Manuscript submitted to the Journal of the American Society for Mass Spectrometry, September 2011.

Σχετικά έγγραφα
Dipole-Guided Electron Capture Causes Abnormal Dissociations of Phosphorylated Pentapeptides

Supporting Information. A Combined Crossed Molecular Beams and ab Initio Investigation on the Formation of Vinylsulfidoboron (C 2 H

Computational study of the structure, UV-vis absorption spectra and conductivity of biphenylene-based polymers and their boron nitride analogues

Electronic Supplementary Information:

Supporting Information

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

Electronic Supplementary Information

Supporting Information for: electron ligands: Complex formation, oxidation and

SUPPLEMENTARY INFORMATION

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

ELECTRONIC SUPPORTING INFORMATION

Carbohydrates in the gas phase: conformational preference of D-ribose and 2-deoxy-D-ribose

Supporting Information for Substituent Effects on the Properties of Borafluorenes

Decomposition of Condensed Phase Energetic Materials: Interplay between Uni- and Bimolecular Mechanisms Supporting Information

Supplementary Materials for. Kinetic and Computational Studies on Pd(I) Dimer- Mediated Halogen Exchange of Aryl Iodides

Supplementary Information for

Electronic Supplementary Information DFT Characterization on the Mechanism of Water Splitting Catalyzed by Single-Ru-substituted Polyoxometalates

of the methanol-dimethylamine complex

Supporting Information: Design principles for α-tocopherol analogues

Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design

Table of Contents 1 Supplementary Data MCD

LP N to BD* C-C = BD C-C to BD* O-H = LP* C to LP* B =5.

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Butadiene as a Ligand in Open Sandwich Compounds

Supporting Information To. Microhydration of caesium compounds: Journal of Molecular Modeling

Electronic Supplementary Information (ESI)

Fused Bis-Benzothiadiazoles as Electron Acceptors

1 P age. Hydrogen-abstraction reactions of methyl ethers, H 3 COCH 3-x (CH 3 ) x, x=0 2, by OH; Chong-Wen Zhou C 3

Bifunctional Water Activation for Catalytic Hydration of Organonitriles

Extremely Strong Halogen Bond. The Case of a Double-Charge-Assisted Halogen Bridge

Hydrogen Sorption Efficiency of Titanium Decorated Calix[4]pyrroles

The effect of curcumin on the stability of Aβ. dimers

Supporting Information for. Department of Chemistry, Vanderbilt University, Nashville, TN 37235

Electronic Supplementary Information

Enhancing σ/π-type Copper(I) thiophene Interactions by Metal Doping (Metal = Li, Na, K, Ca, Sc)

Supporting Information: Expanding the Armory: Predicting and Tuning Covalent Warhead. Reactivity.

ELECTRONIC SUPPLEMENTARY MATERIAL-RSC Adv.

Supporting Information

January 22, University of Minnesota, Minneapolis, Minnesota , USA

10-π-electron arenes à la carte: Structure. Sr, Ba; n = 6-8) complexes

Supporting Information

Supporting Information

Supporting Information

Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand

Solvent effects on structures and vibrations of zwitterionic dipeptides: L-diglycine and L-dialanine

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

DFT Kinetic Study of the Pyrolysis Mechanism of Toluene Used for Carbon Matrix

Stereochemistry and mechanistic insight in the [2 k +2 i +2 i ] annulations of ketenes and imines

Supplementary materials. Mode Analysis. Matthias M. N. Wolf, Christian Schumann, Ruth Groß, Tatiana Domratcheva 1 and Rolf. Diller

Oxazines: A New Class Of Second-Order Nonlinear Optical Switches Supporting Information

Supplementary materials

Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. Supporting Information

Reaction of Lithium Diethylamide with an Alkyl Bromide and Alkyl Benzenesulfonate: Origins of Alkylation, Elimination, and Sulfonation.

