EFFECTS OF Al Al 4 C 3 REFINER AND ULTRASONIC FIELD ON MICROSTRUCTURES OF PURE Mg

Σχετικά έγγραφα
ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (


Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #


2011 Đ 3 Ñ ACTA METALLURGICA SINICA Mar pp

MICROSTRUCTURE EVOLUTION OF HYPEREUTEC- TOID STEELS DURING WARM DEFORMATION II. Cementite Spheroidization and Effects of Al

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

STUDY ON CYCLIC OXIDATION RESISTANCE OF HIGH NIOBIUM CONTAINING TiAl BASE ALLOY WITH ERBIUM

EFFECT OF WELDING PROCESSING PARAMETERS ON POROSITY FORMATION OF MILD STEEL TREATED BY CO 2 LASER DEEP PENETRATION WELDING

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti 45Al 8Nb ALLOY

2 SFI

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ

NUMERICAL SIMULATION OF KEYHOLE SHAPE AND TRANSFORMATION FROM PARTIAL TO OPEN STATES IN PLASMA ARC WELDING

THE MICRO FABRICATING PROCESS AND ELECTRO- MAGNETIC PROPERTIES OF TWO KINDS OF Fe POWDERS WITH DIFFERENT GRAIN SIZES AND INTERNAL STRAINS

M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1

EFFECT OF HAFNIUM CONTENT ON MORPHOLOGY EVOLUTION OF γ PRECIPITATES IN P/M Ni BASED SUPERALLOY

UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库

SYNTHESIS OF PLASTIC Zr BASED BULK METALLIC GLASS WITH CRYSTAL PHASE BY DIRECTIONAL SOLIDIFICATION

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

EXPERIMENTAL RESEARCH ON MELTING SURFACE BEHAVIOR IN MOLD UNDER COMPOUND MAGNETIC FIELD

Ó³ Ÿ , º 5(147).. 777Ä786. Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ. ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

PHOTOCATALYTIC PROPERTIES OF TiO 2 THIN FILMS PREPARED BY MICROARC OXIDATION AND DOPING ELECTROLYTES

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

AN INVESTIGATION ON THE CREEP BEHAVIOR OF PURE Mg

EFFECT OF HIGH MAGNETIC FIELD ON THE TRANSI- TION BEHAVIOR OF Cu RICH PARTICLES IN Cu 80%Pb HYPERMONOTECTIC ALLOY

INFLUENCES OF PHASE PRECIPITATIONS OF TERNARY β Ti Mo Zr(Sn) ALLOYS ON YOUNG S MODULUS AND MECHANICAL PROPERTIES

v w = v = pr w v = v cos(v,w) = v w

Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή

1-6 Ð Ï Te (mass%) 0% 0.3% 0.5% 0.8% 1.0% 2.0% 2 Î 1 6

Blowup of regular solutions for radial relativistic Euler equations with damping

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä616 Š ˆŒ CMS LHC

Ó³ Ÿ º 3[120] Particles and Nuclei, Letters No. 3[120]

Œ.. ² μ,.. Œ ²μ, ƒ.. μ ±μ,. Ô Ô ², Œ.. ƒê Éμ, Œ.. Œ ² μ *

ƒ Š ˆ Šˆ Š Œˆ Šˆ Š ˆŒ PAMELA ˆ AMS-02

P Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ. ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25

A NEW ONE PARAMETER KINETICS MODEL OF DYNAMIC RECRYSTALLIZATION AND GRAIN SIZE PREDICATION

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.

SYNTHESIS KINETICS OF (Y, Gd) 2 O 3 Eu 3+ NANO POWDERS DURING PROCESS OF PREPARATION

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

ˆ ˆŸ ˆ ˆŸ ˆ ˆŒ ˆˆ Ÿ Œˆ 10 B

Ανώτερα Μαθηματικά ΙI

ƒê,.. ± É,.. Ëμ μ. ˆŸ Œ ƒ ˆ ƒ Ÿ ˆ ˆˆ ˆ ˆ ˆ Šˆ- ˆŒŒ ˆ ƒ Œ ƒ ˆ. ² μ Ê ² ² ±É Î É μ

.. ƒ²μ É, Œ. Œ Ï,. Š. μé ±μ,..,.. ³ μ μ, ƒ.. ÒÌ

Ó³ Ÿ , º 6(155).. 805Ä813 ˆ ˆŠ ˆ ˆŠ Š ˆ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ, ˆ.. Š Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê. Ÿ. ʲ ±μ ±

