Δένδρα. Μαθηματικά (συνδυαστικά) αντικείμενα. Έχουν κεντρικό ρόλο στην επιστήμη των υπολογιστών :

Σχετικά έγγραφα
Γράφημα. Συνδυαστικό αντικείμενο που αποτελείται από 2 σύνολα: Σύνολο κορυφών (vertex set) Σύνολο ακμών (edge set) 4 5 πλήθος κορυφών πλήθος ακμών

Δομές Αναζήτησης. κλειδί από ολικά διατεταγμένο σύνολο. Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου

Γέφυρες σε Δίκτυα. Μας δίνεται ένα δίκτυο (κατευθυνόμενο γράφημα) αφετηριακός κόμβος. Γέφυρα του (με αφετηρία τον ) :

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ. Βασικές Ιδιότητες και Διάσχιση Κεφάλαιο 5 ( και ) Ε. Μαρκάκης Επίκουρος Καθηγητής

Κατηγορίες Συμπίεσης. Συμπίεση με απώλειες δεδομένων (lossy compression) π.χ. συμπίεση εικόνας και ήχου

Πανεπιστήμιο Δυτικής Μακεδονίας. Τμήμα Μηχανικών Πληροφορικής & Τηλεπικοινωνιών. Διακριτά Μαθηματικά. Ενότητα 3: Δένδρα

ΔυαδικάΔΕΝΔΡΑΑναζήτησης

Δομές Δεδομένων και Αλγόριθμοι

Ενότητες 3 & 4: Δένδρα, Σύνολα & Λεξικά Ασκήσεις και Λύσεις

Διδάσκων: Κωνσταντίνος Κώστα

ΠΛΗ111. Ανοιξη Μάθηµα 7 ο. έντρο. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης

Διακριτά Μαθηματικά ΙΙ Χρήστος Νομικός Τμήμα Μηχανικών Η/Υ και Πληροφορικής Πανεπιστήμιο Ιωαννίνων 2018 Χρήστος Νομικός ( Τμήμα Μηχανικών Η/Υ Διακριτά

Δοµές Δεδοµένων. 11η Διάλεξη Ταξινόµηση Quicksort και Ιδιότητες Δέντρων. Ε. Μαρκάκης

Δομές Αναζήτησης. κλειδί από ολικά διατεταγμένο σύνολο. Θέλουμε να υποστηρίξουμε δύο βασικές λειτουργίες: Εισαγωγή ενός νέου στοιχείου

Κατ οίκον Εργασία 3 Σκελετοί Λύσεων

Πανεπιστήμιο Πειραιώς Σχολή Τεχνολογιών Πληροφορικής και Επικοινωνιών Τμήμα Ψηφιακών Συστημάτων ομές εδομένων

Διδάσκων: Παναγιώτης Ανδρέου

Μελετάμε την περίπτωση όπου αποθηκεύουμε ένα (δυναμικό) σύνολο στοιχειών. Ένα στοιχείο γράφεται ως, όπου κάθε.

έντρα ιδάσκοντες:. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών Εθνικό Μετσόβιο Πολυτεχνείο

Δένδρα. Στην ενότητα αυτή θα μελετηθούν τα εξής επιμέρους θέματα:

Διάλεξη 12: Δέντρα ΙΙ Δυαδικά Δέντρα

ιδάσκοντες: Φ. Αφράτη,. Φωτάκης,. Σούλιου Επιμέλεια διαφανειών:. Φωτάκης Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Ειδικά θέματα Αλγορίθμων και Δομών Δεδομένων (ΠΛΕ073) Απαντήσεις 1 ου Σετ Ασκήσεων

Διάλεξη 17: Δυαδικά Δέντρα. Διδάσκων: Κωνσταντίνος Κώστα Διαφάνειες: Δημήτρης Ζεϊναλιπούρ

Κατ οίκον Εργασία 3 Σκελετοί Λύσεων

Προγραμματισμός Ι (ΗΥ120)

Ουρά Προτεραιότητας (priority queue)

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή

Δηµοσθένης Σταµάτης Τµήµα Πληροφορικής ΑΤΕΙ ΘΕΣΣΑΛΟΝΙΚΗΣ ΔΕΝΤΡΑ (TREES) B C D E F G H I J K L M

Διάλεξη 22: Δυαδικά Δέντρα. Διδάσκων: Παναγιώτης Ανδρέου

Αλγόριθμοι και Δομές Δεδομένων (IΙ) (γράφοι και δένδρα)

2 ) d i = 2e 28, i=1. a b c

οµές εδοµένων 3 ο Εξάµηνο ΕΝΟΤΗΤΑ 4 ΕΝ ΡΑ

ΑΛΓΟΡΙΘΜΟΙ ΜΕ C. ΝΙΚΟΛΑΟΣ ΣΑΜΑΡΑΣ Αναπληρωτής Καθηγητής. CMOR Lab. Computational Methodologies and Operations Research