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

Supporting Information

Molecular structure, spectral analysis and hydrogen bonding analysis of ampicillin trihydrate: A combined DFT and AIM approach

Experimental and Theoretical Investigations of Structural Trends for Selenium(IV)

Supporting Information

Supporting Information

Supporting Information. Crown Ether Complexes of Actinyls: A Computational Assessment of

Supporting Information. Partial thioamide scan on the lipopeptaibiotic trichogin GA IV. Effects on

Electronic structure and spectroscopy of HBr and HBr +

Structural Expression of Exo-Anomeric Effect

# Institute of Chemistry of the Academy of Sciences of Republic of Moldova, Academiei Str. 3,

Molecular evolutionary dynamics of respiratory syncytial virus group A in

Zebra reaction or the recipe for heterodimeric zinc complexes synthesis


ΔΙΑΣΤΑΣΕΙΣ ΕΣΩΤΕΡΙΚΗΣ ΓΩΝΙΑΣ INTERNAL CORNER SIZES

Homework 8 Model Solution Section

Figure 3 Three observations (Vp, Vs and density isosurfaces) intersecting in the PLF space. Solutions exist at the two indicated points.

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Novel electroluminescent donor-acceptors based on dibenzo[a,c]phenazine as

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Switching of the Photophysical Properties of. Bodipy-derived Trans Bis(tributylphosphine) Pt(II) bisacetylide Complexes with Rhodamine

Electronic Supplementary Information

stability and aromaticity in the benzonitrile H 2 O complex with Na+ or Cl

Synthesis, structural studies and stability of the model, cysteine containing DNA-protein cross-links

vibrational Supplementary density of the Beyer-


Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

Supporting Information

Solutions to the Schrodinger equation atomic orbitals. Ψ 1 s Ψ 2 s Ψ 2 px Ψ 2 py Ψ 2 pz

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Electronic Supplementary Information

Supporting Information for:

Supporting Information. A single probe to sense Al(III) colorimetrically and. Cd(II) by turn-on fluorescence in physiological

Electronic Supplementary Information (ESI)

Near-Silence of Isothiocyanate-Carbon in 13 C-NMR Spectra. A Case Study of Allyl Isothiocyanate

Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical

Supplementary Information. Unveiling the complex vibronic structure of canonical adenine cation

difluoroboranyls derived from amides carrying donor group Supporting Information

Supporting Information

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

Table S1 Selected bond lengths [Å] and angles [ ] for complexes 1 8. Complex 1. Complex 2. Complex 3. Complex 4. Complex 5.

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

ΕΠΙΤΟΙΧΑ ΡΑΦΙΑ WALL UNIT

Supplementary Information

Transcript:

The Early Life of a Peptide Cation-Radical. Ground and Excited-State Trajectories of Electron-Based Peptide Dissociations During the First 330 Femtoseconds Christopher L. Moss, Wenkel Liang, Xiaosong Li,* František Tureček* Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, WA 98195-1700 Manuscript submitted to the Journal of the American Society for Mass Spectrometry, September 2011. Figures S1-S6, and Tables S1-S9 of optimized ion structures with total and zero-point energies. S1

Figure S1. Top panel (a) RRKM rate constants for C δ N ε (circles) and N ε H ε (triangles) dissociations in 3. Filled symbols: B3-PMP2/6-311++G(2d,p) transition state energies; open symbols: M06-2X/6-311++G(3df,2p) transition state energies. Bottom panel (b): Calculated ratios (log) of rate constants for loss of H and guanidine from 3 at the indicated levels of theory. S2

Figure S2. RRKM rate constant for N C α bond cleavage in 2 on the effective CCSD(T)/6-311++G(3df,2p) potential energy surface of the ground doublet state. The vertical line indicates that ion internal energy after resonant electron transfer to (AR + 2H) 2+ from a Cs atom and isomerization to intermediate 2. S3

Figure S3. Time dependence of the H 3 N---C α bond length from Ehrenfest dynamics calculations of the SOMO state of (AR + 2H) + calculated with CAM-B3LYP/4-31G*. S4

