SYNTHESIS OF PLASTIC Zr BASED BULK METALLIC GLASS WITH CRYSTAL PHASE BY DIRECTIONAL SOLIDIFICATION

Σχετικά έγγραφα
RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti 45Al 8Nb ALLOY



Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

STUDY ON CYCLIC OXIDATION RESISTANCE OF HIGH NIOBIUM CONTAINING TiAl BASE ALLOY WITH ERBIUM

NUMERICAL SIMULATION OF KEYHOLE SHAPE AND TRANSFORMATION FROM PARTIAL TO OPEN STATES IN PLASMA ARC WELDING

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

2011 Đ 3 Ñ ACTA METALLURGICA SINICA Mar pp

CORROSION BEHAVIOR OF X70 PIPELINE STEEL IN SIMULATED KU ERLE SOIL SOLUTION WITH CO 2

EFFECT OF HAFNIUM CONTENT ON MORPHOLOGY EVOLUTION OF γ PRECIPITATES IN P/M Ni BASED SUPERALLOY

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

MICROSTRUCTURE EVOLUTION OF HYPEREUTEC- TOID STEELS DURING WARM DEFORMATION II. Cementite Spheroidization and Effects of Al

CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS I. Experimental Result

INFLUENCES OF PHASE PRECIPITATIONS OF TERNARY β Ti Mo Zr(Sn) ALLOYS ON YOUNG S MODULUS AND MECHANICAL PROPERTIES

THE MICRO FABRICATING PROCESS AND ELECTRO- MAGNETIC PROPERTIES OF TWO KINDS OF Fe POWDERS WITH DIFFERENT GRAIN SIZES AND INTERNAL STRAINS

EFFECTS OF TEMPERATURE GRADIENT ON LAMEL- LAR ORIENTATIONS OF DIRECTIONAL SOLIDIFIED TiAl BASED ALLOY

EFFECT OF HIGH MAGNETIC FIELD ON THE TRANSI- TION BEHAVIOR OF Cu RICH PARTICLES IN Cu 80%Pb HYPERMONOTECTIC ALLOY

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

FRACTURE TOUGHNESS OF WELDED JOINTS OF X100 HIGH STRENGTH PIPELINE STEEL

UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库

P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É.

1-6 Ð Ï Te (mass%) 0% 0.3% 0.5% 0.8% 1.0% 2.0% 2 Î 1 6

FRICTION AND WEAR PROPERTIES OF SURFACE PLASMA Cr W ALLOYING LAYER OF γ TiAl ALLOY

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Delta Inconel 718 δ» ¼

PHOTOCATALYTIC PROPERTIES OF TiO 2 THIN FILMS PREPARED BY MICROARC OXIDATION AND DOPING ELECTROLYTES

Š Ÿ Š Ÿ Ÿ ˆ Œ ˆŠ -280

Preparation of Hydroxyapatite Coatings on Enamel by Electrochemical Technique

ØSrÚCa Mg 12Zn 4Al 0.3MnÜ

A NEW ONE PARAMETER KINETICS MODEL OF DYNAMIC RECRYSTALLIZATION AND GRAIN SIZE PREDICATION

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä616 Š ˆŒ CMS LHC

P ²ÒÏ,.. μ μ Š ˆ ˆ Ÿ ˆ

Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή

EFFECT OF WELDING PROCESSING PARAMETERS ON POROSITY FORMATION OF MILD STEEL TREATED BY CO 2 LASER DEEP PENETRATION WELDING

