6.642 Continuum Electromechanics

Σχετικά έγγραφα
6.642 Continuum Electromechanics

6.642, Continuum Electromechanics, Fall 2004 Prof. Markus Zahn Lecture 8: Electrohydrodynamic and Ferrohydrodynamic Instabilities

6.641, Electromagnetic Fields, Forces, and Motion Prof. Markus Zahn Lecture 7: Polarization and Conduction

Note: Please use the actual date you accessed this material in your citation.

Note: Please use the actual date you accessed this material in your citation.

Note: Please use the actual date you accessed this material in your citation.

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique.

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

Space-Time Symmetries

Homework 8 Model Solution Section

Oscillatory Gap Damping

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

Oscillatory integrals

Second Order Partial Differential Equations

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Chapter 5-Old. Kelvin-Helmholtz Instability

F19MC2 Solutions 9 Complex Analysis

What happens when two or more waves overlap in a certain region of space at the same time?

STEAM TABLES. Mollier Diagram

CT Correlation (2B) Young Won Lim 8/15/14

6. ΙΑΦΟΡΙΚΗ ΑΝΑΛΥΣΗ ΤΗΣ ΡΟΗΣ

Solutions_3. 1 Exercise Exercise January 26, 2017

Περιεχόμενα. Εξίσωση Συνέχειας Αστρόβιλη Ροή Εξισώσεις Κίνησης. Σειρά ΙΙ 2

Srednicki Chapter 55

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Durbin-Levinson recursive method

Tridiagonal matrices. Gérard MEURANT. October, 2008

1 String with massive end-points

(ii) x[y (x)] 4 + 2y(x) = 2x. (vi) y (x) = x 2 sin x

Eulerian Simulation of Large Deformations

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Treatment of Boundary Conditions. Advanced CFD 03

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

ΠΡΟΣΚΛΗΣΗ ΕΚΔΗΛΩΣΗΣ ΕΝΔΙΑΦΕΡΟΝΤΟΣ

2.019 Design of Ocean Systems. Lecture 6. Seakeeping (II) February 21, 2011


b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

ΚΑΝΟΝΙΣΜΟΣ (EE) 2019/1238 ΤΟΥ ΕΥΡΩΠΑΪΚΟΥ ΚΟΙΝΟΒΟΥΛΙΟΥ ΚΑΙ ΤΟΥ ΣΥΜΒΟΥΛΙΟΥ

Chapter 7b, Torsion. τ = 0. τ T. T τ D'' A'' C'' B'' 180 -rotation around axis C'' B'' D'' A'' A'' D'' 180 -rotation upside-down C'' B''

Rectangular Polar Parametric


BSL Transport Phenomena 2e Revised: Chapter 2 - Problem 2C.4 Page 1 of 9

FORMULAS FOR STATISTICS 1

On the summability of divergent power series solutions for certain first-order linear PDEs Masaki HIBINO (Meijo University)

Mechanical Behaviour of Materials Chapter 5 Plasticity Theory

SPECIAL FUNCTIONS and POLYNOMIALS

ITU-R P (2012/02)

On the Galois Group of Linear Difference-Differential Equations

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

( ) ( ) ( ) ( ) ( ) λ = 1 + t t. θ = t ε t. Continuum Mechanics. Chapter 1. Description of Motion dt t. Chapter 2. Deformation and Strain

Chapter 2. Stress, Principal Stresses, Strain Energy

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα

Π Ο Λ Ι Τ Ι Κ Α Κ Α Ι Σ Τ Ρ Α Τ Ι Ω Τ Ι Κ Α Γ Ε Γ Ο Ν Ο Τ Α

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Κεφάλαιο 1 Πραγματικοί Αριθμοί 1.1 Σύνολα

Part III - Pricing A Down-And-Out Call Option

Electromagnetic Waves I

Congruence Classes of Invertible Matrices of Order 3 over F 2

4.4 Superposition of Linear Plane Progressive Waves

6.4 Superposition of Linear Plane Progressive Waves

Lifting Entry (continued)