ØSrÚCa Mg 12Zn 4Al 0.3MnÜ

Š Ÿ Š Ÿ Ÿ ˆ Œ ˆŠ -280

Ó³ Ÿ , º 3(187).. 431Ä438. Š. ˆ. ±μ,.. ŒÖ²±μ ±,.. Ï Ìμ μ,.. μ² ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Σανπρώτοπαράδειγμαχρήσ εωςτης ÉÈ ÒØ Öπαρουσ ιάζεταιέναπαράδειγμασ χεδιασ μούκύκλωνμέσ ασ εένακεντρικόπαράθυροº

P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É.

ˆ ˆ ˆ ˆˆ γ-ˆ ˆŸ ˆ Š Œ ˆ Œ œ Š ˆˆ

ΕΙΣΑΓΩΓΗ ΣΤΑ ΟΠΤΙΚΑ ΣΥΣΤΑΤΙΚΑ

FRACTURE TOUGHNESS OF WELDED JOINTS OF X100 HIGH STRENGTH PIPELINE STEEL

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

49 Ö 6 Đ Vol.49 No ACTA METALLURGICA SINICA Jun pp

P ,.. ³,. Š. ³. ˆ ˆŸ Œˆ ˆŸ ˆ ˆ ˆ Š ˆ 9 3 ˆ Œ NiÄNb. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö. Õ³ Ó, μ Ö

P Œ ²μ, ƒ.. μ ±μ,. ˆ. ˆ μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. ³ É. ˆŒ ˆ Š ƒ Œ ˆ Ÿ ˆŸ 238 Uˆ 237 U, Œ ƒ Ÿ Š ˆˆ 238 U(γ,n) 237 U.

Delta Inconel 718 δ» ¼

ˆŒ œ ƒ ƒ ˆ ˆŸ ˆ Š ˆ 137 Cs Š ˆ Œ.

CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS I. Experimental Result

p din,j = p tot,j p stat = ρ 2 v2 j,

MICROSEGREGATION OF SOLUTE ELEMENTS IN SOLIDIFYING MUSHY ZONE OF STEEL AND ITS EFFECT ON LONGITUDINAL SURFACE CRACKS OF CONTINUOUS CASTING STRAND

Š Šˆ ATLAS: ˆ ˆŸ ˆ Šˆ, Œ ˆ Œ ˆ.. ƒê ±μ,. ƒ ² Ï ², ƒ.. Š ± ²,. Œ. Ò,.. ŒÖ²±μ ±,.. Ï Ìμ μ,.. Ê ±μ Î,.. ±μ,. Œ. μ

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

P ²ÒÏ,.. μ μ Š ˆ ˆ Ÿ ˆ

ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ

Ρένα Ρώσση-Ζα ρη, Ðñþôç Ýêäïóç: Ιανουάριος 2010, αντίτυπα ÉSBN

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

P ƒ. Œ. ʳ Ö,. É ±, ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ² μ. Š -ŒˆŠ Š : Œ ˆ, œ,

Ó³ Ÿ , º 7(163).. 855Ä862 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ƒ. ² ͱ 1,.. μ μ Íμ,.. μ²ö,.. ƒ² μ,.. ² É,.. ³ μ μ, ƒ.. Š ³ÒÏ,.. Œμ μ μ,. Œ.

Editorís Talk. Advisor. Editorial team. Thank

Ó³ Ÿ , º 7(205) Ä1486 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ³ μ 1, ƒ. μ μë,. μ,. ŠÊ² ±μ,. Œ ² μ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä664

P ƒ.. Š ³ÒÏ,.. Š ³ÒÏ,.. ± ˆ ŒˆŠˆ Š ˆŠ

ΑΡΧΕΙΑ ΚΑΙ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ

Ó³ Ÿ , º 7(163).. 737Ä741 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. ² Ì μ,.. Œ ± μ,.. Œ ÉÕÏ ±,.. Œμ μ μ,. Œ. Ò, Œ.. ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

P μ,. Œμ α 1,. ²μ ± 1,.. ϱ Î, Ÿ. Ê Í± 2 Œˆ ˆ Œ Š Ÿ Š Ÿ ˆ ˆŒ ˆˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É