Figure S4. Geometries at the indicated times from CAM-B3LYP/4-31G(d) Ehrenfest dynamics calculations of the LUMO state of (AR + 2H) +. θ is the N,C,N,N dihedral angle of the guanidine group. S5

Figure S5. Geometries at the indicated times from CAM-B3LYP/4-31G(d) Ehrenfest dynamics calculations of the LUMO+1 state of (AR + 2H) +. θ is the N,C,N,N dihedral angle of the guanidine group. S6

Figure S6. Time dependence of the guanidinium H ε N ε bond lengths from Ehrenfest dynamics calculations of the LUMO+2 state of (AR + 2H) + calculated with CAM-B3LYP/4-31G*. Black circles: H ε N ε bond; blue circles: H 11 N 1 bond; pink circles: H 12 N 1 bond; green circles: H 21 N 2 bond; turquoise circles: H 22 N 2 bond. S7

Table S1. B3LYP/6-31+G(d,p) optimized geometry of (AR + 2H) 2+ ion 1 +.. 1 7 0 4.546252-2.470751-0.308685 2 6 0 4.219140-1.167340 0.401135 3 6 0 2.792768-0.831289-0.123531 4 8 0 2.251431-1.633778-0.897118 5 7 0 2.233492 0.302578 0.306713 6 1 0 4.777421-3.235790 0.329906 7 1 0 3.657721-2.688224-0.836982 8 6 0 0.959162 0.814598-0.208981 9 1 0 2.752536 0.967459 0.876519 10 6 0 1.027541 2.331731 0.003382 11 8 0 1.888999 2.866255 0.667366 12 8 0 0.034037 2.981590-0.615665 13 6 0-0.259410 0.150107 0.490271 14 6 0-1.596524 0.378187-0.236377 15 6 0-2.758560-0.312517 0.489112 16 1 0 4.162770-1.391049 1.470598 17 6 0 5.284450-0.105090 0.126325 18 1 0 0.911512 0.608574-1.284175 19 1 0 0.139893 3.938697-0.458143 20 1 0-0.314286 0.505595 1.526387 21 1 0-0.047922-0.923756 0.525479 22 1 0-1.803961 1.450900-0.309466 23 1 0-1.528848-0.013426-1.258887 24 1 0-2.830345 0.061209 1.519179 25 1 0-2.600520-1.396376 0.519741 26 1 0 5.316690-2.368087-0.976033 27 7 0-4.022350-0.048537-0.223987 28 6 0-5.184787-0.677429-0.010802 29 7 0-6.219931-0.471080-0.838271 30 7 0-5.318839-1.528928 1.014299 31 1 0-6.102103-0.008350-1.728388 32 1 0-7.154410-0.771630-0.598481 33 1 0-4.658629-1.545041 1.777025 34 1 0-6.136329-2.116398 1.102333 35 1 0-4.033543 0.730717-0.870208 36 1 0 5.341791 0.140036-0.939260 37 1 0 6.266048-0.441413 0.472834 38 1 0 5.055732 0.815105 0.669666 Rotational constants (GHZ): 0.7341925 0.1564286 0.1349062 E(B3LYP)/6-31+G(d,p) = -854.646293092 a.u. Zero point energy = 873.763 kj mol -1 S8