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

The kinetic and potential energies as T = 1 2. (m i η2 i k(η i+1 η i ) 2 ). (3) The Hooke s law F = Y ξ, (6) with a discrete analog

Finite difference method for 2-D heat equation

Theoretical Competition: 12 July 2011 Question 2 Page 1 of 2

Section 8.3 Trigonometric Equations

Lecture 5: Numerical Integration

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Global nonlinear stability of steady solutions of the 3-D incompressible Euler equations with helical symmetry and with no swirl

m i N 1 F i = j i F ij + F x

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

Areas and Lengths in Polar Coordinates

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

10.7 Performance of Second-Order System (Unit Step Response)

Kul Finite element method I, Exercise 04/2016. Demo problems

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0)


SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

6.003: Signals and Systems. Modulation

ΕΛΤΙΟ ΤΥΠΟΥ. ΕΙΚΤΗΣ ΤΙΜΩΝ ΥΛΙΚΩΝ ΚΑΤΑΣΚΕΥΗΣ ΝΕΩΝ ΚΤΙΡΙΩΝ ΚΑΤΟΙΚΙΩΝ: εκέµβριος 2015 (2010=100,0)

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

( ) Sine wave travelling to the right side

A Hierarchy of Theta Bodies for Polynomial Systems

Model Description. 1.1 Governing equations. The vertical coordinate (eta) is defined by: p re f. z s p T 0 p T. p p T p s p T. η s

Math 248 Homework 1. Edward Burkard. Exercise 1. Prove the following Fourier Transforms where a > 0 and c R: f (x) = b. f(x c) = e.

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679


ΕΝΝΟΙΑ ΤΗΣ ΠΑΡΑΓΩΓΟΥ - ΟΡΙΣΜΟΣ

3.5 - Boundary Conditions for Potential Flow

Μάρω Ευαγγελίδου, Αμαλιάδος 17, Τηλ

Instruction Execution Times

ΚΑΝΟΝΙΣΜΟΣ (ΕΕ) 2019/1243 ΤΟΥ ΕΥΡΩΠΑΪΚΟΥ ΚΟΙΝΟΒΟΥΛΙΟΥ ΚΑΙ ΤΟΥ ΣΥΜΒΟΥΛΙΟΥ

Phase-Field Force Convergence

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Transcript:

MIT OpenCourseWre http://ocw.mit.eu 6.64 Continuum Electromechnics Fll 8 For informtion out citing these mterils or our Terms of Use, visit: http://ocw.mit.eu/terms.

6.64, Continuum Electromechnics rof. Mrkus Zhn Lecture 5: Lws, Approximtions, n Reltions of Flui Mechnics Continuum Electromechnics (Melcher) Sections 7.-7.8 I. Useful Vector Opertions n Ientities Grient χi l = χ - χ Guss s Lw (Divergence Theorem) V i A V = S A in Stokes Theorem S A in = A i l C Some useful Vector Ientities ( f ) = i ( A ) = ( A B ) C=A ( i i B C) (Dot n Cross cn e interchnge in the sclr triple prouct) 6.64, Continuum Electromechnics Lecture 5 rof. Mrkus Zhn ge of 4

II. Time Derivtive of Flui Volume Integrl ζ = ny sclr quntity such s ensity ρ ( t ) V = lim t ζ V( t) Δt ζ t + Δt V - ζ t V V( t+ Δt) V( t) Δt Linerize ll terms to first orer in ζ ζ( t + Δt ) = ζ( t ) + Δt +... Δ t t ζ V( t) t V = lim Δt ζ ζ ( t ) V - ζ ( t ) V + Δt V V( t+ t) V( t) V( t+ t) Δ Δ Δt s =lim Δ t ΔV ζ t V+ V t Δt ζ Δt V ( s ) ΔV = v Δt i v = flui surfce velocity t V() t ζ () t V = lim Δt S ζ ζ () t v i Δt + Δt V s Δt V() t t ζ() ζ i s V() t ζ t V = V + v V S 6.64, Continuum Electromechnics Lecture 5 rof. Mrkus Zhn ge of 4