Δομές Δεδομένων & Αλγόριθμοι

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή

Ουρά Προτεραιότητας (priority queue)

Αναδροµή. Σε αυτήν την (βοηθητική) ενότητα θα µελετηθούν τα εξής : Η έννοια της αναδροµής Υλοποίηση και αποδοτικότητα Αφαίρεση της αναδροµής

Δέντρα (Trees) - Ιεραρχική Δομή

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ

Εισαγωγή ενός νέου στοιχείου. Επιλογή i-οστoύ στοιχείου : Εύρεση στοιχείου με το i-οστό μικρότερο κλειδί

Αναδρομικοί Αλγόριθμοι

Εργαστήριο 5 Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ με αλφαβητική σειρά

Διάλεξη 21η: Απλά Συνδεδεμένες Λίστες

Διάλεξη 11: Δέντρα Ι Εισαγωγή σε Δενδρικές Δομές Δεδομένων

Δομές Δεδομένων (Εργ.) Ακ. Έτος Διδάσκων: Ευάγγελος Σπύρου. Εργαστήριο 10 Δυαδικά Δένδρα Αναζήτησης

Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 4: ΑΝΑΠΑΡΑΣΤΑΣΗ ΔΕΔΟΜΕΝΩΝ - ΔΕΝΤΡΑ

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ. Δοµές Δεδοµένων

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή

Κεφάλαιο 10 Ψηφιακά Λεξικά

Εργαστήριο 8: Αναδρομική διεργασία εισαγωγής καινούριου κόμβου σε ΔΔΑ

d k 10 k + d k 1 10 k d d = k i=0 d i 10 i.

Μάθημα 22: Δυαδικά δέντρα (Binary Trees)

Διάλεξη 11: Δέντρα Ι - Εισαγωγή σε Δενδρικές Δομές Δεδομένων

Γράφοι. Ορολογία. Ορισµός: G = (V, E) όπου. Ορολογία (συνέχεια) γράφος ή γράφηµα (graph) V:ένα σύνολο E:µια διµελής σχέση στο V

Θεωρία Γραφημάτων 6η Διάλεξη

Κεφάλαιο 4 Γραφήματα και Δένδρα

ένδρα u o Κόµβοι (nodes) o Ακµές (edges) o Ουρά και κεφαλή ακµής (tail, head) o Γονέας Παιδί Αδελφικός κόµβος (parent, child, sibling) o Μονοπάτι (pat

ΠΛΗ111. Ανοιξη Μάθηµα 10 ο. Γράφοι. Τµήµα Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών Πολυτεχνείο Κρήτης

Βασικές Έννοιες Θεωρίας Γραφημάτων

Δομές Δεδομένων (Data Structures)

ένδρα (tail, head) Γονέας Παιδί (ancestor, descendant) Φύλλο Εσωτερικός Κόµβος (leaf, non-leaf) που αποτελεί το γονέα του v.

Εργασία 3 Σκελετοί Λύσεων

Δομές Δεδομένων Ενότητα 5

Δένδρα Αναζήτησης Πολλαπλής Διακλάδωσης

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή

Διάλεξη 26: Σωροί. Διδάσκων: Παναγιώτης Ανδρέου

Δομές Δεδομένων και Αλγόριθμοι

Αφηρημένες Δομές Δεδομένων. Στοίβα (Stack) Υλοποίηση στοίβας

Θέματα Υπολογισμού στον Πολιτισμό - Δένδρα. Δένδρα

Ισορροπημένα Δένδρα. για κάθε λειτουργία; Ισορροπημένο δένδρο : Διατηρεί ύψος κάθε εισαγωγή ή διαγραφή

Βασικές Έννοιες Θεωρίας Γραφημάτων

Δομές Δεδομένων. Ενότητα 9: Τα ΔΔΑ ως Αναδρομικές Δομές Δεδομένων-Εφαρμογή Δυαδικών Δέντρων: Κωδικοί Huffman. Καθηγήτρια Μαρία Σατρατζέμη

6η Διάλεξη Διάσχιση Γράφων και Δέντρων

Κεφάλαιο 11 Ένωση Ξένων Συνόλων

Δοµές Δεδοµένων. 14η Διάλεξη Δέντρα Δυαδικής Αναζήτησης. Ε. Μαρκάκης

υαδικό έντρο Αναζήτησης (BSTree)

Διδάσκων: Παναγιώτης Ανδρέου

Διασυνδεδεμένες Δομές. Δυαδικά Δέντρα. Προγραμματισμός II 1

ιαφάνειες παρουσίασης #10 (β)

Δομές Δεδομένων. Καθηγήτρια Μαρία Σατρατζέμη. Τμήμα Εφαρμοσμένης Πληροφορικής. Δομές Δεδομένων. Τμήμα Εφαρμοσμένης Πληροφορικής