MICROSTRUCTURE AND MECHANICAL PROPERTIES OF 1500 MPa GRADE ULTRA HIGH STRENGTH LOW ALLOY STEEL

AN INVESTIGATION ON THE CREEP BEHAVIOR OF PURE Mg

49 Ö 6 Đ Vol.49 No ACTA METALLURGICA SINICA Jun pp

M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1

EFFECTS OF Al Al 4 C 3 REFINER AND ULTRASONIC FIELD ON MICROSTRUCTURES OF PURE Mg

Gro wth Properties of Typical Water Bloom Algae in Reclaimed Water

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

PACS: Pj, Gg

P ,.. ³,. Š. ³. ˆ ˆŸ Œˆ ˆŸ ˆ ˆ ˆ Š ˆ 9 3 ˆ Œ NiÄNb. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö. Õ³ Ó, μ Ö

EFFECT OF LOADING MODES ON MECHANICAL PROPERTY AND STRAIN INDUCED MARTENSITE TRANSFORMATION OF AUSTENITIC STAINLESS STEELS

Blowup of regular solutions for radial relativistic Euler equations with damping

CuS * CuS. THz. CuS. THz-TDS. CuS. 1 THz = 33 cm - 1. THz. PACS Ci Bd. CuS. THz. THz. CuS. CuS. THz. http / / wulixb. iphy. ac.

2 SFI

Ó³ Ÿ º 3[120] Particles and Nuclei, Letters No. 3[120]

Ανώτερα Μαθηματικά ΙI

EXPERIMENTAL RESEARCH ON MELTING SURFACE BEHAVIOR IN MOLD UNDER COMPOUND MAGNETIC FIELD

MICROSTRUCTURE STABILITY IN A FULLY LAMELLAR HIGH Nb TiAl ALLOY AFTER LONG TERM THERMAL CYCLING

48 12 Ö Vol.48 No ACTA METALLURGICA SINICA Dec pp Î µ TG142.1, Á A Ì µ (2012)

DISCONTINUOUS YIELDING BEHAVIOR OF β PHASE CONTAINING TiAl ALLOY DURING HIGH TEMPERATURE DEFORMATION PROCESS

v w = v = pr w v = v cos(v,w) = v w

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

Ó³ Ÿ , º 7(163).. 737Ä741 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. ² Ì μ,.. Œ ± μ,.. Œ ÉÕÏ ±,.. Œμ μ μ,. Œ. Ò, Œ.. ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

P ƒ Ê Î 1, 2,.. ƒê μ 1, 3,. ÉÓ±μ 2, O.M.ˆ μ 1,.. Œ É μë μ 1,.. μ μ 1,. ƒ. Ê±μ ± 1,.. ³ 1,.. ±Ê Éμ 1. ˆ ˆ ˆ ˆ Š ˆ Si- ˆ SiC- Š Š ˆ

Stress Relaxation Test and Constitutive Equation of Saturated Soft Soil

Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte

P Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ. ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25

BEHAVIOUR AND MECHANISM OF STRAIN HARDEN- ING FOR DUAL PHASE STEEL DP1180 UNDER HIGH STRAIN RATE DEFORMATION

STRUCTURE AND MAGNETIC BEHAVIOR OF Zn 1 x Co x O CRYSTAL POWDERS PREPARED BY SOL GEL TECHNIQUE

MICROSEGREGATION OF SOLUTE ELEMENTS IN SOLIDIFYING MUSHY ZONE OF STEEL AND ITS EFFECT ON LONGITUDINAL SURFACE CRACKS OF CONTINUOUS CASTING STRAND

3D PHASE FIELD SIMULATION OF MECHATRONIC COUPLE FOR PZT FERROELECTRIC CERAMICS

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ó³ Ÿ , º 4(181).. 501Ä510

2 PbO 2. Pb 3 O 4 Sn. Ti/SnO 2 -Sb 2 O 4 -CF/PbO x SnO 2 -Sb PbO 2. Sn-Sb 1:1. 1 h. Sn:Sb=10:1. PbO 2 - CeO 2 PbO 2. [8] SnO 2 +Sb 2 O 4 _

