45 4 Vol.45 No.4 2009 4 à 410 414 ² ACTA METALLURGICA SINICA Apr. 2009 pp.410 414 È Å ±Ë º Ç Î º ¾ Ï («Í ½ ØÑ, «100083) Ë Bridgman Û ¹ Ò Zr 58.5 Ti 14.3 Nb 5.2 Cu 6.1 Ni 4.9 Be 11.0 Í Æ. È È ß Ò, Ø Ð ÖÙ. Ê, Î ß Û»Ñ, ÈØÛ ¹ÆÒ Æ ÅÇ Ö Ý. Ë ² ß Å, ß 1.0 mm/s, ÔßÊ 1930 MPa, Ê 11.3%. ² Í³ÈÆ,, Û ¹, Ì ¼µ TB331, TG113.25 A É µ 0412 1961(2009)04 0410 05 SYNTHESIS OF PLASTIC Zr BASED BULK METALLIC GLASS WITH CRYSTAL PHASE BY DIRECTIONAL SOLIDIFICATION QIAO Junwei, ZHANG Yong, CHEN Guoliang State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 Correspondent: ZHANG Yong, professor, Tel: (010) 62334927, Fax: (010) 62333447, E-mail: drzhangy@skl.ustb.edu.cn Supported by National Basic Research Program of China (No.2007CB613903) and National Natural Science Foundation of China (No.50571018) Manuscript received 2008 10 15, in revised form 2008 12 03 ABSTRACT Plastic Zr 58.5 Ti 14.3 Nb 5.2 Cu 6.1 Ni 4.9 Be 11.0 bulk metallic glass matrix composites containing uniformly distributed dendrites in the glass matrix were synthesized by the Bridgman solidification methold. Through tailoring the withdrawal velocity, the volume fraction of dendrites with characteristic spanning length, as well as the mechanical properties of the samples can change. The characteristic spanning length of the individual dendrites roughly obeys linear relationship with the withdrawal velocity. The compressive ultimate strength and the fracture strain of the sample reached 1930 MPa and 11.3%, respectively, when the withdrawal velocity was 1.0 mm/s. KEY WORDS Zr based bulk metallic glass, composite, unidirectional solidification, mechanical property É ÑÕ Ú ÕÏ ¹ Õ ¹ ÕÕ Ý Ä ÒÛ ³ ¼ [1 5]., Ï É Ç Õ Å Ù Æ Đ, ² ÑÇ Õ Æ Ø Ê, µ Ø «Æ, ÆÖÇ«Æ ØÈ Đ, Ú Ó É ³. ¾Á, µ Æ [6 8] Ì * ÙÒÍ Ï Ä Î 2007CB613903 Đ ÍÐ Ð Î 50571018 Ð ¹ : 2008 10 15, ¹ : 2008 12 03 Ý :, Ï, 1982, Ú Ó¼ ÉǼ Ö ÉÞ, Ç ¼ Õ É ÎÉ»«Ó É. Á» ǻŠÉÞ«µ Ø, Å Ú Ø, ÆÖÆ. Ì», ÉÎ Þ²Ì ÏÌÐ Đ «Ó. ÏÌÐĐ Ð¼, Ù «¼ Á Ó, ÓÆ Ç ÇÇÅ, ÉÞÇ ÎÉ Ä [6]. Á, ÐĐ ÓÆ ³³Æ. ³ Ò± Bridgman Ü º ÓÆµ Î. ¹ ³ [9 12] ± Ü º µóæ α La