Στοιχεία Θεωρίας Γραφηµάτων (4) - έντρα

ΠΛΗ 20, 6 η ΟΣΣ: Δέντρα Εξετάσεις

ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ EPL035: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ

Διάλεξη 17: O Αλγόριθμος Ταξινόμησης HeapSort

Κατ οίκον Εργασία 2 Σκελετοί Λύσεων

ιακριτά Μαθηµατικά και Μαθηµατική Λογική ΠΛΗ20 Ε ρ γ α σ ί α 4η Θεωρία Γραφηµάτων

Περιεχόμενα. Πρόλογος... 17

Στοιχεία Θεωρίας Γράφων (Graph Theory)

Εισαγωγή στην Επιστήμη των Υπολογιστών

Κεφάλαιο 8 Ισορροπημένα Δένδρα Αναζήτησης

Εισαγωγή στην Επιστήμη των Υπολογιστών

Διάλεξη 11: Φροντιστήριο για Στοίβες. Διδάσκων: Παναγιώτης Ανδρέου. ΕΠΛ035 Δομές Δεδομένων και Αλγόριθμοι για Ηλ. Μηχ. Και Μηχ. Υπολ.

ΗΥ240 - Παναγιώτα Φατούρου 1

Δυαδικά Δένδρα Αναζήτησης, Δένδρα AVL

Κατευθυνόμενα γραφήματα. Μαθηματικά Πληροφορικής 6ο Μάθημα. Βρόγχοι. Μη κατευθυνόμενα γραφήματα. Ορισμός

ΠΑΡΑΡΤΗΜΑ: QUIZ ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ

Τομές Γραφήματος. Γράφημα (μη κατευθυνόμενο) Συνάρτηση βάρους ακμών. Τομή : Διαμέριση του συνόλου των κόμβων σε δύο μη κενά σύνολα

Διαχρονικές δομές δεδομένων

Transcript:

Δένδρα Μαθηματικά (συνδυαστικά) αντικείμενα. Έχουν κεντρικό ρόλο στην επιστήμη των υπολογιστών : Ανάλυση αλγορίθμων (π.χ. δένδρα αναδρομής) Δομές δεδομένων (π.χ. δένδρα αναζήτησης) ακμή Κατηγορίες (αύξουσα σειρά γενικότητας) : κόμβος Δυαδικά και Μ-αδικά δένδρα Διατεταγμένα δένδρα Δένδρα με ρίζα Ελεύθερα δένδρα διαδρομή

Δένδρα με Ρίζα ρίζα πρόγονος του γονέας του αδελφός του παιδί του απόγονος του Ο είναι πρόγονος του (ο απόγονος του ) αν βρίσκεται στο μονοπάτι από τη ρίζα στο

Δυαδικά Δένδρα Δυαδικό δένδρο (αναδρομικός ορισμός) = εξωτερικός κόμβος, ή εσωτερικός κόμβος που συνδέεται με ένα δυαδικό δένδρο στα αριστερά και ένα δυαδικό δένδρο στα δεξιά.

Δυαδικά Δένδρα Δυαδικό δένδρο - Υλοποίηση typedef struct node *link; struct node {Item item; link l,r;}; Οι εξωτερικοί κόμβοι αντιστοιχούν σε κενούς (NULL) δείκτες

Μ-αδικά Δένδρα M-αδικό δένδρο (αναδρομικός ορισμός) = εξωτερικός κόμβος, ή εσωτερικός κόμβος που συνδέεται με διατεταγμένη ακολουθία Μ-αδικών δένδρων.

Διατεταγμένα Δένδρα Διατεταγμένο δένδρο (αναδρομικός ορισμός) = κόμβος (ρίζα του δένδρου) που συνδέεται με διατεταγμένη ακολουθία διατεταγμένων δένδρων.

Διατεταγμένα Δένδρα Διατεταγμένο δένδρο - Υλοποίηση προς επόμενο αδελφό προς 1 ο παιδί

Διατεταγμένα Δένδρα Διατεταγμένο δένδρο Μετατροπή σε δυαδικό δένδρο

Διατεταγμένα Δένδρα Διατεταγμένο δένδρο Μετατροπή σε δυαδικό δένδρο 1-προς-1 αντιστοιχία

Ισομορφικά Δένδρα Διαφορετικά διατεταγμένα δένδρα μπορεί να αντιστοιχούν στο ίδιο μη διατεταγμένο δένδρο.