S s V ( ζ ) ζ v i = i v V Divergence Theorem ζ ( t ) V= + v V t ζ i ζ V( t) V III. Conservtion of Mss ( ρ = ζ ) t ρ V = = V + v n ρ ρ s i V V S V i ρ v V ( ρ ) ρ + i v = Volume is ritrry ρ + v i ρ+ ρ i v = D ρ + ρ i v = Dt Incompressile D ρ = i v= Dt IV. Conservtion of Momentum ( ρ v = ) t V ρ v V = F V = ( v ) V + v v n ρ ρ i i i i i s V V V S v + v v V = F V ( ρ i) ( ρ i ) i i i V ρ v + ρ v v = F i i i ρ ρ ρ ( i ) i ( ρ ) v i + v v i + v i i ( i ) v i + v v i = F i ( i ) v ρ + v v = F + v = F i ζ, i th component where i=x, y, or z (Conservtion of mss) 6.64, Continuum Electromechnics Lecture 5 rof. Mrkus Zhn ge 3 of 4

V. Equtions of Motion for n Invisci Flui ( i ) ex v ρ + v v = - p+f VI. Eulerin Description of the Flui Interfce ξ F x, y, z, t = = y, z, t - x n= F F Courtesy of MIT ress. Use with permission. ( i ) ξ DF F = + v F = on F = = y, z, t - x Dt ξ F F F +v x +v y +v z = x y z - ξ y ξ z ξ ξ ξ v x = + v y + vz y z 6.64, Continuum Electromechnics Lecture 5 rof. Mrkus Zhn ge 4 of 4

VII. Surfce Tension A. Surfce Force Density δw = γ A s δw s + Τ sa δξ = γ A + Τ sa δξ = Increse of surfce energy Work one on interfce Courtesy of MIT ress. Use with permission. Α + δa = x + δx y + δy xy + yδx + xδ y x+ δx x x = δx = δξ R + δξ R R y+ δy y y = δy = R + δξ R R δξ δa=yδx+xδ y 6.64, Continuum Electromechnics Lecture 5 rof. Mrkus Zhn ge 5 of 4

xy xy = + δξ R R =xy + δξ R R =A δξ + R R γ A δξ + + Τ sa δξ = R R Τ =- γ + n s [Young n Lplce surfce force ensity] R R B. Interfcil Deformtion V i C V = s C i n (Divergent Theorem) S C=n Courtesy of MIT ress. Use with permission. n=n on top s n = -n on ottom s n n on sie V s i i i ( i ) C V n δξα = n n s A n Α δξ = δα S = A - A = δα top ottom 6.64, Continuum Electromechnics Lecture 5 rof. Mrkus Zhn ge 6 of 4

- γδα - γ Αδξ i n T s = = Αδξ Αδξ s = - γ in in = + R R Τ =- γ i n n VIII. Bounry Conitions A. Rigi Wll ni v = (norml velocity component is zero) n v = (Viscous flow) (tngentil velocity component is zero) B. Interfce n i v = ; v = v - v ove elow Force Equilirium i ( s) i V F V + T = A m F=F +F e mechnicl electricl T e F e = ij i x j m m T p p F =- p= it =- =-δ m ij ij xj xi xj T = -p δ m ij ij 6.64, Continuum Electromechnics Lecture 5 rof. Mrkus Zhn ge 7 of 4

T sr Courtesy of MIT ress. Use with permission. m e V F V = T + T i i ij ij n S j T + T n + T = m e ij ij j s i p n = T n - γ i n n e i ij j i 6.64, Continuum Electromechnics Lecture 5 rof. Mrkus Zhn ge 8 of 4