AN RFID INDOOR LOCATION ALGORITHM BASED ON FUZZY NEURAL NETWORK MODEL. J. Sys. Sci. & Math. Scis. 34(12) (2014, 12),

Ó³ Ÿ , º 7(205) Ä1486 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ³ μ 1, ƒ. μ μë,. μ,. ŠÊ² ±μ,. Œ ² μ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

P ² μ Ê ² ƒ μ²μ Ö μë ± . Œ Ò, μ Ö. 1 Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê 2 É μ Ò É Ì μ²μ, Ê 3 ˆ É ÉÊÉ Ÿ±ÊÉ μ ²³ Š ( ),

EFFECTS OF TEMPERING TEMPERATURE ON THE IMPACT TOUGHNESS OF STEEL 42CrMo

SYNTHESIS KINETICS OF (Y, Gd) 2 O 3 Eu 3+ NANO POWDERS DURING PROCESS OF PREPARATION

Ó³ Ÿ , º 4Ä5(174Ä175).. 629Ä634 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ,.. μ, Š.. ±μ. Î ± É ÉÊÉ ³..., Œμ ±

p din,j = p tot,j p stat = ρ 2 v2 j,

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Supporting Information

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.

Š Šˆ ATLAS: ˆ ˆŸ ˆ Šˆ, Œ ˆ Œ ˆ.. ƒê ±μ,. ƒ ² Ï ², ƒ.. Š ± ²,. Œ. Ò,.. ŒÖ²±μ ±,.. Ï Ìμ μ,.. Ê ±μ Î,.. ±μ,. Œ. μ

Rapid determination of soluble reactive silicate in seawater by flow injection analysis with spectrophotometric detection and its application

Approximation Expressions for the Temperature Integral

Ó³ Ÿ , º 7(163).. 855Ä862 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ƒ. ² ͱ 1,.. μ μ Íμ,.. μ²ö,.. ƒ² μ,.. ² É,.. ³ μ μ, ƒ.. Š ³ÒÏ,.. Œμ μ μ,. Œ.

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

P μ,. Œμ α 1,. ²μ ± 1,.. ϱ Î, Ÿ. Ê Í± 2 Œˆ ˆ Œ Š Ÿ Š Ÿ ˆ ˆŒ ˆˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É

(organic light emitting

Im{z} 3π 4 π 4. Re{z}

Ó³ Ÿ , º 5(147).. 777Ä786. Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ. ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

ˆ ˆŸ ˆ ˆŸ ˆ ˆŒ ˆˆ Ÿ Œˆ 10 B

ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ

Ó³ Ÿ , º 7(163).. 798Ä802 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

Ó³ Ÿ , º 7(156).. 62Ä69. Š Œ œ ƒˆˆ ˆ ˆŠ. .. ŠÊ²Ö μ 1,. ƒ. ²ÓÖ μ 2. μ ± Ê É É Ê Ò μ μ, Œμ ±

P ˆŸ ˆ Œ Œ ˆ Šˆ. Š ˆ œ ˆ -2Œ

Quantitative chemical analyses of rocks with X-ray fluorescence analyzer: major and trace elements in ultrabasic rocks

P Î,.. Š ²³Ò±μ, Œ.. Œ ϱ,.. ʳ ˆ ˆ ˆ ˆŸ ˆŠ Š Š ˆ Ÿ -200

Œ.. ² μ,.. Œ ²μ, ƒ.. μ ±μ,. Ô Ô ², Œ.. ƒê Éμ, Œ.. Œ ² μ *

ƒ Š ˆ Šˆ Š Œˆ Šˆ Š ˆŒ PAMELA ˆ AMS-02

WAFER LEVEL ELECTRODEPOSION OF Fe Ni NOVEL UBM FILMS

Ó³ Ÿ , º 4Ä5(174Ä175).. 682Ä688 ˆ ˆŠ ˆ ˆŠ Š ˆ

Transcript:

45 4 Vol.45 No.4 2009 4 à 410 414 ² ACTA METALLURGICA SINICA Apr. 2009 pp.410 414 È Å ±Ë º Ç Î º ¾ Ï («Í ½ ØÑ, «100083) Ë Bridgman Û ¹ Ò Zr 58.5 Ti 14.3 Nb 5.2 Cu 6.1 Ni 4.9 Be 11.0 Í Æ. È È ß Ò, Ø Ð ÖÙ. Ê, Î ß Û»Ñ, ÈØÛ ¹ÆÒ Æ ÅÇ Ö Ý. Ë ² ß Å, ß 1.0 mm/s, ÔßÊ 1930 MPa, Ê 11.3%. ² Í³ÈÆ,, Û ¹, Ì ¼µ TB331, TG113.25 A É µ 0412 1961(2009)04 0410 05 SYNTHESIS OF PLASTIC Zr BASED BULK METALLIC GLASS WITH CRYSTAL PHASE BY DIRECTIONAL SOLIDIFICATION QIAO Junwei, ZHANG Yong, CHEN Guoliang State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 Correspondent: ZHANG Yong, professor, Tel: (010) 62334927, Fax: (010) 62333447, E-mail: drzhangy@skl.ustb.edu.cn Supported by National Basic Research Program of China (No.2007CB613903) and National Natural Science Foundation of China (No.50571018) Manuscript received 2008 10 15, in revised form 2008 12 03 ABSTRACT Plastic Zr 58.5 Ti 14.3 Nb 5.2 Cu 6.1 Ni 4.9 Be 11.0 bulk metallic glass matrix composites containing uniformly distributed dendrites in the glass matrix were synthesized by the Bridgman solidification methold. Through tailoring the withdrawal velocity, the volume fraction of dendrites with characteristic spanning length, as well as the mechanical properties of the samples can change. The characteristic spanning length of the individual dendrites roughly obeys linear relationship with the withdrawal velocity. The compressive ultimate strength and the fracture strain of the sample reached 1930 MPa and 11.3%, respectively, when the withdrawal velocity was 1.0 mm/s. KEY WORDS Zr based bulk metallic glass, composite, unidirectional solidification, mechanical property É ÑÕ Ú ÕÏ ¹ Õ ¹ ÕÕ Ý Ä ÒÛ ³ ¼ [1 5]., Ï É Ç Õ Å Ù Æ Đ, ² ÑÇ Õ Æ Ø Ê, µ Ø «Æ, ÆÖÇ«Æ ØÈ Đ, Ú Ó É ³. ¾Á, µ Æ [6 8] Ì * ÙÒÍ Ï Ä Î 2007CB613903 Đ ÍÐ Ð Î 50571018 Ð ¹ : 2008 10 15, ¹ : 2008 12 03 Ý :, Ï, 1982, Ú Ó¼ ÉǼ Ö ÉÞ, Ç ¼ Õ É ÎÉ»«Ó É. Á» ǻŠÉÞ«µ Ø, Å Ú Ø, ÆÖÆ. Ì», ÉÎ Þ²Ì ÏÌÐ Đ «Ó. ÏÌÐĐ Ð¼, Ù «¼ Á Ó, ÓÆ Ç ÇÇÅ, ÉÞÇ ÎÉ Ä [6]. Á, ÐĐ ÓÆ ³³Æ. ³ Ò± Bridgman Ü º ÓÆµ Î. ¹ ³ [9 12] ± Ü º µóæ α La