Γράφημα Συνδυαστικό αντικείμενο που αποτελείται από 2 σύνολα: Σύνολο κορυφών (vertex set) Σύνολο ακμών (edge set) 1 2 3 4 5

Γράφημα Συνδυαστικό αντικείμενο που αποτελείται από 2 σύνολα: Σύνολο κορυφών (vertex set) Σύνολο ακμών (edge set) 1 2 διαδρομή 3 4 5 απλή διαδρομή (απλός) κύκλος

Γράφημα Κάθε δένδρο είναι ένα γράφημα. Ένα γράφημα είναι δένδρο ένα ισχύει ένα από τα παρακάτω: έχει Ν-1 ακμές και κανένα κύκλο έχει Ν-1 ακμές και είναι συνδεδεμένο έχει μοναδική απλή διαδρομή για κάθε ζεύγος κόμβων είναι συνδεδεμένο αλλά παύει να είναι μετά την αφαίρεση κάποιας ακμής 1 2 3 4 5

Ιδιότητες Δυαδικών Δένδρων Ένα δυαδικό δένδρο με Ν εσωτερικούς κόμβους έχει Ν+1 εξωτερικούς κόμβους

Ιδιότητες Δυαδικών Δένδρων Ένα δυαδικό δένδρο με Ν εσωτερικούς κόμβους έχει Ν+1 εξωτερικούς κόμβους Απόδειξη με επαγωγή. Για Ν=0 το δένδρο είναι ένας εξωτερικός κόμβος. Έστω ότι ισχύει για λιγότερους από Ν εσωτερικούς κόμβους.

Ιδιότητες Δυαδικών Δένδρων Ένα δυαδικό δένδρο με Ν εσωτερικούς κόμβους έχει Ν+1 εξωτερικούς κόμβους Απόδειξη με επαγωγή. Για Ν=0 το δένδρο είναι ένας εξωτερικός κόμβος. Έστω ότι ισχύει για λιγότερους από Ν εσωτερικούς κόμβους. O συνολικός αριθμός εξωτερικών κόμβων είναι

Ιδιότητες Δυαδικών Δένδρων Ένα δυαδικό δένδρο με Ν εσωτερικούς κόμβους έχει 2Ν ακμές: N-1 συνδέουν εσωτερικούς κόμβους και Ν+1 συνδέουν εσωτερικό με εξωτερικό κόμβο.

Ιδιότητες Δυαδικών Δένδρων Ένα δυαδικό δένδρο με Ν εσωτερικούς κόμβους έχει 2Ν ακμές: N-1 συνδέουν εσωτερικούς κόμβους και Ν+1 συνδέουν εσωτερικό με εξωτερικό κόμβο. Κάθε κόμβος εκτός από τη ρίζα έχει μοναδικό γονέα. Άρα έχουμε Ν-1 εσωτερικούς κόμβους που συνδέονται με το γονέα τους. Αντίστοιχα, καθένας από τους Ν+1 εξωτερικούς κόμβους συνδέεται με τον γονέα του που είναι εσωτερικός κόμβος.

Ιδιότητες Δυαδικών Δένδρων επίπεδο ρίζας = 0 επίπεδο κόμβου = επίπεδο γονέα + 1

Ιδιότητες Δυαδικών Δένδρων επίπεδο ρίζας = 0 επίπεδο κόμβου = επίπεδο γονέα + 1 0 1 2 3 4

Ιδιότητες Δυαδικών Δένδρων επίπεδο ρίζας = 0 επίπεδο κόμβου = επίπεδο γονέα + 1 ύψος δένδρου = μέγιστο επίπεδο 0 1 2 3 4 Μήκος διαδρομής = άθροισμα επιπέδου κάθε κόμβου (=30) Μήκος εσωτερικής διαδρομής = άθροισμα επιπέδου κάθε εσωτερικού κόμβου (=9) Μήκος εξωτερικής διαδρομής = άθροισμα επιπέδου κάθε εξωτερικού κόμβου (=21)

Ιδιότητες Δυαδικών Δένδρων επίπεδο ρίζας = 0 επίπεδο κόμβου = επίπεδο γονέα + 1 ύψος δένδρου = μέγιστο επίπεδο 0 1 2 3 4 Μήκος διαδρομής = άθροισμα επιπέδου κάθε κόμβου (=30) Μήκος εσωτερικής διαδρομής = άθροισμα επιπέδου κάθε εσωτερικού κόμβου (=9) Μήκος εξωτερικής διαδρομής = άθροισμα επιπέδου κάθε εξωτερικού κόμβου (=21) Ισχύει: μήκος εξωτερικής διαδρομής = μήκος εσωτερικής διαδρομής + 2Ν

Ιδιότητες Δυαδικών Δένδρων Ισχύει: μήκος εξωτερικής διαδρομής = μήκος εσωτερικής διαδρομής + 2Ν 0 1 2 3 4

Ιδιότητες Δυαδικών Δένδρων Ισχύει: μήκος εξωτερικής διαδρομής = μήκος εσωτερικής διαδρομής + 2Ν 0 1 2 3 4 ξεκινάμε με εξωτερικό κόμβο

Ιδιότητες Δυαδικών Δένδρων Ισχύει: μήκος εξωτερικής διαδρομής = μήκος εσωτερικής διαδρομής + 2Ν 0 1 2 3 4 ξεκινάμε με εξωτερικό κόμβο σε κάθε βήμα