P ˆ.. Œμ ±μ ±μ,. ˆ. ˆ Ó±μ,.. Š ²μ

MICROSTRUCTURE STABILITY IN A FULLY LAMELLAR HIGH Nb TiAl ALLOY AFTER LONG TERM THERMAL CYCLING

Correction of chromatic aberration for human eyes with diffractive-refractive hybrid elements

Georgiou, Styliani. Neapolis University. þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å

EFFECTS OF TEMPERATURE GRADIENT ON LAMEL- LAR ORIENTATIONS OF DIRECTIONAL SOLIDIFIED TiAl BASED ALLOY

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä É ³μ μ μé ³ ±μ²² μ Í LHCb ˆ É ÉÊÉ Ë ± Ò μ± Ì Ô Í μ ²Ó μ μ ² μ É ²Ó ±μ μ Í É ŠÊ Î Éμ ± É ÉÊÉ, μé μ, μ Ö

P ˆŸ ˆ Œ Œ ˆ Šˆ. Š ˆ œ ˆ -2Œ

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

Ó³ Ÿ , º 7(163).. 798Ä802 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

P ² Ì μ Š ˆ Œˆ Š Œ Œˆ. ² μ Ê ² Nuclear Instruments and Methods in Physics Research.

P ƒ Ê Î 1, 2,.. ƒê μ 1, 3,. ÉÓ±μ 2, O.M.ˆ μ 1,.. Œ É μë μ 1,.. μ μ 1,. ƒ. Ê±μ ± 1,.. ³ 1,.. ±Ê Éμ 1. ˆ ˆ ˆ ˆ Š ˆ Si- ˆ SiC- Š Š ˆ

48 12 Ö Vol.48 No ACTA METALLURGICA SINICA Dec pp Î µ TG142.1, Á A Ì µ (2012)

BEHAVIOR OF MARTENSITE REVERSE TRANSFORMA- TION IN 18Mn TRIP STEEL DURING WARM DEFORMATION

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

CORROSION BEHAVIOR OF X70 PIPELINE STEEL IN SIMULATED KU ERLE SOIL SOLUTION WITH CO 2

Ó³ Ÿ , º 3(194).. 673Ä677. Š Œ œ ƒˆˆ ˆ ˆŠ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ,ˆ..Š Ö, Ÿ. ʲ ±μ ±

Š ˆ œ Ÿ ˆ œ Œ Œ ƒ ˆ Œ Œ LEPTA

Ó³ Ÿ , º 7(163).. 793Ä797 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

þÿ ½ Á Å, ˆ»µ½± Neapolis University þÿ Á̳Á±¼¼± ¼Ìù±Â ¹ º à Â, Ç» Ÿ¹º ½ ¼¹ºÎ½ À¹ÃÄ ¼Î½ º±¹ ¹ º à  þÿ ±½µÀ¹ÃÄ ¼¹ µ À»¹Â Æ Å

Ó³ Ÿ , º 4Ä5(174Ä175).. 682Ä688 ˆ ˆŠ ˆ ˆŠ Š ˆ

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Transcript:

46 À 12 Vol.46 No.12 2010 12 1495 1500 ACTA METALLURGICA SINICA Dec. 2010 pp.1495 1500  Al Al 4 C ³ Mg ÇÅ Ë ÍÎÉ Ï ÊÌ ( ÑØ»Ó ËÂÝ ÐÜ, 110819) ± Al Al 4 C ÁÓÅ Ð Ã, Mg  ¹. Ö Ð² 1.0%Al Al 4 C ÁÓÅ ÁÓ É, α Mg ³ÄÇ 106 µm. Mg  ±, Ö Á 600 W Á Ó É. Þ, ÎÓ µæ ßÌ «, ÎÓ ßµÖ Ý Â ß ÑÜÁ É µæ, ß, ÌÃ»Ò «. µ Al Al 4 C ÁÓű«² Mg  ÌÃ, Ë ÆÔÁÓ. ¹Ð ß ÚÓ «., Mg, Al 4 C, ÁÓ Æ»² TG146.2 ¾ A à ² 0412 1961(2010)12 1495 06 EFFECTS OF Al Al 4 C REFINER AND ULTRASONIC FIELD ON MICROSTRUCTURES OF PURE Mg GAO Shengyuan, LE Qichi, ZHANG Zhiqiang, CUI Jianzhong Key Laboratory of Electromagnetic Processing of Materials, Ministry of Education, Northeastern University, Shenyang 110819 Correspondent: CUI Jianzhong, professor, Tel: (024)868178, E-mail: jzcui@mail.neu.edu.cn Supported by National Basic Research Program of China (Nos.2007CB61701 and 2007CB61702) and National Natural Science Foundation of China (Nos.50904018, 5097407 and 5100402) Manuscript received 2010 05 1, in revised form 2010 08 04 ABSTRACT The melt of pure Mg was inoculated at the conditions of different addition amounts of Al Al 4 C refiner. When adding 1.0%Al Al 4 C refiner, the refining effect is the best and the average grain size of α Mg is reduced from millimeter level to 106 µm. Ultrasound fields with different power levels were applied on the melt of pure magnesium and the best refining effect was obtained when the power was 600 W. The results show that the undercooling formed by breakdown of cavitation bubbles may have a promoting effect to nucleate. The breakdown of cavitation bubbles and the agitations of acoustic stream on the melt cause the fragmentation of fine dendritic crystal which could form new crystallization nuclei, this process plays the main role for nucleating in the melt. The combined application of ultrasound and Al Al 4 C refiner to the melt of pure Mg could significantly refine its grain. The mechanism would be an the activation effect of ultrasound on the impurities in the melt. KEY WORDS ultrasound field, pure Mg, Al 4 C, grain refinement Mg Ú ½Õ Å, Õ Mg hcp Â Ò Ñ ². ÂÔ Mg Ì ÇÕ º ÚÑ [1,2]. Mg ÂÔ * È ß Þ ÑÎ 2007CB61701 2007CB- 61702, È ÊÙ߾Π50904018, 5097407 5100402, ß ÊÞÅ ±ÜÎ ¾Î 90409002 90209002, ±¹¹ ØÆ Ó ¾ËÅ ÑÎ NCET 08 0098 ȳ ÊÙ߾Π20100471648 ßÙË Á : 2010 05 1, ßÙÒ¾ Á : 2010 08 04 :,, 198, ³ DOI: 10.724/SP.J.107.2010.0020 Ó Í Ã«À» º. º, ³Í ÓÒ Ô ¾Ñ, Ò Ñ Æ, Ì Í [,4] ; À ², ÐÈÓ Æ. ëÆ, Đ, ÂÔ Ê, À Mg Al ÅÓ ÂÔ Đ [5,6]. Ú Ç ÂÔ«ÀÓÑ Ë Al 4 C, Đ. Al 4 C α Mg Å hcp, α Mg (a=0.2088 nm, c=0.52017 nm) Al 4 C

