Η μουσική των (Υπερ)Χορδών Αναστάσιος Χρ. Πέτκου Παν. Κρήτης
H σύγχρονη (αγοραία) αντίληψη για την δηµιουργία του Σύµπαντος (πιθανά εσφαλµένη..) E t Ενέργεια Χρόνος String Theory/M-Theory
H Ιστορία της Θεωρίας (Υπερ)Χορδών 1970 Γέννηση της Θεωρίας Χορδών (ΘΧ) 1971 Υπερσυµµετρία 1974 Πρόταση ότι η ΘΧ περιγράφει την Κβαντική Βαρύτητα, συνεπώς είναι µια ενοποιηµένη θεωρία των πάντων 1976-1984 Υπερβαρύτητα - Υπερχορδές 1991-1996 Ενοποίηση των ΘΧ - Μ-θεωρία? 1997-σήµερα Ολογραφία (αµφισβήτηση της ΘΧ ως θεωρίας των πάντων?)
Κυριότερα χαρακτηριστικά της Θεωρίας (Υπερ) Χορδών Περιλαµβάνει, και συνεπώς ενοποιεί, την βαρύτητα µαζί µε τις άλλες βασικές δυνάµεις (θεωρίες βαθµίδας) Προβλέπει την ύπαρξη Υπερσυµµετρίας Προβλέπει την ύπαρξη έξτρα διαστάσεων Εξηγεί το µυστήριο της έντροπίας των µελανών οπών Προσφέρει ελκυστικά Κοσµολογικά µοντέλα για τον Πληθωρισµό και την Μεγάλη Έκρηξη
Γέννηση της Θεωρίας Χορδών Σπιν E 2 M 2 = 1 α J Πολλές διαφορετικές χορδές για την πληθώρα των πειραµατικών δεδοµένων. Μη ικανοποιητικό... Τάση της Χορδής 1.3 GeV 2
X 3 1974: Οι Χορδές περιγράφουν την βαρύτητα Χωρόχρονος τ σ X 2 X M (τ, σ) X 1 Το σεντόνι που διαγράφει η χορδή Οι εξισώσεις που ικανοποιεί η χορδή είναι µια γενίκευση των γνωστών κυµατικών εξισώσεων Η κίνηση της χορδής αναλύεται σε άπειρο αριθµό αρµονικών.
Κβάντωση της Χορδής Κάθε αρµονική της χορδής δηµιουργεί ή καταστρέφει κβαντικές καταστάσεις = σωµατίδια. Στις θεωρίες (κλειστών) χορδών, βρίσκουµε πάντα ένα σωµατίδιο µε σπιν=2 και µηδενική µάζα. Είναι φυσικό να το ταυτοποιήσουµε µε το βαρυτόνιο - τον κβαντικό φορέα της βαρύτητας. Επίσης βρίσκουµε πάντα σωµατίδια µηδενικής µάζας µε σπιν=1. Αυτά είναι οι φορείς των ηλεκτρασθενών, και ισχυρών δυνάµεων.
Βρίσκουµε επίσης άπειρα σωµατίδια µε µάζες. M 2 1 α = l 2 s Τα σωµατίδια αυτά πρέπει να έχουν πολύ µεγάλη µάζα για να µην µπορούµε να τα δούµε. Άρα, µια φυσική τιµή για το µήκος των στοιχειωδών χορδών είναι το µήκος του Planck α l s 1.6 10 33 cm Τέλος, οι σωστά κβαντισµένες χορδές µπορούν να υπάρχουν µόνο σε 26 (µη υπερσυµµετρικές) και 10 (υπερσυµµετρικές) διαστάσεις. Συνεπώς, η ΘΧ ΠΡΟΒΛΕΠΕΙ τις διαστάσεις του χωρόχρονου!
ανακεφαλαιώνοντας... Η υπερσυµµετρία φαίνεται να είναι απαραίτητη για την µαθηµατική συνέπεια της ΘΧ, εποµένως αποτελεί άλλη µια πρόβλεψη της θεωρίας. Η Θεωρία Υπερχορδών προσφέρει µια ενοποιηµένη κβαντική περιγραφή όλων των γνωστών δυνάµεων, και προβλέπει τον αριθµό των χωροχρονικών διαστάσεων (=10).