Ιδιότητες Δυαδικών Δένδρων Ισχύει: μήκος εξωτερικής διαδρομής = μήκος εσωτερικής διαδρομής + 2Ν 0 1 2 3 4

Ιδιότητες Δυαδικών Δένδρων Ισχύει: μήκος εξωτερικής διαδρομής = μήκος εσωτερικής διαδρομής + 2Ν 0 1 2 3 4

Ιδιότητες Δυαδικών Δένδρων Ισχύει: μήκος εξωτερικής διαδρομής = μήκος εσωτερικής διαδρομής + 2Ν 0 1 2 3 4

Ιδιότητες Δυαδικών Δένδρων Ισχύει: μήκος εξωτερικής διαδρομής = μήκος εσωτερικής διαδρομής + 2Ν 0 1 2 3 4

Ιδιότητες Δυαδικών Δένδρων Ισχύει: μήκος εξωτερικής διαδρομής = μήκος εσωτερικής διαδρομής + 2Ν 0 1 2 3 4

Ιδιότητες Δυαδικών Δένδρων Ισχύει: μήκος εξωτερικής διαδρομής = μήκος εσωτερικής διαδρομής + 2Ν 0 1 2 3 4

Ιδιότητες Δυαδικών Δένδρων Ισχύει: μήκος εξωτερικής διαδρομής = μήκος εσωτερικής διαδρομής + 2Ν 0 1 2 3 4

Ιδιότητες Δυαδικών Δένδρων Ισχύει: μήκος εξωτερικής διαδρομής = μήκος εσωτερικής διαδρομής + 2Ν 0 1 2 3 4 Αντικατάσταση εσωτερικού κόμβου στο επίπεδο k μήκος εσωτερικής διαδρομής αυξάνει κατά k μήκος εξωτερικής διαδρομής αυξάνει κατά k+2

Ιδιότητες Δυαδικών Δένδρων Ένα δυαδικό δένδρο με Ν εσωτερικούς κόμβους έχει ύψος μεταξύ lgn και Ν

Ιδιότητες Δυαδικών Δένδρων Ένα δυαδικό δένδρο με Ν εσωτερικούς κόμβους έχει ύψος μεταξύ lgn και Ν εσωτερικοί κόμβοι στο επίπεδο ένας εσωτερικός κόμβος ανά επίπεδο

Ιδιότητες Δυαδικών Δένδρων Ένα δυαδικό δένδρο με Ν εσωτερικούς κόμβους έχει ύψος μεταξύ lgn και Ν εσωτερικοί κόμβοι ανά επίπεδο ένας εσωτερικός κόμβος ανά επίπεδο μήκος εσωτερικής διαδρομής = μήκος εσωτερικής διαδρομής =

προδιάταξη (preorder) 1 2 3 4 6 5 7 8 9 σειρά επεξεργασίας : 1. γονέας 2. αριστερό παιδί 3. δεξί παιδί ενδοδιάταξη (inorder) 4 2 1 3 5 6 8 7 9 σειρά επεξεργασίας : 1. αριστερό παιδί 2. γονέας 3. δεξί παιδί μεταδιάταξη (postorder) 9 3 1 2 4 8 7 5 6 σειρά επεξεργασίας : 1. αριστερό παιδί 2. δεξί παιδί 3. γονέας

void traverse(link h, void (*visit)(link)){ if (h == NULL) return; (*visit)(h); traverse(h->l,visit); traverse(h->r,visit); } void traverse(link h, void (*visit)(link)){ if (h == NULL) return; traverse(h->l,visit); (*visit)(h); traverse(h->r,visit); } void traverse(link h, void (*visit)(link)){ if (h == NULL) return; traverse(h->l,visit); traverse(h->r,visit); (*visit)(h); } προδιάταξη (preorder) σειρά επεξεργασίας : 1. γονέας 2. αριστερό παιδί 3. δεξί παιδί ενδοδιάταξη (inorder) σειρά επεξεργασίας : 1. αριστερό παιδί 2. γονέας 3. δεξί παιδί μεταδιάταξη (postorder) σειρά επεξεργασίας : 1. αριστερό παιδί 2. δεξί παιδί 3. γονέας

void traverse(link h, void (*visit)(link)){ if (h == NULL) return; (*visit)(h); traverse(h->l,visit); traverse(h->r,visit); } προδιάταξη (preorder)

void traverse(link h, void (*visit)(link)){ if (h == NULL) return; (*visit)(h); traverse(h->l,visit); traverse(h->r,visit); } προδιάταξη (preorder) 1

void traverse(link h, void (*visit)(link)){ if (h == NULL) return; (*visit)(h); traverse(h->l,visit); traverse(h->r,visit); } προδιάταξη (preorder) 1 2

void traverse(link h, void (*visit)(link)){ if (h == NULL) return; (*visit)(h); traverse(h->l,visit); traverse(h->r,visit); } προδιάταξη (preorder) 1 2 3