1496 ½ Ð 46 À (a=0.88 nm, c=0.49900 nm) ³. Bramfitt [7] Î, Å, δ <6% Å, δ ¼³ 6% 15% Ý, δ >15%. Bramfitt [7] à «ÌÌ, (10 10) Mg /(10 10) Al4 C Å Ã.5%, Ì, Al 4 C Ì Ì α Mg Ë Â Ô. ºÂÔ ¼ Ú Ã ÏÔ Þ ÚÂÔ, º ÚµØ Ö ½Õ À. ÏÔ Ú ²»ÜË, Ú, ÀÏÔ. Ü ÚÆ, ¾ Û, Ù ²ÇÜË, À ÏÔ Ý, Ò ÏÔ ½ Ï Ü. Eskin [8,9] ÏÔ ÛÔÒÃ, ÒÃ. [10], Đ ÇÜË Ü ÏÔ ÉÞ²ÒÝà Í, Ò Đ. Þ Ú, ³ ² Ñ Ð, ÉÂ Ò ¾ ÆÓ ÀÆ Ü, ¼ Þ. ¼ ÒÆ Å º µ 0. ¼ Þ ²Ó, Ò Þ ²Ó, Ì Þ Þ 10 100. Komarov [11] ÏÔ Þ Ð Ê ÞÁÇÃ,., À 2 ³ ݲ Mg Å Û. ÍÑ Al Al 4 C ÂÔ«Mg Ð, ³ È ÒÀ 2 ÂÔ Mg Ú Í, ß Ò 2 ² Ä ÂÔ Ê, ËÁÂÔ. 1 Al ( 50 µm, 99.8%) ( 50 µm, 99.6%), ÔÚ Ñ Ð, À Al Al 4 C ÂÔ«, «Mg ( 99.50%) ÂÔ. º ³ Æ ß Ã, SF 6 +CO 2 Ù¾ Æ. Al Al 4 C ÂÔ«ÇÑ (ѳ ) ³ 0.%, 0.6% 1.0%. 680 Æ Æ, à ÜÇ Al Al 4 C ÂÔ«Ã Å, ² ÛÒ 1.0% (ѳ ) Al Mg Ú «. Æ 10 min à Ç, Ú«º Ð Ã. ÃĐ Ã ÂÅÃ Þ ³ g Å +50 ml +5 ml ÄÛ +2.5 ml Å 6.5 g Å +100 ml + 10 ml ÄÛ +5 ml Å Ð Í. Leica DMR Ëǽ (OM) OLYMPUS SZX16 ÕÇ ½ (OM) ÐÃ, Ê ºØ Image tool È È Ð³, Al Al 4 C ÂÔ Ðß. ÐĐÞ Æµ 1 Ö. ÐĐ½Õ «Mg. ²Đ (20±2) khz, ½ Đ 0 2 kw ÕÌÅ. Đŵ ±10 W. 680 Ä ÐÐ Đ, ³ ß Òµ² Â Đ Õ É Mg ÂÔ Ê. Å Þ ( ) Þ (Ð ) À г. 1 Ý Fig.1 Schematic diagram of the experiment arrangement of ultrasonic treatment 2 ¹± µ 2 Mg ǵ²Ñ Al Al 4 C ÂÔ«OM. µì, Ç Al Al 4 C, Mg À Ô ÆÇ Ñ, Öß (µ 2a). Mg Ç Al Al 4 C, ºÚ ÒÆÇ, Ð ÇÑ µ, Ñ Â (µ 2b d), Ç 1.0% Al Al 4 C,  Å, ½Æ Ô, Å È 106 µm (µ 2d). Ç 1.0% Al, Mg ÂÔ, Õ Çѳ 1.0% Al Al 4 C ÂÔ«Mg (µ 2d) ², Ê, Ó, ŠѲ (µ 2e). µ Mg à ËÊ Ì 10 µ² Đ OM. µì, Ð, Mg Ô ÆÇ Ñ, Öß, Ä Â (µ a).  Р450 W, Öß ÆÓÃ, ÂÔ, ÕÅ Ñ ² (µ b).  Р600 W, Öß ÓÑÃ, Æ ÂÔ (µ c).  Р1000 W, Öß ÆÓ Ó, Õ À  (µ d). µ 4 Õ É Å Mg à OM. Mg, À ÁÈ Ú É Å (µ 4a). Mg à 800 W Õ 1 min ÆÇ Ñ, Ú«( ) º (µ 4b). Mg à 986 W É 1 min Ñ Õ.

12 + 5\} : Al Al C Hn _A\; Mg Vz T 4 1497 (% Al Al C l{^ Mg u W <2 4 Fig.2 As cast microstructures of pure Mg (a), and to which 0.%Al Al4 C (b), 0.6%Al Al4 C (c), 1.0%Al Al4 C (d) and 1.0%Al (e) added (%di>~k{^ Mg G W < Fig. Microstructures of pure Mg after being processed by ultrasound of 0 W (a), 450 W (b), 600 W (c) and 1000 W (d).8hj, M7m&8 () 4c). _ Mg K ;~ # 1 min i > # 4. =+ 8h J, q # 4 > Y # Yr{8 o () 4d). ) 5 4_ Mg K e O 1.0%Al Al C Jp # 4 e j q C ^ OM X. > 680 h _ Mg 8h <' 1N, J M 7 () 5a). _ Mg > 710 Le? 4 88 W j q C ^ # O 1.0%Al Al4 C J p i, X 5Æ+Jp, `HomJ 8h, qm7m&8 () 5b).