k4j r _g : v `,my OT=d T A"? z f V C $ A, [ m Dq A? q i. V C~z > IC~ = f Dq, JK Q V? f V C $ A, = a5901. Bridgman x b. f 0~, # f x, T 9sv>-< - u0~ < f"o. V0~<I o f C $ A l z :< V, l z fw M-\ P C $ A7. 6 {. Æ n k 0 < V C $ A f ew*?7 f 6 {. 411 [5] 8L! 9 H > 99.9% f Zr, Ti, Cu, Ni, Be? Nb dga, Y Zr58.5 Ti14.3Nb5.2Cu6.1Ni4.9Be11.0 f4 Æe, 9 ; H O H Ar H q 9 4 UC~ % u. Gn u W T C [ d 3 mm, Fd 1 mm f B2q, > k 3 10 3 Pa G< H Ar H,,#e k\} N fh 10 min G Æ x b.!. x f M W H 45 K/mm, > - < d 0.2, 0.5, 0.8, 1.0? 1.5 mm/s, 0~zp d Ga In Sn (IC~. x b.o fc~#fz k%9 Philips APD 10 X x + (XRD, CuKα ). 8 f Tg? N f Tx1 % 9 Perkin Elmer DSC 7 Æ x, e <Id 20 K/min. a1ef1-9 Qq (SEM) \ 4, #f #f f tp., # f F!O MTS 809,!W \4, F<Id 2 10 4 s 1., # F DG f D P? ) P % 9 Q q Æ 1-. 8L-(N=3 2.1 B'UR>I Y 1a dt 9 Bridgman x b.o f4 d Zr Ti Nb Cu Ni Be fc~ M. Y 1b d V > - < af #f f XRD i. - A, G = f i dk te= Qzf, 5 > Q 5 w* β Zr f, S$#f < V Q? β Zr ;z4. Y 2 d V,#f DSC zx, zx s"assf 8? v, )!a > zfoo. 1 B A >! * f 8 f T, N f T? f N H. - A, B > - < f N, N zmve, S z 4Ve. x b.f0~<i (R) -<q!+ 2 58.5 14.3 5.2 6.1 4.9 A 1 w a-n be B} L[ U =, ; { p+ " e h XRD Fig.1 Morphologies of the rod like Zr58.5 Ti14.3 Nb5.2 Cu6.1 Ni4.9 Be11.0 samples obtained by the Bridgman solidification with different withdrawal velocities (a) and XRD patterns of the samples (b) a x1 x [9 11] R = vgl (1)! q, v d./(xp* y <, G df M. - A, Of M )xfrlq, >-< JW, S 5f0 L g T x d e a 11.0 g T b c Exo heat flow, a.u. 1 0.2 mm/s b 0.5 c 0.8 d 1.0 e 1.5 500 600 700 800 Temperature, K A 2 U=,;{w a-nbeb} +"e DSC yw Fig.2 DSC curves of the fabricated samples ~<IJW, qwf0~<i.o Qz f 4. Y 3a d>-< d 0.2 mm/s afc~ t P SEM Y, K Y q - A L j O V Q, \{$ & <> tp $ Ef 0~ < I zvg l. O b.9 8 q, Nb di x β Zr f F : A{F : Zr \ Ti O fq 4. QK f Qq = u-5 I 0,? f Qb.4d VQ. of Nb C $ A a 1 e f 4 n a >; P f 9: ) P β Zr 4 ix; F) P?VQ