void traverse(link h, void (*visit)(link)){ if (h == NULL) return; (*visit)(h); traverse(h->l,visit); traverse(h->r,visit); } προδιάταξη (preorder) 1 2 3 4

void traverse(link h, void (*visit)(link)){ if (h == NULL) return; (*visit)(h); traverse(h->l,visit); traverse(h->r,visit); } προδιάταξη (preorder) 1 2 3 4 5

void traverse(link h, void (*visit)(link)){ if (h == NULL) return; (*visit)(h); traverse(h->l,visit); traverse(h->r,visit); } προδιάταξη (preorder) 1 2 3 6 4 5

void traverse(link h, void (*visit)(link)){ if (h == NULL) return; (*visit)(h); traverse(h->l,visit); traverse(h->r,visit); } προδιάταξη (preorder) 1 2 7 3 4 5 6 9 8 14 15 10 11 12 13

void traverse(link h, void (*visit)(link)){ if (h == NULL) return; traverse(h->l,visit); (*visit)(h); traverse(h->r,visit); } ενδοδιάταξη (inorder)

void traverse(link h, void (*visit)(link)){ if (h == NULL) return; traverse(h->l,visit); (*visit)(h); traverse(h->r,visit); } ενδοδιάταξη (inorder)

void traverse(link h, void (*visit)(link)){ if (h == NULL) return; traverse(h->l,visit); (*visit)(h); traverse(h->r,visit); } ενδοδιάταξη (inorder)

void traverse(link h, void (*visit)(link)){ if (h == NULL) return; traverse(h->l,visit); (*visit)(h); traverse(h->r,visit); } ενδοδιάταξη (inorder)

void traverse(link h, void (*visit)(link)){ if (h == NULL) return; traverse(h->l,visit); (*visit)(h); traverse(h->r,visit); } ενδοδιάταξη (inorder) 1

void traverse(link h, void (*visit)(link)){ if (h == NULL) return; traverse(h->l,visit); (*visit)(h); traverse(h->r,visit); } ενδοδιάταξη (inorder) 2 1

void traverse(link h, void (*visit)(link)){ if (h == NULL) return; traverse(h->l,visit); (*visit)(h); traverse(h->r,visit); } ενδοδιάταξη (inorder) 2 1 3

void traverse(link h, void (*visit)(link)){ if (h == NULL) return; traverse(h->l,visit); (*visit)(h); traverse(h->r,visit); } ενδοδιάταξη (inorder) 4 2 1 3

void traverse(link h, void (*visit)(link)){ if (h == NULL) return; traverse(h->l,visit); (*visit)(h); traverse(h->r,visit); } ενδοδιάταξη (inorder) 4 2 5 1 3

void traverse(link h, void (*visit)(link)){ if (h == NULL) return; traverse(h->l,visit); (*visit)(h); traverse(h->r,visit); } ενδοδιάταξη (inorder) 6 4 2 5 1 3

void traverse(link h, void (*visit)(link)){ if (h == NULL) return; traverse(h->l,visit); (*visit)(h); traverse(h->r,visit); } ενδοδιάταξη (inorder) 6 4 14 2 5 12 15 1 3 8 13 7 10 9 11

void traverse(link h, void (*visit)(link)){ if (h == NULL) return; traverse(h->l,visit); traverse(h->r,visit); (*visit)(h); } μεταδιάταξη (postorder)

void traverse(link h, void (*visit)(link)){ if (h == NULL) return; traverse(h->l,visit); traverse(h->r,visit); (*visit)(h); } μεταδιάταξη (postorder)

void traverse(link h, void (*visit)(link)){ if (h == NULL) return; traverse(h->l,visit); traverse(h->r,visit); (*visit)(h); } μεταδιάταξη (postorder)

void traverse(link h, void (*visit)(link)){ if (h == NULL) return; traverse(h->l,visit); traverse(h->r,visit); (*visit)(h); } μεταδιάταξη (postorder)

void traverse(link h, void (*visit)(link)){ if (h == NULL) return; traverse(h->l,visit); traverse(h->r,visit); (*visit)(h); } μεταδιάταξη (postorder) 1

void traverse(link h, void (*visit)(link)){ if (h == NULL) return; traverse(h->l,visit); traverse(h->r,visit); (*visit)(h); } μεταδιάταξη (postorder) 1 2

void traverse(link h, void (*visit)(link)){ if (h == NULL) return; traverse(h->l,visit); traverse(h->r,visit); (*visit)(h); } μεταδιάταξη (postorder) 3 1 2

void traverse(link h, void (*visit)(link)){ if (h == NULL) return; traverse(h->l,visit); traverse(h->r,visit); (*visit)(h); } μεταδιάταξη (postorder) 3 4 1 2

void traverse(link h, void (*visit)(link)){ if (h == NULL) return; traverse(h->l,visit); traverse(h->r,visit); (*visit)(h); } μεταδιάταξη (postorder) 5 3 4 1 2

void traverse(link h, void (*visit)(link)){ if (h == NULL) return; traverse(h->l,visit); traverse(h->r,visit); (*visit)(h); } μεταδιάταξη (postorder) 15 5 14 3 4 1 2 12 10 11 13 6 9 7 8

