Iron recovery from copper-slag with lignite-based direct reduction followed by magnetic separation

Σχετικά έγγραφα
Effects of lime sulphur synthetic solution on leaching characteristic of gold concentrates

Arsenic removal from high-arsenic dust by NaOH-Na 2 S alkaline leaching

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

Αξιοποίηση σκωριών EAFS ως πρόσθετο υλικό για την παραγωγή τσιμέντων τύπου Portland

ER-Tree (Extended R*-Tree)

Research on the Effect and Technique of Remediation for Multi-Metal Contaminated Tailing Soils

Preparation of superfine aluminum hydroxide by ion-exchange membrane electrolysis

2 PbO 2. Pb 3 O 4 Sn. Ti/SnO 2 -Sb 2 O 4 -CF/PbO x SnO 2 -Sb PbO 2. Sn-Sb 1:1. 1 h. Sn:Sb=10:1. PbO 2 - CeO 2 PbO 2. [8] SnO 2 +Sb 2 O 4 _

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

E#ects of Drying on Bacterial Activity and Iron Formation in Acid Sulfate Soils

Protective Effect of Surface Coatings on Concrete

Rapid determination of soluble reactive silicate in seawater by flow injection analysis with spectrophotometric detection and its application

8Q5SAC) 8Q5SAC UV2Vis 8500 ( ) ; PHS23C ) ;721 ( ) :1 4. ;8Q5SAC : molπl ;Britton2Robinson Q5SAC BSA Britton2Robinson,

Stress Relaxation Test and Constitutive Equation of Saturated Soft Soil

,,, (, ) , ;,,, ; -

ΥΠΟΚΑΤΑΣΤΑΣΗ ΦΑΡΙΝΑΣ ΤΣΙΜΕΝΤΟΥ ΑΠΟ ΑΝΑΚΥΚΛΩΜΕΝΑ ΥΛΙΚΑ ΚΑΤΕ ΑΦΙΣΗΣ ΚΤΙΡΙΩΝ

Analysis on construction application of lager diameter pile foundation engineering in Guangdong coastal areas

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

Electronic Supplementary Information DFT Characterization on the Mechanism of Water Splitting Catalyzed by Single-Ru-substituted Polyoxometalates

Comparison of HPLC fingerprint between enzymatic Calculus bovis and natural Calculus bovis

CorV CVAC. CorV TU317. 1

ZnO-Bi 2 O 3 Bi 2 O 3

Solid-state reduction properties of carbon-bearing chromite pellets

. O 2 + 2H 2 O + 4e 4OH -

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent

Soil-water characteristics and pore-size distribution of lateritic clay

1 h, , CaCl 2. pelamis) 58.1%, (Headspace solid -phase microextraction and gas chromatography -mass spectrometry,hs -SPME - Vol. 15 No.

Evaluation on precision of occurrence measurement based on theory of errors

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

College of Life Science, Dalian Nationalities University, Dalian , PR China.

The Exploitation and Utilization of Magnesium Resources in Salt Lakes

Research on explaining porosity in carbonate reservoir by capture cross section method

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Electronic Supplementary Information (ESI)

Geological and geochemical characteristics of Kanchuangou Mo -Cu deposit in Muling of Heilongjiang

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

ΜΕΛΕΤΗ ΤΗΣ ΠΛΑΣΤΙΚΟΤΗΤΑΣ ΑΡΓΙΛΟΥΧΩΝ ΜΙΓΜΑΤΩΝ ΜΕ ΠΡΟΣΘΗΚΗ ΣΙΔΗΡΑΛΟΥΜΙΝΑΣ ΑΠΟ ΤΗ ΔΙΕΡΓΑΣΙΑ BAYER

Electronic Supplementary Information

Geological characteristics and genesis of Huanggoushan and Banmiaozi gold deposits in Laoling metallogenic belt of southern Jilin

Conductivity Logging for Thermal Spring Well

Study on Synthesis of Dibutyl Succinate Catalyzed by Phosphtungstic Acid and its Reaction Kinetics

Research on Character of Ash in Trinidad Lake Asphalt

Quantitative chemical analyses of rocks with X-ray fluorescence analyzer: major and trace elements in ultrabasic rocks

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

Gro wth Properties of Typical Water Bloom Algae in Reclaimed Water

Study on the Solubility of Kiwi Fruit Seed Oil in Supercritical Carbon Dioxide

Preparation of Hydroxyapatite Coatings on Enamel by Electrochemical Technique

Uncovering the impact of capsule shaped amine-type ligands on. Am(III)/Eu(III) separation