Table S2. B3LYP/6-31+G(d,p) optimized geometry of (AR + 2H) 2+ cation-radical 1. 1 7 0 4.293982-2.617213-0.518692 2 1 0 2.300823-2.568220-0.702085 3 1 0 4.902233-3.269503-0.032994 4 1 0 4.727513-2.390631-1.411822 5 6 0 4.062152-1.397081 0.281063 6 1 0 3.899677-1.744477 1.317983 7 6 0 5.227118-0.399220 0.277506 8 1 0 5.402258-0.006775-0.730721 9 1 0 5.045311 0.447032 0.950218 10 1 0 6.143060-0.889351 0.621589 11 6 0 2.757048-0.818595-0.234140 12 8 0 1.782996-1.767038-0.467640 13 6 0 0.999168 2.427083-0.074358 14 8 0-0.010489 3.101426-0.082012 15 8 0 2.234181 2.970998-0.039225 16 1 0 2.136083 3.939171-0.019872 17 7 0 2.253245 0.339268 0.388410 18 1 0 2.974739 1.041227 0.494778 19 6 0 1.013801 0.901432-0.148350 20 1 0 0.940071 0.669579-1.226774 21 6 0-0.221406 0.301178 0.563968 22 1 0 0.002430-0.757009 0.718046 23 1 0-0.323108 0.767119 1.551177 24 6 0-1.526092 0.444500-0.231347 25 1 0-1.749084 1.506819-0.378743 26 1 0-1.407361-0.020491-1.218832 27 6 0-2.690716-0.227713 0.496455 28 1 0-2.516277-1.306423 0.579530 29 1 0-2.799522 0.194115 1.504117 30 7 0-3.945146-0.015867-0.257373 31 1 0-3.938951 0.731105-0.941227 32 6 0-5.094138-0.653770-0.050270 33 7 0-6.129399-0.483273-0.893243 34 1 0-6.016394 0.005341-1.769038 35 1 0-7.061674-0.781211-0.647287 36 7 0-5.232919-1.485007 0.993255 37 1 0-4.532516-1.533878 1.717470 38 1 0-6.022773-2.108875 1.065836 Rotational constants (GHZ): 0.6957073 0.1641327 0.1378257 E[B3LYP/6-31+G(d,p)] = -854.875598213 a.u. Zero point energy = 863.9237 kj mol -1 E[PMP2/6-311++G(3df,2p)] = -853.2087449 a.u. E[CCSD(T)/6-31+G(d,p)] = -852.6021431 a.u. E[CCSD(T)/6-311++G(3df,2p)] = -853.4239334 a.u. S9

Table S3. B3LYP/6-31+G(d,p) optimized geometry of (AR + 2H) 2+ cation-radical 2. 1 7 0 5.359491-0.117260-0.005476 2 1 0 4.262570 1.347165 0.885911 3 1 0 6.210030-0.056780-0.556756 4 1 0 5.447285-0.908197 0.629247 5 6 0 4.163679-0.243543-0.859286 6 1 0 4.331267 0.442602-1.709883 7 6 0 3.919041-1.653514-1.414992 8 1 0 3.724359-2.364797-0.604236 9 1 0 3.074228-1.684586-2.114069 10 1 0 4.799096-1.994046-1.968426 11 6 0 3.018591 0.298650-0.029723 12 8 0 3.301640 1.417547 0.701060 13 6 0 0.091653-0.534217 1.029069 14 8 0-0.905642-1.199461 0.713336 15 8 0 0.918832-0.931583 1.999000 16 1 0 0.608791-1.785049 2.350800 17 7 0 1.726957 0.314596-0.555683 18 1 0 1.527642-0.469428-1.165703 19 6 0 0.593797 0.706257 0.301490 20 1 0 0.997556 1.401218 1.041797 21 6 0-0.489306 1.390776-0.542108 22 1 0 0.007935 2.194361-1.090704 23 1 0-0.843175 0.681020-1.300670 24 6 0-1.678818 1.956420 0.278290 25 1 0-1.610088 1.655897 1.331126 26 1 0-1.647270 3.049722 0.277642 27 6 0-3.056691 1.538215-0.249572 28 1 0-3.843850 2.024684 0.338941 29 1 0-3.166788 1.844405-1.298849 30 7 0-3.198068 0.078499-0.140380 31 1 0-2.342547-0.445158 0.112750 32 6 0-4.314350-0.613823-0.297882 33 7 0-4.325031-1.930767-0.006256 34 1 0-3.485008-2.373068 0.340884 35 1 0-5.065977-2.532505-0.332150 36 7 0-5.448580-0.031941-0.728981 37 1 0-5.462115 0.935963-1.009788 38 1 0-6.331521-0.518658-0.699313 Rotational constants (GHZ): 1.0060280 0.1792060 0.1699305 E[B3LYP/6-31+G(d,p)] = -854.887053805 a.u. Zero point energy = 863.872 kj mol -1 E[PMP2/6-311++G(3df,2p)] = -853.2191653 a.u. E[CCSD(T)/6-31+G(d,p)] = -852.6120901 a.u. E[CCSD(T)/6-311++G(3df,2p)] = -853.4344674 a.u. S10