k4j r _g : v `,my OT=d T A"? z f V C $ A, [ m Dq A? q i. V C~z > IC~ = f Dq, JK Q V? f V C $ A, = a5901. Bridgman x b. f 0~, # f x, T 9sv>-< - u0~ < f"o. V0~<I o f C $ A l z :< V, l z fw M-\ P C $ A7. 6 {. Æ n k 0 < V C $ A f ew*?7 f 6 {. 411 [5] 8L! 9 H > 99.9% f Zr, Ti, Cu, Ni, Be? Nb dga, Y Zr58.5 Ti14.3Nb5.2Cu6.1Ni4.9Be11.0 f4 Æe, 9 ; H O H Ar H q 9 4 UC~ % u. Gn u W T C [ d 3 mm, Fd 1 mm f B2q, > k 3 10 3 Pa G< H Ar H,,#e k\} N fh 10 min G Æ x b.!. x f M W H 45 K/mm, > - < d 0.2, 0.5, 0.8, 1.0? 1.5 mm/s, 0~zp d Ga In Sn (IC~. x b.o fc~#fz k%9 Philips APD 10 X x + (XRD, CuKα ). 8 f Tg? N f Tx1 % 9 Perkin Elmer DSC 7 Æ x, e <Id 20 K/min. a1ef1-9 Qq (SEM) \ 4, #f #f f tp., # f F!O MTS 809,!W \4, F<Id 2 10 4 s 1., # F DG f D P? ) P % 9 Q q Æ 1-. 8L-(N=3 2.1 B'UR>I Y 1a dt 9 Bridgman x b.o f4 d Zr Ti Nb Cu Ni Be fc~ M. Y 1b d V > - < af #f f XRD i. - A, G = f i dk te= Qzf, 5 > Q 5 w* β Zr f, S$#f < V Q? β Zr ;z4. Y 2 d V,#f DSC zx, zx s"assf 8? v, )!a > zfoo. 1 B A >! * f 8 f T, N f T? f N H. - A, B > - < f N, N zmve, S z 4Ve. x b.f0~<i (R) -<q!+ 2 58.5 14.3 5.2 6.1 4.9 A 1 w a-n be B} L[ U =, ; { p+ " e h XRD Fig.1 Morphologies of the rod like Zr58.5 Ti14.3 Nb5.2 Cu6.1 Ni4.9 Be11.0 samples obtained by the Bridgman solidification with different withdrawal velocities (a) and XRD patterns of the samples (b) a x1 x [9 11] R = vgl (1)! q, v d./(xp* y <, G df M. - A, Of M )xfrlq, >-< JW, S 5f0 L g T x d e a 11.0 g T b c Exo heat flow, a.u. 1 0.2 mm/s b 0.5 c 0.8 d 1.0 e 1.5 500 600 700 800 Temperature, K A 2 U=,;{w a-nbeb} +"e DSC yw Fig.2 DSC curves of the fabricated samples ~<IJW, qwf0~<i.o Qz f 4. Y 3a d>-< d 0.2 mm/s afc~ t P SEM Y, K Y q - A L j O V Q, \{$ & <> tp $ Ef 0~ < I zvg l. O b.9 8 q, Nb di x β Zr f F : A{F : Zr \ Ti O fq 4. QK f Qq = u-5 I 0,? f Qb.4d VQ. of Nb C $ A a 1 e f 4 n a >; P f 9: ) P β Zr 4 ix; F) P?VQ