1 } s 1498 <4 46 H (%Ya"pK^ Mg G WfJE$ Fig.4 Microstructures of pure Mg (a), after being processed by 800 W continuous ultrasound for 1 min (b), by 986 W impulse ultrasound for 1 min (c) and by mechanical rabbling for 1 min (d) <5 B )Io % K^ Mg G WfJE$ Fig.5 Microstructures of pure Mg to which 1.0%Al Al4 C added after being processed by ultrasound at 608 (a) and by 88 W continuous ultrasound at 710.1 ">91 Al Al4 C Mg ) F Es 4 [12] X Es = El T k El = EF XZ α qe, Es 4 ; El 4 l 9 9 9 ; E 4 m,. 0 >>?95Z; nαl 4 l 9 α Ow. EF 4 Fermi, T$ULqA : (1) Z= EF XhX Z l Enαl (E)dE (2) α nαl (E)dE i () qe, Z 4F'e $0 >Df{ h.

12 Ð : Al Al 4 C ÀÒ Mg ÎÞ Ì 1499 ¼Đ E b E b = E s E self (4) Õ, E self «ÈÐ ¼Đ Ñ. «Î α Mg Al 4 C ¼Đ ³ 84.8750 117.6057 ev, Ì Al 4 C ¼Đ Đ³Ë α Mg Ë. ¼Đ Ú ³ ¼Đ Ñ Í, ¼Đ À ¼Đ ¼Đ ËÐ ¼ Ñ. ÍмĐ, Đ (à Ó) Õ À»¹Ô ÑÓ, µå º, (à ) Ø ¼Đ Å. ³ Al 4 C ¼Đ Đ³Ë α Mg Ë, Ñà Ç, Al 4 C à Ñ, Mg À, Al 4 C Mg à ÓÑ Ñ. Mg À Öß, Ä, Ç 1.0%Al Al 4 C ÂÔ«, ³º Î ÓÑ Al 4 C, ÍÄ, Ó Đ, Ò ÆÇÂÔ. Al Ó», ÍÀ Ä Ô À ÎË, Mg à ² ÂÔ. ²Ò Ç 1.0% Al «Mg À (µ 2e). α Mg ÂÔ, ÕÊ, ÀÅ, Ì, Ç 1.0%Al Al 4 C ÂÔ«, Mg ÂÔÚ 106 µm..2 Mg µ Yasuda [1] ÎÏÔ ¾, Komarov [11] ÎÏÔ Þ Ð Ê ±Ø. ÐĐ Komarov [11] ÂÔ Å Ì. Ƶ b Ö, Öß ÒÍÑ Â, ÀÚ ³ Ä, Þ Ã À Þ. Þ É Ð (É Ã ) À À Ê, Ê ±À, Òà Đ; ² Þ À Ö ÔÚà º, Òà Đ. µ c Æ ÈÐÒÀÆ Û. Ð Đ, ¼, ÏÔ Ø, À Mg ÜÝÒ Ã º Ó Í, ² Þ Ã Ø, Ú ÅÌ. ³  ¼, ¼ À À, ÎÎ, ÃÔ, Ó À. Đ Æ Ó, Ó Ù (µ d), ÀÚ Mg ÀÍÄ, Í ¹Ø À ³ Đ Í ± ÃÔ, Ó, ÂÔ Ê Í.. Ä Mg µ [14,15], Ã, ÏÔ ÉÞ² É ÒÓ, ÀÓÑ, Ò Ô ÂÔ. Õµ 4 ÐĐÈ ÏÔ Û. Å Mg ˲, À Æ ÐĐÍÄ, Å Ã ÅË ³, ¼Ú º Í, Ò Ú«º º, À È Ì ÝÚ Û. Ó ÚÊ Ã ¹, ³, Ô ÓÑ Ñ Ê º Ã, ÏÔ Ü ³ ½ º, º Ê ÒÓÑÓ Ê Ã. ÀÓÑ Ò Ô Â Ô. ² Þ Ì Ã Þ, ³Æ Â Ê Ð Ã, À., Öß «ÍÑ ÎÈ, ÀÌ Ê Ã Ð ² ÎÎ, Å Ü Ð ¾ (µ 4b). Å Ð, À  Š¹ ³Ú«º, Ú«º ÀÒÍÑ Â (µ 4d). ÌÌÌ, ³Ã, Þ Å Ä, Â Ê Ð ÎÎ, ³ ³Ã, À Öß ¾  Ð. ÏÔ Ü ÒÊ Ã, ³ ÂÔ Ôµ¼Ó..4 Á Al Al 4 C ÈÀ µ ¼ Eskin [9] ÛÔÀ Û Đ ÂÔ«² ÐĐÈ, Ì Æ Ð ÍÌ ØÎÈÓÑ Â (µ 5b). À¼, À ÛÔ ½, À, ÜÝ Â. µ 5b Ì ÇÎ, ÓÑ ³ ³Ë È ²Ó ¾, È ²Ó Å Å. À Ó,, À ÃÆ, ³ Al Al 4 C ÂÔ«Î ÓÑ Ã Al 4 C, Ë ³ ÛÔ, Mg Ã Ç À ÃÆ, ÓÑ Ë Al 4 C, Ó Đ, ÀÓÑ Ð. ÀƳ, µ 5b È ²Ó ¾ÐÓÑÂ È Ì ÝÚ Û. Đ³ Ç, ÂÔ«, Đ³ 0.95%, ÂÔ«², Đ³ 2.07%, Ì ÈÆ, à Al 4 C ¼ÚÛÔ, µ 6. Ú», ³ Mg Ã, Þ Þ ÏÔ Al 4 C Æ, Ï ¼Ð C É, ÒÝ Al 4 C,, Ò Mg ¼Đ ³ Al 4 C, Đ, ÓÓ Al 4 C Đ, À. ² Þ À À Ô Ú ² à º,,