Table S4. B3LYP/6-31+G(d,p) optimized geometry of (AR + 2H) 2+ cation-radical 3. 1 7 0 4.183217-2.694553-0.173306 2 6 0 4.059788-1.297926 0.405791 3 6 0 2.684753-0.832259-0.158005 4 8 0 2.111831-1.597888-0.952745 5 7 0 2.221978 0.344277 0.245476 6 1 0 4.152696-3.433618 0.531890 7 1 0 3.304762-2.736417-0.787639 8 6 0 0.962083 0.934292-0.233174 9 1 0 2.759348 0.946554 0.865681 10 6 0 1.125649 2.436193-0.007676 11 8 0 1.989352 2.907436 0.707606 12 8 0 0.215909 3.158535-0.665590 13 6 0-0.263333 0.336955 0.507991 14 6 0-1.616903 0.629134-0.154196 15 6 0-2.758883-0.095293 0.569654 16 1 0 4.006752-1.391614 1.493729 17 6 0 5.239692-0.419333-0.011304 18 1 0 0.868540 0.734863-1.305432 19 1 0 0.358509 4.100965-0.462493 20 1 0-0.251881 0.681600 1.549873 21 1 0-0.108858-0.747714 0.527014 22 1 0-1.808881 1.707896-0.169735 23 1 0-1.599931 0.295412-1.198624 24 1 0-2.781972 0.215411 1.631368 25 1 0-2.589861-1.175192 0.555734 26 1 0 5.024890-2.818546-0.740543 27 7 0-4.024758 0.146744-0.107484 28 6 0-5.156868-0.668790 0.207410 29 7 0-6.158742-0.600061-0.795128 30 7 0-4.855894-1.995566 0.633888 31 1 0-5.956752 0.054041-1.543213 32 1 0-7.104268-0.491533-0.448402 33 1 0-4.892789-2.127527 1.638269 34 1 0-5.457507-2.668931 0.168956 35 1 0-4.283641 1.128465-0.076400 36 1 0 5.299697-0.325285-1.100571 37 1 0 6.182096-0.822844 0.370889 38 1 0 5.125829 0.585624 0.402419 Rotational constants (GHZ): 0.6581455 0.1657598 0.1379489 E[B3LYP/6-31+G(d,p)] = -854.855669588 a.u. Zero point energy = 865.5521 kj mol -1 E[PMP2/6-311++G(3df,2p)] = -853.1900606 a.u. E[CCSD(T)/6-31+G(d,p)] = -852.5837665 a.u. E[CCSD(T)/6-311++G(3df,2p)] = -853.4041086 a.u. S11

