Electronic Supplementary Information:
2 6 5 7 2 N S 3 9 6 7 5 2 S N 3 9 Scheme S. Atom numbering for thione and thiol tautomers of thioacetamide
3 0.6 0. absorbance 0.2 0.0 0.5 0.0 0.05 0.00 N 2 Ar km/mol 0 30 20 0 DFT 0 3700 3600 3500 300 3300 wavenumbers / cm - Figure S igh frequency region of the infrared spectra of thioacetamide isolated in Ar and N 2 matrices compared with the spectrum calculated theoretically for the thione-amino tautomer I. Baseline of the experimental spectra was corrected; theoretical spectra were calculated at the DFT(B3LYP)/6-3++G(d,p) level, and theoretical frequencies scaled by 0.9.
absorbance 0. 0.6 0. 0.2 0.0 0.2 0.0 N 2 Ar km/mol 200 00 0 DFT 600 00 200 000 00 600 00 wavenumbers / cm - Figure S2. The infrared spectra of thioacetamide isolated in Ar and N 2 matrices compared with the spectrum calculated theoretically for the thione-amino tautomer I. Baseline of the experimental spectra was corrected; theoretical spectra were calculated at the DFT(B3LYP)/6-3++G(d,p) level, and theoretical frequencies scaled by 0.9.
5 Table S. Internal coordinates used in the normal mode analysis for the thione tautomer of thioacetamide. Atom numbering as in Scheme S. S =(2 -/2 )(r 3,9 + r 3, ) S 2 =(2 -/2 )(r 3,9 - r 3, ) S 3 =r 3,2 S =r 2, S 5 =r 2, S 6 =(3 -/2 )(r,7 + r,6 + r,5 ) S 7 =(6 -/2 )(2r,5 - r,7 - r,6 ) S =(2 -/2 )(r,7 - r,6 ) S 9 =(6 -/2 )(2β,9,3 - β,2,3 - β 9,2,3 ) S 0 =(2 -/2 )(β,2,3 - β 9,2,3 ) S =(6 -/2 )(2β 3,,2 - β 3,,2 - β,,2 ) S 2 =(2 -/2 )(β 3,,2 - β,,2 ) S 3 =(2 -/2 )(β 7,5, + β 7,6, + β 5,6, - β 7,2, - β 5,2, - β 6,2, ) S =(6 -/2 )(2β 7,6, - β 7,5, - β 6,5, ) S 5 =(2 -/2 )(β 7,5, - β 6,5, ) S 6 =(6 -/2 )(2β 5,2, - β 7,2, - β 6,2, ) S 7 =(2 -/2 )(β 7,2, - β 6,2, ) S =(2 -/2 )(τ 5,,2, + τ 5,,2,3 + τ 6,,2, + τ 6,,2,3 + τ 7,,2, + τ 7,,2,3 ) S 9 =/2(τ,3,2, + τ,3,2, + τ 9,3,2, + τ 9,3,2, ) S 20 =γ 2,,3,9 S 2 =γ,3,2, ν s N 2 ν a N 2 ν CN ν C=S ν CC ν Me ν Me2 ν Me3 N 2 scis N 2 rock β CCN β C=S β Me β Me2 β Me3 β Me β Me5 τ Me τ N 2 N 2 inv γ C=S r i,j is the distance between atoms A i and A j ; β i,j,k is the angle between vectors A k A i and A k A j ; τ i,j,k,l is the dihedral angle between the plane defined by atoms A i, A j, A k and the plane defined by A j, A k, A l ; γ i,j,k,l is the angle between the vector A k A i and the plane defined by atoms A j, A k, A l.