προδιάταξη (preorder) 2 1 3 4 6 5 7 8 9 σειρά επεξεργασίας : 1. γονέας 2. αριστερό παιδί 3. δεξί παιδί μεταδιάταξη (postorder) 3 9 1 2 4 8 7 5 6 σειρά επεξεργασίας : 1. αριστερό παιδί 2. δεξί παιδί 3. γονέας Η προδιάταξη και μεταδιάταξη μπορούν να εφαρμοστούν και σε δένδρα όπου κάθε εσωτερικός κόμβος έχει αυθαίρετο αριθμό παιδιών

Ένα δυαδικό δένδρο με εσωτερικού κόμβους μπορεί να αναπαρασταθεί από μια ακολουθία από δυαδικά ψηφία, που ικανοποιεί τις ακόλουθες συνθήκες: ψηφιά είναι και ψηφία είναι Για κάθε θέση, ο αριθμός των που βρίσκονται πριν το είναι μεγαλύτερος ή ίσος του αριθμού των που βρίσκονται πριν το

Εκτελούμε προδιατεταγμένη διάσχιση του δένδρου. Αν ο επόμενος κόμβος που συναντάμε είναι εσωτερικός τότε το επόμενο ψηφίο είναι, διαφορετικά, αν είναι εξωτερικός κόμβος, τότε το επόμενο ψηφίο είναι.

Εκτελούμε προδιατεταγμένη διάσχιση του δένδρου. Αν ο επόμενος κόμβος που συναντάμε είναι εσωτερικός τότε το επόμενο ψηφίο είναι, διαφορετικά, αν είναι εξωτερικός κόμβος, τότε το επόμενο ψηφίο είναι.

Εκτελούμε προδιατεταγμένη διάσχιση του δένδρου. Αν ο επόμενος κόμβος που συναντάμε είναι εσωτερικός τότε το επόμενο ψηφίο είναι, διαφορετικά, αν είναι εξωτερικός κόμβος, τότε το επόμενο ψηφίο είναι.

Εκτελούμε προδιατεταγμένη διάσχιση του δένδρου. Αν ο επόμενος κόμβος που συναντάμε είναι εσωτερικός τότε το επόμενο ψηφίο είναι, διαφορετικά, αν είναι εξωτερικός κόμβος, τότε το επόμενο ψηφίο είναι.

Εκτελούμε προδιατεταγμένη διάσχιση του δένδρου. Αν ο επόμενος κόμβος που συναντάμε είναι εσωτερικός τότε το επόμενο ψηφίο είναι, διαφορετικά, αν είναι εξωτερικός κόμβος, τότε το επόμενο ψηφίο είναι.

Κατασκευή δυαδικού δένδρου από ακολουθία δυαδικών ψηφίων Εξετάζουμε ένα-ένα τα ψηφία της ακολουθίας. Αν το επόμενο ψηφίο είναι τότε δημιουργούμε νέο εσωτερικό κόμβο και κατασκευάζουμε αναδρομικά πρώτα το αριστερό και μετά το δεξί υποδένδρο. Διαφορετικά, αν το επόμενο ψηφίο είναι τότε δημιουργούμε νέο εξωτερικό κόμβο.

Κατασκευή δυαδικού δένδρου από ακολουθία δυαδικών ψηφίων Εξετάζουμε ένα-ένα τα ψηφία της ακολουθίας. Αν το επόμενο ψηφίο είναι τότε δημιουργούμε νέο εσωτερικό κόμβο και κατασκευάζουμε αναδρομικά πρώτα το αριστερό και μετά το δεξί υποδένδρο. Διαφορετικά, αν το επόμενο ψηφίο είναι τότε δημιουργούμε νέο εξωτερικό κόμβο.

Κατασκευή δυαδικού δένδρου από ακολουθία δυαδικών ψηφίων Εξετάζουμε ένα-ένα τα ψηφία της ακολουθίας. Αν το επόμενο ψηφίο είναι τότε δημιουργούμε νέο εσωτερικό κόμβο και κατασκευάζουμε αναδρομικά πρώτα το αριστερό και μετά το δεξί υποδένδρο. Διαφορετικά, αν το επόμενο ψηφίο είναι τότε δημιουργούμε νέο εξωτερικό κόμβο.

Κατασκευή δυαδικού δένδρου από ακολουθία δυαδικών ψηφίων Εξετάζουμε ένα-ένα τα ψηφία της ακολουθίας. Αν το επόμενο ψηφίο είναι τότε δημιουργούμε νέο εσωτερικό κόμβο και κατασκευάζουμε αναδρομικά πρώτα το αριστερό και μετά το δεξί υποδένδρο. Διαφορετικά, αν το επόμενο ψηφίο είναι τότε δημιουργούμε νέο εξωτερικό κόμβο.