Table S5. B3LYP/6-31+G(d,p) optimized geometry of TS(1 2) for side-chain rotation 1 7 0 4.835648-2.101518-0.380516 2 1 0 2.895094-2.403766-0.789282 3 1 0 5.498104-2.661586 0.147426 4 1 0 5.312366-1.749833-1.208699 5 6 0 4.296819-0.991994 0.431550 6 1 0 4.090460-1.422260 1.428779 7 6 0 5.249215 0.198477 0.601356 8 1 0 5.461120 0.670204-0.364991 9 1 0 4.838257 0.959837 1.274665 10 1 0 6.195681-0.135764 1.037344 11 6 0 2.969551-0.629670-0.209562 12 8 0 2.218127-1.721482-0.586722 13 6 0 0.599930 2.205610-0.104564 14 8 0-0.524891 2.667673-0.103473 15 8 0 1.699437 2.981207-0.016793 16 1 0 1.412095 3.909197 0.043062 17 7 0 2.196240 0.381876 0.395174 18 1 0 2.758025 1.203965 0.578102 19 6 0 0.924924 0.719057-0.246614 20 1 0 1.003518 0.548551-1.336669 21 6 0-0.231545-0.144908 0.303348 22 1 0 0.173338-1.145022 0.472064 23 1 0-0.540636 0.257838 1.275433 24 6 0-1.436542-0.219670-0.645632 25 1 0-1.728878 0.797220-0.925175 26 1 0-1.149300-0.728344-1.571703 27 6 0-2.645021-0.944558-0.014247 28 1 0-2.856530-1.885115-0.533104 29 1 0-2.445718-1.168055 1.041629 30 7 0-3.853606-0.095631-0.098997 31 1 0-3.695159 0.892915-0.254278 32 6 0-5.102104-0.493589 0.129017 33 7 0-6.134400 0.337543-0.106548 34 1 0-5.999877 1.215329-0.586190 35 1 0-7.056209 0.145478 0.256297 36 7 0-5.352738-1.732348 0.579561 37 1 0-4.607746-2.332459 0.899166 38 1 0-6.288762-2.109493 0.583395 Rotational constants (GHZ): 0.8286183 0.1594812 0.1371188 E[B3LYP/6-31+G(d,p)] = -854.871829122 a.u. Zero point energy = 863.9157 kj mol -1. S12

Table S6. B3LYP/6-31+G(d,p) optimized geometry of TS(N ε H ε ) for loss of H ε. 1 7 0 4.482324-2.482437-0.232957 2 6 0 4.190545-1.152195 0.433552 3 6 0 2.800983-0.785445-0.169175 4 8 0 2.329620-1.568824-1.013299 5 7 0 2.222258 0.328935 0.255452 6 1 0 4.535399-3.265721 0.420888 7 1 0 3.617937-2.579975-0.864617 8 6 0 0.937114 0.833771-0.254120 9 1 0 2.679990 0.950013 0.919789 10 6 0 0.977276 2.336877 0.020678 11 8 0 1.754868 2.840533 0.810061 12 8 0 0.069811 3.012546-0.683293 13 6 0-0.263874 0.127365 0.428089 14 6 0-1.615899 0.399757-0.239988 15 6 0-2.758985-0.381353 0.419315 16 1 0 4.092076-1.334061 1.507201 17 6 0 5.293642-0.132133 0.151501 18 1 0 0.896141 0.659103-1.333647 19 1 0 0.110079 3.953793-0.434113 20 1 0-0.286333 0.416002 1.487023 21 1 0-0.047836-0.947080 0.391373 22 1 0-1.869662 1.462495-0.198604 23 1 0-1.572960 0.125362-1.301081 24 1 0-2.771235-0.150887 1.499035 25 1 0-2.585062-1.464025 0.320709 26 1 0 5.336115-2.467396-0.795376 27 7 0-4.008697-0.004069-0.221988 28 6 0-5.077978-0.719869-0.021789 29 7 0-6.195335-0.488353-0.798280 30 7 0-5.195936-1.731199 0.909061 31 1 0-6.075334 0.282413-1.443110 32 1 0-7.092266-0.488042-0.327920 33 1 0-4.642821-1.679146 1.750426 34 1 0-6.069349-2.231063 0.986214 35 1 0-4.227202 1.558369 0.255149 36 1 0 5.398625 0.054475-0.922346 37 1 0 6.252117-0.470291 0.556353 38 1 0 5.057947 0.820841 0.631503 Rotational constants (GHZ): 0.7216884 0.1590369 0.1364322 E[B3LYP/6-31+G(d,p)] = -854.815152966 a.u. Zero point energy = 841.4689 kj mol -1 E[PMP2/6-311++G(3df,2p)] = -853.1546656 a.u. E[CCSD(T)/6-31+G(d,p)] = -852.539181 a.u. E[CCSD(T)/6-311++G(3df,2p)] = -853.3626076 a.u. S13