412 ß ¼ 45 Spanning length, m 350 300 250 200 (c) Experimental data Linear fitting of data 0.2 0.4 0.6 0.8 1.0 1.2 1.4 v, mm/s 3 ß 0.2 1.5 mm/s ¹ Ð Ç SEM Ð Í ßÔÉ ²Á ß Fig.3 SEM images of the longitudinal sections of the samples obtained with withdrawal velocities of 0.2 mm/s (a) and 1.5 mm/s (b), and the dependence of spanning length of individual dendrites on withdrawal velocity (c) É ¹ Ã. 3a Õ Æ ¾ Þ β Zr, ÞÁÓ. Á, ÄÆ Ù ± ¹ ½¹, ² ¼ Ç Õ È ± ÇÇ«[13]. 3b ¹ 1.5 mm/s ÅØÈ SEM, 3a Þ, ÉË. Ì», Ï ± µâ Ë Â º. Hofmann [14] «º Õ Ï ( 3a Õ ). ¹ 0.2 mm/s Ü º Õ Ï À µm. 3c Ü º Î ¹ Õ Õ É. à 3c, ¹ ÉÇÇÜ ¼Ò, Ë Bridgman Ü º ¹ Ú Õ É É. Á, Î ¹ м Á Î, Ç º ÎÉ Ð Þ. ¾ Zr 58.5 Ti 14.3 Nb 5.2 Cu 6.1 Ni 4.9 Be 11.0 Õ ÎÉ Ô«Vitreloy 1 Î, É ¹ÄÂ Ì DSC ÎÉ Æ Vitreloy 1 Æ Þ [13]. ¹ 0.2, 0.5, 0.8, 1.0 1.5 mm/s Õ ÞÉ 58%, 52%, 49%, 46% 45%. 2.2 à ½ÂÀ Þ Î, Ç Å Ð Þ ºÖº ß, ÎÉ Ù Ø, Ç Õ ÉÞ «, Ë Éº Ø, Ë É Ê, µ Ø Ú. ¾ Ø ÕÈ É ¹ «Æ, ÆÖÞ Ù Ú Ø Ç, Ú Ø ², à Ë. Ü º ³ ÞÜ 4, à ¹, ÞÜÞ Ë ½ ³ Engineering stress, MPa 2000 1600 1200 800 0.2 mm/s 1.5 mm/s 0.5 mm/s 0.8 mm/s 1.0 mm/s 0 2 4 6 8 10 12 14 Engineering strain, % 4 Í ß µ Ô ² ÝÛ Fig.4 Compressive engineering stress strain curves of the samples obtained with different withdrawal velocities
4 Ö : ÚĐ Ñ ÇÌ Ì 413 Æ. Bridgman Ü º ß Õ σ y, ß ε y, Æ Õ σ max Đ ε f ³ 1. Õ Î, ÆÚ ²Đ. 5 Ü º Đ ¹ ÆÜ±, Û 1 ¹ ¹ 1.0 mm/s, Đ Õ Ù ÆÏÆ, ÙĐ ±Î Ë ÆÏ, 11.3%. Hays [6] Ì ÏÌÐĐ 8% Đ Æ, ËÓÆÊÐ À Bridgman Ü º ¹Ì ¹ Ú, ¹ ÎÉ É É Þº Ù Æ. µ º, Õ É É Ñ ÆØÞ¼ [15,16]. Lee [16] Ç Î Õ Ù É Û ÇÇ Ü, Ù Ñ 12 Fracture strain, % 11 10 9 8 7 6 5 4 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Withdrawal velocity, mm/s 5 Í Ô Fig.5 Dependence of compressive fracture strain of samples on withdrawal velocity ÕÏ ß. ¾Á, Þ É ² Ü µ. ³ Õ Ï Î º ±Ë ß, ¹ Õ ÕÄÏ, ÕÏ, Ø»ÃÕµ Õ,»«, ÆÖÊ ÕÉĐ ; ¹ Õ Õ Ó, Î Ø» Ö, Ê ÆÉĐ. ¾Á, Ç ³ ¹ Õ ½ É, ¹ «Ø, Ç ²ÆÏ Û Õ Ù Đ ÆÏÆ. 6 Đ Đ µè SEM. 6a ¹ 0.2 mm/s Đ Ä, Ù Ô«Â ; Đ µè Å 6b, Đ Ø ĐÈ µüô ( Õ ), ÑÕ Đ Þ. ¹ 0.8 mm/s Đ Å 6c, Ô«Â, Ç Ë Ã Ê, Ã Ê Ç Đ Ó Ø Ã Å¾ ÕÏ, ² µ Ù [17] ; Đ µè Ù «Ø, Ë ĐÈ, Ë ĐÈ Æ, 6d. ¹ 1.0 mm/s Đ 6e, Â Ã Ê ; 6f ¹ Õ Đ µè, Ã Õ ¹, Ë ß Ø Ä Çµ È, ĐÈ À 45, À 200 µm. ß Ø Â Ø ¹ Ú ½¹, 6f Õ, µè Ñ Ø Þ. Đ Ë Đ µè Å Þ µð. 1 Bridgman Û ¹ Ð ² Table 1 Termodynamic parameters and mechanical properties of the samples fabricated at different withdrawal velocities v, mm/s T g, K T x1, K H x, J/g σ y, MPa ε y, % σ max, MPa ε f, % 0.2 634 665 26.4 1330 