1500 ½ Ð 46 À  Đ,, Ô Ù. () Al Al 4 C ÂÔ«² ³ Mg Ã, Ì ÇÕÂÔ. ÛÔ, ÓÑ Al 4 C Ç À, À Ë, Ó Đ. º 6 ÁÓÅ µáó屫ã Mg Ïß SEM Ï Fig.6 SEM images of pure Mg to which only 1.0%Al Al 4 C refiner added (a) and 1.0%Al Al 4 C refiner added after being processed by ultrasound of 88 W (b) Ó. 4 ¹½ (1) Mg Ã Ç 1.0%Al Al 4 C (ѳ ) ÂÔ«Ì ÂÔ α Mg, ÅÈ 106 µm. (2) Đ Ì ÂÔ Mg. ÏÔ Í, ÏÔ Þ Ã ÒÝ Ê, À, ÀÆÍÄ ¼Ó.  Р600 W ÂÔ ÊÅ, [1] Kojima Y. Mater Sci Forum, 2000; 50 51: [2] Watanabe H, Tsutsui H, Mukai T, Ishikawa K, Okanda Y, Kohzu M, Hiqashi K. Mater Sci Forum, 2000; 50 51: 171 [] Yang M B, Pan F S, Li Z S. Foundry, 2005; 54: 14 ( ±, º,. Ù, 2005; 54: 14) [4] Avedesian M M, Baker H. Magnesium and Magnesium Alloys. Materials Park, Ohio: ASM Int, 1999: 5 [5] Mukai T, Watanabe H, Higashi K. Mater Sci Forum, 2000; 50 51: 159 [6] Tamura Y, Kono N, Motegi T, Sato E. J Jpn Inst Light Met, 1998; 48(4): 185 [7] Bramfitt B L. Metall Trans, 1970; 1: 1987 [8] Eskin G I. Ultrasonic Treatment of Light Alloy Melts. Amsterdam: Gordon and Breach, 1998: 114 [9] Eskin G I. Ultrason Sonochem, 2001; 8: 19 [10] Chen F. PhD Thesis, Southeast University, NanJing, 1991 ( µ. Æ ÒÙ³ Ù,, 1991) [11] Komarov S V, Kuwabara M, Abramov O V. ISIJ Int, 2005; 45: l765 [12] Xiao S X, Wang C Y, Chen T L. The Application of the Discrete Variational Method in the Density Functional Theory to Chemistry and Materials Physics. Beijing : Science Press, 1998: 92 ( Ò, ¼Ê,. Å Ï ß Ê ² ÓÙ ¼Ô Ù ß. : ÊÙÍ Ï, 1998: 92) [1] Yasuda K, Saiki Y, Kubo T, Kuwabara M, Yang J. Jpn J Appl Phys, 2007; 46: 499 [14] Campbell J. Int Metall Rev, 1981; 26: 71 [15] Schaefer R J, Glicksman M B. Trans AIME, 1967; 29: 257