Table S7. B3LYP/6-31+G(d,p) optimized geometry of TS(N C α ).for N C α bond cleavage. 1 7 0 5.173930-0.242340 0.354299 2 1 0 4.266507 1.334953 0.807250 3 1 0 6.124199-0.329019 0.008849 4 1 0 5.034222-0.937920 1.083785 5 6 0 4.172718-0.363197-0.721437 6 1 0 4.647218 0.043042-1.626382 7 6 0 3.710906-1.796034-1.014993 8 1 0 3.208380-2.231596-0.145291 9 1 0 3.025406-1.840134-1.867908 10 1 0 4.575845-2.415623-1.266828 11 6 0 3.036753 0.596927-0.358963 12 8 0 3.356211 1.572448 0.491514 13 6 0 0.090856-0.559405 0.739619 14 8 0-0.864643-1.247377 0.272827 15 8 0 0.967271-1.129587 1.617735 16 1 0 0.647329-2.027058 1.803394 17 7 0 1.797180 0.570267-0.803017 18 1 0 1.603749-0.204819-1.430606 19 6 0 0.480144 0.773987 0.315695 20 1 0 1.006125 1.324778 1.093648 21 6 0-0.540279 1.606991-0.445368 22 1 0-0.011670 2.481328-0.832932 23 1 0-0.874232 1.043694-1.325394 24 6 0-1.765941 2.065191 0.398942 25 1 0-1.659187 1.744868 1.441813 26 1 0-1.815002 3.158206 0.418810 27 6 0-3.117155 1.564062-0.130267 28 1 0-3.923835 1.944007 0.508406 29 1 0-3.282030 1.936692-1.150722 30 7 0-3.136645 0.097972-0.126814 31 1 0-2.215620-0.395260-0.029040 32 6 0-4.200211-0.680469-0.192911 33 7 0-4.050440-2.008283 0.011331 34 1 0-3.118922-2.364789 0.188392 35 1 0-4.742376-2.661733-0.322787 36 7 0-5.433292-0.194494-0.439346 37 1 0-5.574089 0.783207-0.638621 38 1 0-6.254610-0.760869-0.291524 Rotational constants (GHZ): 1.0078633 0.1891761 0.1719082 E[B3LYP/6-31+G(d,p)] = -854.883468193 a.u. Zero point energy = 859.1245 kj mol -1 E[PMP2/6-311++G(3df,2p)] = -853.2145332 a.u. E[CCSD(T)/6-31+G(d,p)] = -852.6006225 a.u. E[CCSD(T)/6-311++G(3df,2p)] = -853.4233274 a.u. S14