6 Table S2. Internal coordinates used in the normal mode analysis for the thiol tautomer of thioacetamide. Atom numbering as in Scheme S. S =r 3, S 2 =r,9 S 3 =r 2,3 S =r,2 S 5 =r 2, S 6 =(3 -/2 )(r,7 + r,6 + r,5 ) S 7 =(6 -/2 )(2r,5 - r,7 - r,6 ) S =(2 -/2 )(r,7 - r,6 ) S 9 =β 7,2,3 S 0 =(6 -/2 )(2β 3,,2 - β,3,2 - β,,2 ) S =β 9,2, S 2 =(2 -/2 )(β,,2 - β,3,2 ) S 3 =(2 -/2 )(β 7,5, + β 7,6, + β 5,6, - β 7,2, - β 5,2, - β 6,2, ) S =(6 -/2 )(2β 7,6, - β 7,5, - β 6,5, ) S 5 =(2 -/2 )(β 7,5, - β 6,5, ) S 6 =(6 -/2 )(2β 5,2, - β 7,2, - β 6,2, ) S 7 =(2 -/2 )(β 7,2, - β 6,2, ) S =(2 -/2 )(τ 7,,2, + τ 7,,2,3 + τ 5,,2, + τ 5,,2,3 + τ 6,,2, + τ 6,,2,3 ) S 9 =(2 -/2 )(τ,3,2, + τ,3,2, ) S 20 =(2 -/2 )(τ 9,,2, + τ 9,,2,3 ) S 2 =γ,,2,3 ν N ν S ν C=N ν CS ν CC ν Me ν Me2 ν Me3 β N β CCN β S β CS β Me β Me2 β Me3 β Me β Me5 τ Me τ N τ S γ CS r i,j is the distance between atoms A i and A j ; β i,j,k is the angle between vectors A k A i and A k A j ; τ i,j,k,l is the dihedral angle between the plane defined by atoms A i, A j, A k and the plane defined by A j, A k, A l ; γ i,j,k,l is the angle between the vector A k A i and the plane defined by atoms A j, A k, A l.
7 Table S3. Experimental wavenumbers ( ~ ν / cm - ) and relative integral intensities ( I ) of the absorption bands in the spectrum of matrix isolated thioacetamide, compared with wavenumbers ( ν ~ / cm - ), absolute intensities ( A th / km mol - ) and potential energy distribution (PED / % ) theoretically calculated for the thione form I. experimental calculated Ar matrix N 2 matrix DFT(B3LYP)/6-3++G(d,p) ν ~ a I ν ~ a I ν ~ b A th PED 352 67 352 35 350 00 3636 3 ν a N 2 (00) 366 363 6 306 sh 305 7 30 0 3502 6 ν s N 2 (00) 30 sh 30 sh 32 32 376 2 320 5 296 5 2966 30 6 ν Me3(99) 2925 6 2926 2979 23 ν Me(9) 62 65 60 603 597 593 5 67 60 605 3 6 6 N 2 scis(90) 57 3 53 69 2 β Me3(0) 7 3 5 3 β Me2(3) β Me(0) 32 6 37 369 6 377 3 26 β Me(7) 37 262 35 79 357 250 ν CN(5) 33 353 sh 32 32 2 39 29 56 N 2 rock(0), ν CC(22), ν C=S(2) 6 2 0 0 005 02 β Me5(2), β Me(36), γ C=S(0) 999 29 979 5 99 3 β Me(39), β Me5(30), N 2 rock(3), ν CN(2) 997 93 20 99 33 966 30 ΝΗ 2 rock(37), ν CC(33), ν C=S(2) 7 77 66 overtone of N 2 inv 729 7 727 0 723 ν C=S(9), ν CC(3), ν CN(0) 592 6 637 625 6 6 609 0 τ ΝΗ 2 (2) 50 55 2 92 γ C=S() 26 2 2 β CNN(66), β C=S(9) 376 sh 376 2 369 β C=S(72), β CCN(7) 36 57 2 37 39 355 3 N 2 inv(90), τ N 2 (0) 6 τ Me(99) a Wavenumbers of the strongest bands are underlined. b Theoretical frequencies have been scaled by 0.9. PED s lower than 0% are not included. sh - shoulder
Table S Normal mode frequencies ( ν ~ ), potential energy distribution (PED) and absolute intensities (A th ) of the theoretically predicted (DFT(B3LYP)/6-3++G(d,p)) IR bands for the form II of the thiol tautomer of thioacetamide. mode No. ~ ν a cm - th A km mol - b PED % approximate assignment Q Q2 Q3 Q Q5 Q6 Q7 Q Q9 Q0 Q Q2 Q3 Q Q5 Q6 Q7 Q Q9 Q20 Q2 33 307 3053 295 26 656 57 9 33 270 07 02 9 3 06 626 332 32 06 5 7 5 23 3 6 55 5 55 62 52 25 ν N(00) ν Me2(00) ν Me3(00) ν Me(00) ν S(00) ν C=N(7) β Me2(90) β Me3(95) β Me(95) β N(65), β CCN() β Me(55), β N(26) β Me5(73), τ N(), γ CS(5) β S(3), ν CC(30), β Me(),ν C=N(0) β S(59), ν CC(29), β Me(0) τ N(90) ν CS(60), β CCN(7), ν CC() γ CS(9), β Me5(0) β CCN(5), ν CS(27), β CS() τ S(96) β CS(75), β CCN(6) τ Me(9) N str S str C=N str Me umbr N bend CC str, S bend S bend N tors CS str CS wagg CCN bend, CS str S tors CS bend Me twist a Frequencies have been scaled by 0.9. b Internal coordinates used in PED analysis are defined in Table S2. PED's lower than 0% not included. Abbreviations: str - stretching; bend - bending; umbr - umbrella; rock - rocking; tors - torsion; wagg - wagging; twist - twisting.