1.6 1810 4.2 0.5 626 660 30.6 1360 1.7 1880 7.7 0.8 628 661 32.9 1210 1.9 1740 9.4 1.0 632 661 34.6 1350 1.8 1930 11.3 1.5 615 652 34.7 1290 1.9 1820 7.4 Note: T g the glass transition temperature, T x1 onset crystallization temperature, H x integrated heat release of crystallization, σ y yielding strength, ε y yielding strain, σ max maximal strength, ε f fracture strain
414 ß ¼ 45 6 Í ß Ç SEM Ð Fig.6 SEM images of fracture surface (a, c, e) and their side images near surface (b, d, f) of the samples obtained with the withdrawal velocities of 0.2 mm/s (a, b), 0.8 mm/s (c, d) and 1.0 mm/s (the arrows in Fig.6 b, d and f denote shear bands and the arrows in Fig.6 c and e denote sliding traces 3 ¹ ± Bridgman Ü º«µÓÆ Zr 58.5 Ti 14.3 Nb 5.2 Cu 6.1 Ni 4.9 Be 11.0 É. Þ ¹ É ¹Ì Ú ¹ Ó, Ä ²Đ Î È. ¹ 1.0 mm/s, Đ Õ Ë 1930 MPa, Đ Ë 11.3%, ÙÑĐ Å Þ.» [1] Peker A, Johnson W L. Appl Phys Lett, 1993; 63: 2342 [2] Inoue A, Zhang T. Mater Trans JIM, 1996; 37: 185 [3] Bian Z, Chen G L, He G, Hui X D. Mater Sci Eng, 2001; A316: 135 [4] Liu Y H, Wang G, Wang R J, Zhao D Q, Pan M X, Wang W H. Science, 2007; 315: 1385 [5] Wang G Y, Liaw P K, Yokoyama Y, Inoue A, Liu C T. Mater Sci Eng, 2008; A494: 314 [6] Hays C C, Kim C P, Johnson W L. Phys Rev Lett, 2000; 84: 2901 [7] Fan C, Ott R T, Hufnagel T C. Appl Phys Lett, 2002; 81: 1020 [8] Fan C, Li H Q, Kecskes L J, Tao K X, Choo H, Liaw P K, Liu C T. Phys Rev Lett, 2006; 96: 145506 [9] Tan H, Zhang Y, Li Y. Intermetallics, 2002; 10: 1203 [10] Tan H, Zhang Y, Ma D, Feng Y P, Li Y. Acta Mater, 2003; 51: 4551 [11] Tan H, Zhang Y, Hu X, Feng Y P, Li Y. Mater Sci Eng, 2004; A375 377: 407 [12] Zhang Y, Xu W, Tan H, Li Y. Acta Mater, 2005; 53: 2607 [13] Sun G Y, Chen G, Chen G L. Acta Metall Sin, 2006; 42: 331 (, ½, ½. о Å, 2006; 42: 331) [14] Hofmann D C, Suh J Y, Wiest A, Duan G, Lind M L, Demetriou M D, Johnson W L. Nature, 2008; 451: 1085 [15] Fan C, Li C F, Inoue A. Phys Rev, 2000; 61B: R3761 [16] Lee M L, Li Y, Schuh C A. Acta Mater, 2004; 52: 4121 [17] Song S X, Bei H, Wadsworth J, Nieh T G. Intermetalics, 2008; 16: 813