IX. Bernoulli s Lw g i, r = Xi + yi = zi F = ρ g = ρ g r if ρ = constnt x y z e F = [Specil cse when electricl force is written s grient of sclr] ex ( i ) ( i ) v ρ + v v + p = F = ρ g r - ( v i ) v= ( v ) v+ ( v i v ) v ρ + ω v + p + ρ v v - ρg r + = t i i ω = v vorticity l v v ρ i l+ p + ρ v v - ρg r + = i i Irrottionl Flows ( v= ω = ) v=- θ θ - ρ +p + ρ v i v - ρg i r+ = 6.64, Continuum Electromechnics Lecture 5 rof. Mrkus Zhn ge 9 of 4

X. Bernoulli Lw rolems A. Cpillry Rise Courtesy of MIT ress. Use with permission. θ =, v=, g =-g i, = z = + ρgξ c = = c - + γ + = R R= αr 6.64, Continuum Electromechnics Lecture 5 rof. Mrkus Zhn ge of 4

ρ ξ ρ ξ γ = + g - = g = α r ξ = γ ρgαr B. Electriclly Driven Rocket e pld + f x = LD e C V LD C=, f x = V =- x x x e -fx V LD V p= = = LD x LD x Another Wy: p - T e = ; T e = V xx xx x e V p=t xx = x p + ρ v = p + ρ v vld=vd V p = = ρ v - x L 6.64, Continuum Electromechnics Lecture 5 rof. Mrkus Zhn ge of 4

V v = V p = ρx - L M Thrust=V p =Vp ρ D t C. Mgneticlly Driven Rocket e +p + T yy = μ μ T yy = - H = - z I w μ p= I w p + ρ v = p + ρ v I μ p =, vdw = v w w ρ w D μ I = v - μ I ρ ( w ) v = V = - D 6.64, Continuum Electromechnics Lecture 5 rof. Mrkus Zhn ge of 4

M t Thrust = V = V Vw = V w ρ ρ D. Dielectric Liqui Rise. Kelvin olriztion Force Density ( i ) ij i j δij k k F= E, T =ED - EE ( ) = - E ( i ) ( )( i ) E = - E E ( ) ( E ) E= ( E i ) E- ( E i E ) ( E i ) E = ( E i E ) ( ) - i E = E i E = - E i E if constnt F=- = ( - ) E i E =- - E E ( ) i + ρgz - ( - ) E i E = constnt 6.64, Continuum Electromechnics Lecture 5 rof. Mrkus Zhn ge 3 of 4

Courtesy of MIT ress. Use with permission. V E= i αr θ = ( - ) V + ρgξ- = α r c - + T = γ = (negligile surfce tension) - = c T = - E θ = E θ continuous cross interfce = = c = ( - ) V ξ = α r ρ g 6.64, Continuum Electromechnics Lecture 5 rof. Mrkus Zhn ge 4 of 4

. Korteweg-Helmholtz Force Density F=- E i E, T = EE - δ EE ij i j ij K K =constnt, F=- = = In flui + ρ gz=constnt T = - E = - - ( ) θ V αr = - + T = - = c + ρg ξ = c V V - = ρg ξ = T = - ( - ) = + ( - ) αr αr ( - ) V ξ = α r ρ g E. Mgnetic Flui Rise in Tngentil Mgnetic Fiel Courtesy of MIT ress. Use with permission. 6.64, Continuum Electromechnics Lecture 5 rof. Mrkus Zhn ge 5 of 4

I H= iθ πr F = μ ( M i ) H, T = HB - μ δ H H ij i j ij K K. Linerly Mgnetizle ( μ ) B= H+M = H M= - H μ μ μ μ F= ( μ -μ)( H i ) H= ( μ - μ) ( H) H+ ( H i H) μ - μ μ - μ i i μ =- F = H H = H H if = constnt =- - H H μ μ i + ρgz - ( μ - μ ) H i H = constnt = = c - + T = T = - H θ = μ = = c = + g - ( - ) I ρ ξ μ μ = πr ( - ) μ μ I ξ = ρ g π r c 6.64, Continuum Electromechnics Lecture 5 rof. Mrkus Zhn ge 6 of 4