412 ß ¼ 45 Spanning length, m 350 300 250 200 (c) Experimental data Linear fitting of data 0.2 0.4 0.6 0.8 1.0 1.2 1.4 v, mm/s 3 ß 0.2 1.5 mm/s ¹ Ð Ç SEM Ð Í ßÔÉ ²Á ß Fig.3 SEM images of the longitudinal sections of the samples obtained with withdrawal velocities of 0.2 mm/s (a) and 1.5 mm/s (b), and the dependence of spanning length of individual dendrites on withdrawal velocity (c) É ¹ Ã. 3a Õ Æ ¾ Þ β Zr, ÞÁÓ. Á, ÄÆ Ù ± ¹ ½¹, ² ¼ Ç Õ È ± ÇÇ«[13]. 3b ¹ 1.5 mm/s ÅØÈ SEM, 3a Þ, ÉË. Ì», Ï ± µâ Ë Â º. Hofmann [14] «º Õ Ï ( 3a Õ ). ¹ 0.2 mm/s Ü º Õ Ï À µm. 3c Ü º Î ¹ Õ Õ É. à 3c, ¹ ÉÇÇÜ ¼Ò, Ë Bridgman Ü º ¹ Ú Õ É É. Á, Î ¹ м Á Î, Ç º ÎÉ Ð Þ. ¾ Zr 58.5 Ti 14.3 Nb 5.2 Cu 6.1 Ni 4.9 Be 11.0 Õ ÎÉ Ô«Vitreloy 1 Î, É ¹ÄÂ Ì DSC ÎÉ Æ Vitreloy 1 Æ Þ [13]. ¹ 0.2, 0.5, 0.8, 1.0 1.5 mm/s Õ ÞÉ 58%, 52%, 49%, 46% 45%. 2.2 à ½ÂÀ Þ Î, Ç Å Ð Þ ºÖº ß, ÎÉ Ù Ø, Ç Õ ÉÞ «, Ë Éº Ø, Ë É Ê, µ Ø Ú. ¾ Ø ÕÈ É ¹ «Æ, ÆÖÞ Ù Ú Ø Ç, Ú Ø ², à Ë. Ü º ³ ÞÜ 4, à ¹, ÞÜÞ Ë ½ ³ Engineering stress, MPa 2000 1600 1200 800 0.2 mm/s 1.5 mm/s 0.5 mm/s 0.8 mm/s 1.0 mm/s 0 2 4 6 8 10 12 14 Engineering strain, % 4 Í ß µ Ô ² ÝÛ Fig.4 Compressive engineering stress strain curves of the samples obtained with different withdrawal velocities

4 Ö : ÚĐ Ñ ÇÌ Ì 413 Æ. Bridgman Ü º ß Õ σ y, ß ε y, Æ Õ σ max Đ ε f ³ 1. Õ Î, ÆÚ ²Đ. 5 Ü º Đ ¹ ÆÜ±, Û 1 ¹ ¹ 1.0 mm/s, Đ Õ Ù ÆÏÆ, ÙĐ ±Î Ë ÆÏ, 11.3%. Hays [6] Ì ÏÌÐĐ 8% Đ Æ, ËÓÆÊÐ À Bridgman Ü º ¹Ì ¹ Ú, ¹ ÎÉ É É Þº Ù Æ. µ º, Õ É É Ñ ÆØÞ¼ [15,16]. Lee [16] Ç Î Õ Ù É Û ÇÇ Ü, Ù Ñ 12 Fracture strain, % 11 10 9 8 7 6 5 4 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Withdrawal velocity, mm/s 5 Í Ô Fig.5 Dependence of compressive fracture strain of samples on withdrawal velocity ÕÏ ß. ¾Á, Þ É ² Ü µ. ³ Õ Ï Î º ±Ë ß, ¹ Õ ÕÄÏ, ÕÏ, Ø»ÃÕµ Õ,»«, ÆÖÊ ÕÉĐ ; ¹ Õ Õ Ó, Î Ø» Ö, Ê ÆÉĐ. ¾Á, Ç ³ ¹ Õ ½ É, ¹ «Ø, Ç ²ÆÏ Û Õ Ù Đ ÆÏÆ. 6 Đ Đ µè SEM. 6a ¹ 0.2 mm/s Đ Ä, Ù Ô«Â ; Đ µè Å 6b, Đ Ø ĐÈ µüô ( Õ ), ÑÕ Đ Þ. ¹ 0.8 mm/s Đ Å 6c, Ô«Â, Ç Ë Ã Ê, Ã Ê Ç Đ Ó Ø Ã Å¾ ÕÏ, ² µ Ù [17] ; Đ µè Ù «Ø, Ë ĐÈ, Ë ĐÈ Æ, 6d. ¹ 1.0 mm/s Đ 6e, Â Ã Ê ; 6f ¹ Õ Đ µè, Ã Õ ¹, Ë ß Ø Ä Çµ È, ĐÈ À 45, À 200 µm. ß Ø Â Ø ¹ Ú ½¹, 6f Õ, µè Ñ Ø Þ. Đ Ë Đ µè Å Þ µð. 1 Bridgman Û ¹ Ð ² Table 1 Termodynamic parameters and mechanical properties of the samples fabricated at different withdrawal velocities v, mm/s T g, K T x1, K H x, J/g σ y, MPa ε y, % σ max, MPa ε f, % 0.2 634 665 26.4 1330 1.6 1810 4.2 0.5 626 660 30.6 1360 1.7 1880 7.7 0.8 628 661 32.9 1210 1.9 1740 9.4 1.0 632 661 34.6 1350 1.8 1930 11.3 1.5 615 652 34.7 1290 1.9 1820 7.4 Note: T g the glass transition temperature, T x1 onset crystallization temperature, H x integrated heat release of crystallization, σ y yielding strength, ε y yielding strain, σ max maximal strength, ε f fracture strain