Table S8. B3LYP/6-31+G(d,p) optimized geometry of TS(C δ N ε ) for loss of guanidine. 1 7 0 4.348379-2.627843-0.101902 2 6 0 4.137487-1.259672 0.515525 3 6 0 2.773354-0.840791-0.098072 4 8 0 2.195870-1.681711-0.820358 5 7 0 2.295978 0.361347 0.209393 6 1 0 4.468981-3.373472 0.586486 7 1 0 3.419762-2.737598-0.640490 8 6 0 1.015408 0.883724-0.274933 9 1 0 2.829736 1.018062 0.773832 10 6 0 1.146334 2.397954-0.170075 11 8 0 2.005432 2.948714 0.494364 12 8 0 0.210491 3.048215-0.870666 13 6 0-0.185319 0.316800 0.548997 14 6 0-1.565683 0.520728-0.108863 15 6 0-2.671400-0.158168 0.650760 16 1 0 4.016992-1.411771 1.594133 17 6 0 5.309032-0.320905 0.233897 18 1 0 0.889280 0.596032-1.323870 19 1 0 0.338679 4.005374-0.742290 20 1 0-0.162575 0.750158 1.555890 21 1 0-0.000767-0.757474 0.654420 22 1 0-1.775981 1.592396-0.202234 23 1 0-1.537166 0.119143-1.130882 24 1 0-2.940115 0.290532 1.608338 25 1 0-2.613050-1.243818 0.701928 26 1 0 5.136414-2.651468-0.753220 27 7 0-4.209302 0.058965-0.450508 28 6 0-5.272890-0.681420-0.139726 29 7 0-6.393347-0.261503 0.572832 30 7 0-5.201473-2.051958-0.356517 31 1 0-6.361974 0.685332 0.924403 32 1 0-6.772087-0.915084 1.252968 33 1 0-4.550442-2.298329-1.091458 34 1 0-6.093571-2.517837-0.470328 35 1 0-4.398169 1.046767-0.297077 36 1 0 5.442374-0.159507-0.840829 37 1 0 6.236879-0.715510 0.659271 38 1 0 5.132865 0.653763 0.696154 Rotational constants (GHZ): 0.6780148 0.1564884 0.1318351 E[B3LYP/6-31+G(d,p)] = -854.831242122 a.u. Zero point energy = 852.2488 kj mol -1 E[PMP2/6-311++G(3df,2p)] = -853.159875 a.u. E[CCSD(T)/6-31+G(d,p)] = a.u. E[CCSD(T)/6-311++G(3df,2p)] = a.u. S15

Table S9. B3LYP/6-31+G(d,p) optimized geometry of (AR + H) + by loss of H ε. 1 7 0 4.356936-2.552045-0.234601 2 6 0 4.110230-1.211946 0.430684 3 6 0 2.732119-0.801328-0.169679 4 8 0 2.235144-1.568555-1.013644 5 7 0 2.188065 0.329544 0.258003 6 1 0 4.382309-3.336131 0.419963 7 1 0 3.489824-2.620756-0.866576 8 6 0 0.915256 0.870030-0.246448 9 1 0 2.667453 0.936995 0.919377 10 6 0 1.001008 2.371911 0.020221 11 8 0 1.802161 2.858932 0.796395 12 8 0 0.102899 3.071158-0.674345 13 6 0-0.302876 0.200690 0.443491 14 6 0-1.647105 0.472788-0.241825 15 6 0-2.805245-0.282535 0.423521 16 1 0 4.008268-1.388949 1.504789 17 6 0 5.245206-0.228752 0.144457 18 1 0 0.863517 0.691761-1.324949 19 1 0 0.184019 4.012687-0.436594 20 1 0-0.327066 0.511162 1.496365 21 1 0-0.105194-0.877603 0.431579 22 1 0-1.884062 1.540348-0.238982 23 1 0-1.597346 0.166470-1.293902 24 1 0-2.864272 0.033769 1.482912 25 1 0-2.579188-1.364660 0.432525 26 1 0 5.211147-2.567091-0.796380 27 7 0-4.031818 0.004837-0.290523 28 6 0-5.085068-0.680906-0.011772 29 7 0-6.214310-0.567507-0.814471 30 7 0-5.189911-1.636356 0.985981 31 1 0-6.110786 0.153137-1.517377 32 1 0-7.108181-0.534446-0.340365 33 1 0-4.613183-1.538639 1.806482 34 1 0-6.071201-2.106932 1.125971 35 1 0 5.353106-0.046556-0.929841 36 1 0 6.193301-0.597674 0.546905 37 1 0 5.042006 0.731801 0.624238 Rotational constants (GHZ): 0.7063520 0.1615549 0.1379512 E[B3LYP/6-31+G(d,p)] = -854.313053573 a.u. Zero point energy = 836.2715 kj mol -1 E[PMP2/6-311++G(3df,2p)] = -852.661536 a.u. E[CCSD(T)/6-31+G(d,p)] = -852.0479059 a.u. E[CCSD(T)/6-311++G(3df,2p)] = -852.8680736 a.u. S16