9 Table S5 Normal mode frequencies ( ν ~ ), potential energy distribution (PED) and absolute intensities (A th ) of the theoretically predicted (DFT(B3LYP)/6-3++G(d,p)) IR bands for the form III of the thiol tautomer of thioacetamide. mode No. ~ ν a cm - th A km mol - b PED % approximate assignment Q Q2 Q3 Q Q5 Q6 Q7 Q Q9 Q0 Q Q2 Q3 Q Q5 Q6 Q7 Q Q9 Q20 Q2 302 3066 305 292 2639 659 5 50 30 270 0 00 997 5 62 95 27 337 22 50 7 6 79 7 3 53 70 5 67 5 3 7 ν N(00) ν Me2(00) ν Me3(00) ν Me(00) ν S(00) ν C=N() β Me2(90) β Me3(93) β Me(96) β N(63), β CCN() β Me(52), β N(2) β Me5(73), τ N(2) β S(5), ν CC(7), β Me(3) β S(), ν CC(39), β Me(0) τ N(9) ν CS(56), β CCN(), ν CC() γ CS(7), β Me5(0) β CCN(55), ν CS(30), β CS() β CS(2), β CCN() τ S(7) τ Me(92) N str S str C=N str Me umbr N bend CC str, S bend S bend N tors CS str CS wagg CCN bend, CS str CS bend S tors Me twist a Frequencies have been scaled by 0.9. b Internal coordinates used in PED analysis are defined in Table S2. PED's lower than 0% not included. Abbreviations: str - stretching; bend - bending; umbr - umbrella; rock - rocking; tors - torsion; wagg - wagging; twist - twisting.
0 Table S6 Normal mode frequencies ( ν ~ ), potential energy distribution (PED) and absolute intensities (A th ) of the theoretically predicted (DFT(B3LYP)/6-3++G(d,p)) IR bands for the form IV of the thiol tautomer of thioacetamide. mode No. ~ ν a cm - th A km mol - b PED % approximate assignment Q Q2 Q3 Q Q5 Q6 Q7 Q Q9 Q0 Q Q2 Q3 Q Q5 Q6 Q7 Q Q9 Q20 Q2 3 309 3050 296 2636 670 55 9 32 236 057 05 93 5 3 603 2 36 325 269 6 7 52 5 3 7 233 29 3 6 5 3 5 3 2 2 ν N(00) ν Me2(97) ν Me3(00) ν Me(96) ν S(00) ν C=N(6) β Me3(92) β Me2(92) β Me(9) β N(65) β Me(57), β N(7) β Me5(75), τ N(0) ν CC(35), β S(3), β N() β S(6), ν CC(29) τ N() ν CS(53), β CCN(2), ν CC(0) γ CS(9), β Me5() β CCN(0), ν CS(37), β CS(9) β CS(72), β CCN() τ S(96) τ Me(96) N str S str C=N str Me umbr N bend CC str, S bend S bend N tors CS str CS wagg CCN bend, CS str CS bend S tors Me twist a Frequencies have been scaled by 0.9. b Internal coordinates used in PED analysis are defined in Table S2. PED's lower than 0% not included. Abbreviations: str - stretching; bend - bending; umbr - umbrella; rock - rocking; tors - torsion; wagg - wagging; twist - twisting.