Αναλυτικότερα µερικά από τα κύρια χαρακτηριστικά της Θεωρίας Υπερχορδών Κβαντική Βαρύτητα και Ενοποίηση των δυνάµεων Πληθωριστικές διαστάσεις Μελανές Οπές και Ολογραφία O χωρόχρονος Anti-de Sitter.
Κβαντική Βαρύτητα και Ενοποίηση των δυνάµεων Οι ηλεκτρασθενείς και ισχυρές δυνάµεις ενοποιούνται (δηλ. γίνονται το ίδιο ισχυρές και εποµένως πιθανόν αδιάκριτες µεταξύ τους) σε ενέργειες τις τάξης των 10 15 10 16 GeV H βαρύτητα, είναι πολύ ασθενής σε χαµηλές ενέργειες, αλλά φαίνεται να ενοποιήται µε τις άλλες δυνάµεις κοντά στη µάζα του Planck.
Πληθωριστικές διαστάσεις Η ύπαρξη πληθωριστικών διαστάσεων δεν επιρεάζει την παρατηρούµενη φυσική (π.χ. τις µάζες των γνωστών σωµατιδίων) εφόσον το µέγεθός των διαστάσεων αυτών είναι της τάξης µεγέθους της χορδής. Π.χ. οι κβαντικές στάθµες σε κουτί διάστασης είναι E 2 n n2 l 2 s Kaluza-Klein l s
Μελανές Οπές και Ολογραφία Τύπος των Bekenstein-Hawking για την εντροπία των µελανών οπών. S = 1 4G N A Όταν έχουµε ένα κβαντικό σύστηµα µε V R 3 µπορούµε να ρωτήσουµε πόσοι βαθµοί ελευθερίας χωράνε µέσα. Αν υπάρχει και βαρύτητα, θα πρέπει r s = 2M 2E < R ακτίνα Schwarzchild
Η θερµοδυναµική δίνει (νόµος Βolzmann) E V T 4 T < R 1 2 S V T 3 S < V 1 2 (A) 3 4 Άρα, οι µελανές οπές είναι τα πυκνότερα κβαντικά συστήµατα της φύσης. Ο αριθµός των κβαντικών τους καταστάσεων είναι ανάλογος της επιφάνειας τους και όχι του όγκου τους. ΟΛΟΓΡΑΦΙΑ
ΟΛΟΓΡΑΦΙΑ: Σε κβαντικά συστήµατα που περιέχουν την βαρύτητα, οι βαθµοί ελευθερίας ζουν στην επιφάνεια. Η ΘΧ δίνει µια πολύ καλή περιγραφή τέτοιων συστηµάτων µέσω του χωρόχρονου Anti-de Sitter.
ο χωρόχρονος Anti-de Sitter r r H 0 T H 0 το όριο του χωρόχρονου R 3 r 0 ορίζοντας r H 1 T H T H = 0
Oι βαθµοί ελευθερίας ζούνε στο όριο του χωρόχρονου. Έτσι εξηγείται ο τύπος των Bekenstein- Hawking. Μια µελανή οπή αντιστοιχεί σε κβαντική θεωρία πεδίου σε µη-µηδενική θερµοκρασία. ΕΚΠΛΗΞΗ! Οι µελανές οπές και η κβαντική βαρύτητα φαίνεται να περιγράφουν επίσης συστήµατα συµπυκνωµένης ύλης (π.χ. υπεραγωγούς) σε χαµηλές ενέργειες!! Δηλαδή, περιγράφουν ηλεκτρόνια, άτόµα He κτλ. ΠΟΙΑ ΕΙΝΑΙ ΤΕΛΙΚΑ ΤΑ ΒΑΣΙΚΑ ΔΟΜΙΚΑ ΣΥΣΤΑΤΙΚΑ ΤΟΥ ΥΛΙΚΟΥ ΜΑΣ ΚΟΣΜΟΥ??