414 ß ¼ 45 6 Í ß Ç SEM Ð Fig.6 SEM images of fracture surface (a, c, e) and their side images near surface (b, d, f) of the samples obtained with the withdrawal velocities of 0.2 mm/s (a, b), 0.8 mm/s (c, d) and 1.0 mm/s (the arrows in Fig.6 b, d and f denote shear bands and the arrows in Fig.6 c and e denote sliding traces 3 ¹ ± Bridgman Ü º«µÓÆ Zr 58.5 Ti 14.3 Nb 5.2 Cu 6.1 Ni 4.9 Be 11.0 É. Þ ¹ É ¹Ì Ú ¹ Ó, Ä ²Đ Î È. ¹ 1.0 mm/s, Đ Õ Ë 1930 MPa, Đ Ë 11.3%, ÙÑĐ Å Þ.» [1] Peker A, Johnson W L. Appl Phys Lett, 1993; 63: 2342 [2] Inoue A, Zhang T. Mater Trans JIM, 1996; 37: 185 [3] Bian Z, Chen G L, He G, Hui X D. Mater Sci Eng, 2001; A316: 135 [4] Liu Y H, Wang G, Wang R J, Zhao D Q, Pan M X, Wang W H. Science, 2007; 315: 1385 [5] Wang G Y, Liaw P K, Yokoyama Y, Inoue A, Liu C T. Mater Sci Eng, 2008; A494: 314 [6] Hays C C, Kim C P, Johnson W L. Phys Rev Lett, 2000; 84: 2901 [7] Fan C, Ott R T, Hufnagel T C. Appl Phys Lett, 2002; 81: 1020 [8] Fan C, Li H Q, Kecskes L J, Tao K X, Choo H, Liaw P K, Liu C T. Phys Rev Lett, 2006; 96: 145506 [9] Tan H, Zhang Y, Li Y. Intermetallics, 2002; 10: 1203 [10] Tan H, Zhang Y, Ma D, Feng Y P, Li Y. Acta Mater, 2003; 51: 4551 [11] Tan H, Zhang Y, Hu X, Feng Y P, Li Y. Mater Sci Eng, 2004; A375 377: 407 [12] Zhang Y, Xu W, Tan H, Li Y. Acta Mater, 2005; 53: 2607 [13] Sun G Y, Chen G, Chen G L. Acta Metall Sin, 2006; 42: 331 (, ½, ½. о Å, 2006; 42: 331) [14] Hofmann D C, Suh J Y, Wiest A, Duan G, Lind M L, Demetriou M D, Johnson W L. Nature, 2008; 451: 1085 [15] Fan C, Li C F, Inoue A. Phys Rev, 2000; 61B: R3761 [16] Lee M L, Li Y, Schuh C A. Acta Mater, 2004; 52: 4121 [17] Song S X, Bei H, Wadsworth J, Nieh T G. Intermetalics, 2008; 16: 813