Table S7 Normal mode frequencies ( ν ~ ), potential energy distribution (PED) and absolute intensities (A th ) of the theoretically predicted (DFT(B3LYP)/6-3++G(d,p)) IR bands for the form V of the thiol tautomer of thioacetamide. mode No. ~ ν a cm - th A km mol - b PED % approximate assignment Q Q2 Q3 Q Q5 Q6 Q7 Q Q9 Q0 Q Q2 Q3 Q Q5 Q6 Q7 Q Q9 Q20 Q2 302 3093 30 296 2639 669 57 9 30 252 053 050 979 6 606 5 332 72 3 6 5 63 5 9 5 222 27 5 6 9 57 37 6 ν N(00) ν Me2(97) ν Me3(00) ν Me(97) ν S(00) ν C=N(6) β Me3(93) β Me2(92) β Me(9) β N(65) β Me(56), β N(20) β Me5(75), τ N(2) ν CC(3), β S(25), β Me(), β N() β S(6), ν CC(26) τ N(5) ν CS(53), β CCN(26), ν CC(2) γ CS(5), β Me5(0) β CCN(9), ν CS(3) β CS(3), β CCN(0) τ Me(60), τ S(5), τ Me(0) N str S str C=N str Me umbr N bend CC str, S bend S bend N tors CS str CS wagg CCN bend, CS str CS bend S tors Me twist a Frequencies have been scaled by 0.9. b Internal coordinates used in PED analysis are defined in Table S2. PED's lower than 0% not included. Abbreviations: str - stretching; bend - bending; umbr - umbrella; rock - rocking; tors - torsion; wagg - wagging; twist - twisting.
2 Table S. Optimized geometries of thione and thiol isomers of thiourea obtained at MP2/6-3++G(d,p) level of calculation. Isomers I II III IV V Bond lengths (Å) C - C2.509.507.50.502.50 C2 - N3.359.25.25.23.23 C2 - S.63.772.776.790.79 N3-9.009 S - 9.333.332.333.332 N3 -.00.022.022.022.023 C - 5.09.0.09.07.07 C - 6.092.09.090.090.09 C - 7.05.09.090.090.090 Angles (deg) C - C2 - N3 3. 27. 26. 20.0 20. C - C2 -S 23.7 3.3 7.2 2.3 6.9 C2 - S - 9 9. 96.0 96.0 96.6 C2 - N3-9.7 C2 - N3-20.9 09.3 09.5 2.2.7 - N3-9 7.9 C2 - C - 6 09. 0. 0.7 0.5 0. C2 - C - 5 0.6 0. 09.9 0.5 0. C2 - C - 7 0. 0. 0.3 0.5 0. Dihedral angles (deg) C - C2 - N3 - S 7. 0.0 77.7 0.0 77.0 - N3 - C2-9 6.7 C - C2 - S - 9 0.0 0. 0.0.3 C - C2 - N3 - -0.6 0.0-0. 0.0-79.9 N3 - C2 - C - 6 73. 20. 2.9 20.2 2.5 N3 - C2 - C - 5-6. 0.0.7 20.2.3 N3 - C2 - C - 7-67.0-20. -5. -20.2-5.
3 Table S9. Relative electronic ( E el ), zero-point vibrational ( ZPE), and total [ E tot = E el + ZPE(DFT)] energies of thioacetamide isomers. The energy of the thione-amino I form was taken as reference. The calculations were carried out with 6-3++G(d,p) basis set. All data in kj mol -. Isomer II III IV V E el (MP2).3 57.3.5 9.7 E el (DFT) 5.0 62.3 5.0 5.9 ZPE(DFT) -9.0-9,0 -.9-9. E tot (MP2) 39.3.3 39.6 0.3 E tot (DFT) 5.0 53.3 5. 5.5