. Nonliner Mgnetiztion Chrcteristics H ( ) M = M H M H H M ( i ) ( i ) F= μ M H= μ H H H H i H = H H + H i H μ M μ μ H F= H = M H= M( H) H=- H H H μ μ = - M H H = - M H; M = M( H) H H Specil cse: Liner Mteril: μ M= μ -μ H =- ( μ -μ) H =- μmh Sturte Mteril: μ M = constnt =-μ MH + ρgz- =constnt 6.64, Continuum Electromechnics Lecture 5 rof. Mrkus Zhn ge 7 of 4

= = c - + T = + ρg ξ+ = + c c T = HB - H H δμ ij i j ij K K T = - Hθ T = μ = = c = H μm H H - μm H ξ = = = ρg ρg ρg Liner Mteril: =- ( - ) I μ μ π r ( μ μ ) ( π ) - I ξ = r ρg Sturte Mteril: =-μ MH μmh μmi ξ = = ρg πρgr 6.64, Continuum Electromechnics Lecture 5 rof. Mrkus Zhn ge 8 of 4

F. Mgnetic Flui Rise in Norml Fiel = + ρgδh+ = + ρgδh- μm H = - + T = T = H B - H μ x x x μ T = H - μ H ( H +M ) + μ H μ μ H = H +M μ T = ( H +M) - H ( H +M ) + H μ μ 6.64, Continuum Electromechnics Lecture 5 rof. Mrkus Zhn ge 9 of 4

μ = M μm = - = μm - = = ρgδh-μ M H μ M h= +M Δ H ρg Liner Mteril: M μ M MB ρg ρg M= Δh= M+ H = Sturte Mteril: μ M M=M Δh= M+ H ρg G. Mgnetic Nozzle 6.64, Continuum Electromechnics Lecture 5 rof. Mrkus Zhn ge of 4

+ ρv + = + ρv - μ M H = = μ v - v = M H ρ π π v = v = v 4 4 v μ μ v = v + M H = v + M H ρ ρv μ = + M H ρv H. Mgnetic Flui Rotry Shft Sel 4 3 - μm H 3 = - μm H 3 4-3 + T = 3, 4 - + T =, Assume H tngentil to interfce T = - Ht T = μ, 3,4 = 6.64, Continuum Electromechnics Lecture 5 rof. Mrkus Zhn ge of 4

4 = 3 3 - = 4 - = Δ = μ ( M H 3 3 -M H ) H3 = μ MH H In well esigne sel H Δ μ M H Typicl numers: μ M = 7 G =.7T μ H = 8, G =.8T ( μ M)( μ H ).7 (.8 ) H 3 Δ= = = Nm 5-7 μ 4 π = kscls = Atmosphere XI. Force on Boy in Mgnetic Flui p+ ρgz-μ M H=constnt=C p= μ M H-ρ gz+c f = - p p n = - μm H n + ρgz n + C n S S S S uoyncy effect Mgneticlly Sturte: M= M=constnt S C n = f = - μ M H n = - μ M H n = - μ M HV M S S Mgneticlly Liner: ( μ - μ ) M= M= H μ ( μ - μ ) V C V f M =- μm H n =- μ H n =- μ -μ H V μ S S V 6.64, Continuum Electromechnics Lecture 5 rof. Mrkus Zhn ge of 4

A. Non-mgnetic Boy f oy =uoynt weight + f M f M opposite to irection of incresing H Non-mgnetic oy moves towrs wek fiel region (Sink-Flot Seprtion) 6.64, Continuum Electromechnics Lecture 5 rof. Mrkus Zhn ge 3 of 4

6.64, Continuum Electromechnics Lecture 5 rof. Mrkus Zhn ge 4 of 4