Κατασκευή δυαδικού δένδρου από ακολουθία δυαδικών ψηφίων Εξετάζουμε ένα-ένα τα ψηφία της ακολουθίας. Αν το επόμενο ψηφίο είναι τότε δημιουργούμε νέο εσωτερικό κόμβο και κατασκευάζουμε αναδρομικά πρώτα το αριστερό και μετά το δεξί υποδένδρο. Διαφορετικά, αν το επόμενο ψηφίο είναι τότε δημιουργούμε νέο εξωτερικό κόμβο.

Κατασκευή δυαδικού δένδρου από ακολουθία δυαδικών ψηφίων Εξετάζουμε ένα-ένα τα ψηφία της ακολουθίας. Αν το επόμενο ψηφίο είναι τότε δημιουργούμε νέο εσωτερικό κόμβο και κατασκευάζουμε αναδρομικά πρώτα το αριστερό και μετά το δεξί υποδένδρο. Διαφορετικά, αν το επόμενο ψηφίο είναι τότε δημιουργούμε νέο εξωτερικό κόμβο.

Κατασκευή δυαδικού δένδρου από ακολουθία δυαδικών ψηφίων Εξετάζουμε ένα-ένα τα ψηφία της ακολουθίας. Αν το επόμενο ψηφίο είναι τότε δημιουργούμε νέο εσωτερικό κόμβο και κατασκευάζουμε αναδρομικά πρώτα το αριστερό και μετά το δεξί υποδένδρο. Διαφορετικά, αν το επόμενο ψηφίο είναι τότε δημιουργούμε νέο εξωτερικό κόμβο.

Κατασκευή δυαδικού δένδρου από ακολουθία δυαδικών ψηφίων Εξετάζουμε ένα-ένα τα ψηφία της ακολουθίας. Αν το επόμενο ψηφίο είναι τότε δημιουργούμε νέο εσωτερικό κόμβο και κατασκευάζουμε αναδρομικά πρώτα το αριστερό και μετά το δεξί υποδένδρο. Διαφορετικά, αν το επόμενο ψηφίο είναι τότε δημιουργούμε νέο εξωτερικό κόμβο.

Κατασκευή δυαδικού δένδρου από ακολουθία δυαδικών ψηφίων Εξετάζουμε ένα-ένα τα ψηφία της ακολουθίας. Αν το επόμενο ψηφίο είναι τότε δημιουργούμε νέο εσωτερικό κόμβο και κατασκευάζουμε αναδρομικά πρώτα το αριστερό και μετά το δεξί υποδένδρο. Διαφορετικά, αν το επόμενο ψηφίο είναι τότε δημιουργούμε νέο εξωτερικό κόμβο. Κατασκευή με αναδρομή typedef struct node *link; struct node {int item; link l, r;}; link NEW(int item) { link x = (link) malloc(sizeof(*x)); x->item = item; return x; } link createbt(const char *Β, int *k) { if (B[*k] == '\0') return NULL; } if (B[(*k)++] == '0') return NULL; int item = link x = NEW(item); x->l = createbt(b, k); x->r = createbt(b, k); return x;

Η προδιάταξη και μεταδιάταξη μπορούν να εφαρμοστούν και σε δένδρα όπου κάθε εσωτερικός κόμβος έχει αυθαίρετο αριθμό παιδιών 1 20 2 7 9 19 3 1 4 3 6 6 10 11 14 13 16 15 18 18 5 2 7 4 8 5 11 8 12 9 13 10 15 12 17 14 19 16 20 17 Προδιάταξη : Πρώτα ο γονέας, μετά τα παιδιά σε σειρά από αριστερά προς τα δεξιά Μεταδιάταξη : Πρώτα τα παιδιά σε σειρά από αριστερά προς τα δεξιά, μετά ο γονέας

Η προδιάταξη και μεταδιάταξη μπορούν να εφαρμοστούν και σε δένδρα όπου κάθε εσωτερικός κόμβος έχει αυθαίρετο αριθμό παιδιών 1 20 2 7 9 19 3 1 4 3 6 6 10 11 14 13 16 15 18 18 5 2 7 4 8 5 11 8 12 9 13 10 15 12 17 14 19 16 20 17 Προδιάταξη : Πρώτα ο γονέας, μετά τα παιδιά σε σειρά από αριστερά προς τα δεξιά Μεταδιάταξη : Πρώτα τα παιδιά σε σειρά από αριστερά προς τα δεξιά, μετά ο γονέας Ένας κόμβος είναι απόγονος ενός κόμβου αν και μόνο αν στη σειρά προδιάταξης και στη σειρά μεταδιάταξης