaS := Final 4 VbS := Final 5 VcS := Final 6 3 IaS IbS IcS IrS 3.5..5. T Fault Indicator Charles Kim 3/5

VaS VbS VcS VrS.5..5. T VrS IrS.6.8. T VrS = 4.999 6 IrS =.488 6 dt :=.38 ω := π 6 ω = 376.99 mm := 536 window := 8 wind := window Now for all the calculations Fault Indicator Charles Kim 4/5

dd := mm.. window :=.. mm window mm window :=.. 8 UrS := submatrix( VrS, 8, 8 + wind,, ) ArS := submatrix( IrS, 8, 8 + wind,, ) UaS := submatrix( VaS, 8, 8 + wind,, ) AaS := submatrix( IaS, 8, 8 + wind,, ) UbS := submatrix( VbS, 8, 8 + wind,, ) AbS := submatrix( IbS, 8, 8 + wind,, ) UcS := submatrix( VcS, 8, 8 + wind,, ) AcS := submatrix( IcS, 8, 8 + wind,, ) PrS := FrS := FFT( UrS ) FFT( ArS ) CompS := PrS ( ) FrS, ( ) CompS = 9.9 4.683i CompS = 9.9 4.683i, WattS := Re( CompS ) Real Current Component Method Fault Indicator Charles Kim 5/5

( ) ( ) ( ) ( ) ( ) ( ) PaS := FFT UaS PbS := FFT UbS PcS := FFT UcS FaS := FFT AaS FbS := FFT AbS FcS := FFT AcS CaS := ( PaS ) FaS, ( ), Re( CaS ) RaS := RbS := Re CbS CbS := PbS ( ) FbS, ( ) CcS := PcS, ( ) RcS := Re( CcS ) ( ) FcS, ( ), 5 RaS RbS RcS 5 5 5 5 Phase a: Ima := ( FaS ), ( FbS ), ( FcS ), ZL =.35 + 3.864i ZL = 3.5 +.59i αa:= e i π 3 Fault Indicator Charles Kim 6/5

Am := 3 αa ( αa) ( αa) αa Phase a: Iaseq := Am Ima Ia := Iaseq ( ) Ia := Iaseq ( ) Yang method: K := ZL ZL ZL Compensated current: Phase a: Ia := FaS + K Ia αa := arg Ia ( ) arg( Ia ) Resistance and Reactance: X := R := Im( ZL) Re( ZL) X = 3.864 R =.35 Phase Impedance: Phase a: Fault Indicator Charles Kim 7/5

Za := PaS ( Ia ), ( ), ( ), Xa := Im Za Ra := Re Za Fault Distance: ma := ( Xa ) + Ra ( ) tan ( αa ), ( ), X + R tan αa m =.5 Fault Indicator Charles Kim 8/5

ma.8.6.4. 5 5 ma =.95 6 ma = 69.834 4 ma =.44 7 ma =.43 ma =.44 Results and Discussion Part: When changing the m value (place of the fault) at start of the file ma is changing in same relation. However, ma values seem to come more exact when m is bigger. m=.5 m=.45 m=.5 m=.75 m=.9 ma=.7 ma=.4 ma=.459 ma=.695 ma=.83 Fault resistance ZFG was changed and fault place m was constant (m=.5). If the change of resistance is minor, algorithm wors. If value of ZFG increase much, algorithm stops woring. m=.5 ZFG=.4+j ZFG=.85+j ZFG=.57+j ZFG= +j ma=.48 ma=.458 ma=.43 ma=7.378*^-3 Fault Indicator Charles Kim 9/5