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines

Journal of Central South University (Science and Technology) May Bragg TU443 A (2011)

The optimization of EV powertrain s efficiency control strategy under dynamic operation condition

Διπλωματική Εργασία. Μελέτη των μηχανικών ιδιοτήτων των stents που χρησιμοποιούνται στην Ιατρική. Αντωνίου Φάνης

Approximation Expressions for the Temperature Integral

Design Method of Ball Mill by Discrete Element Method

Supporting Information. Enhanced energy storage density and high efficiency of lead-free

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

Industrial Furnace , ; 2. :A : 蛳 0001 蛳 08. Simulations of Gas Flow and Heat Transfer in Blast Furnace

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Development of Accurate Quantitative Analytical Methods to Determine Trace Amounts of Carbon, Sulfur, and Oxygen in Steel

Neutralization E#ects of Acidity of Rain by Cover Plants on Slope Land

No. 7 Modular Machine Tool & Automatic Manufacturing Technique. Jul TH166 TG659 A


FENXI HUAXUE Chinese Journal of Analytical Chemistry. Savitzky-Golay. n = SG SG. Savitzky-Golay mmol /L 5700.

- A. A Biphenol A BPA BPA BPA LLE 5 SPE Electrospinning Kang. Packed-fiber solid-phase extraction PFSPE 1 ml

Physical and Chemical Properties of the Nest-site Beach of the Horseshoe Crab Rehabilitated by Sand Placement

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Analysis of energy consumption of telecommunications network and application of energy-saving techniques

Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte

2 ~ 8 Hz Hz. Blondet 1 Trombetti 2-4 Symans 5. = - M p. M p. s 2 x p. s 2 x t x t. + C p. sx p. + K p. x p. C p. s 2. x tp x t.

The toxicity of three chitin synthesis inhibitors to Calliptamus italicus Othoptera Acridoidea

Ελαφρές κυψελωτές πλάκες - ένα νέο προϊόν για την επιπλοποιία και ξυλουργική. ΒΑΣΙΛΕΙΟΥ ΒΑΣΙΛΕΙΟΣ και ΜΠΑΡΜΠΟΥΤΗΣ ΙΩΑΝΝΗΣ

17 min R A (2009) To probe into the thermal property the mechanism of the thermal decomposition and the prospective

Supporting Information

Evolution characteristics of fluid and genesis of Qinglonggou gold deposit in Qinghai

mm CECS159. Vol. 36 No. 8 JOURNAL OF BEIJING UNIVERSITY OF TECHNOLOGY. Aug

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Antimicrobial Ability of Limonene, a Natural and Active Monoterpene

*,* + -+ on Bedrock Bath. Hideyuki O, Shoichi O, Takao O, Kumiko Y, Yoshinao K and Tsuneaki G

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

) ; GSP ) ;PXD g, 100 ml

STUDY ON 3D FRACTAL DISTRIBUTION LAW OF THE SURFACE NUMBER IN ROCK MASS

Screening of Respiration-deficient Saccharomyces cerevisiae Strains with Sugar-and Thermo-tolerances

Grain orientation evolution and texture fluctuation effect of pure copper during equal channel angular pressing

ΔΥΝΑΤΟΤΗΤΕΣ ΥΠΟΚΑΤΑΣΤΑΣΗΣ ΓΥΨΟΥ ΑΠΟ ΒΙΟΜΗΧΑΝΙΚΑ ΠΑΡΑΠΡΟΪΟΝΤΑ

; +302 ; +313; +320,.

Fenton. COD ρ NH N TP ENVIRONMENTAL PROTECTION OF CHEMICAL INDUSTRY

[1-3] : [12-13] [4-5] x ( H K x x ) + x ( H K y y ) H +w=u s t ( 1) ; :H ;K x K y x y ;w ;u s ;t [6] (2) [7] KH+MH t=q (2) :K ;M ;Q ;H ;H

1 (forward modeling) 2 (data-driven modeling) e- Quest EnergyPlus DeST 1.1. {X t } ARMA. S.Sp. Pappas [4]

Preparation and Characterization of Solid Dispersion of Total Flavonols from Resina Draconis

Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ. Χρήστος Αθ. Χριστοδούλου. Επιβλέπων: Καθηγητής Ιωάννης Αθ. Σταθόπουλος

N 2. Temperature Programmed Surface Reaction of N 2Nitrosonornicotine on Zeolites and Molecular Sieves

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

DFT Kinetic Study of the Pyrolysis Mechanism of Toluene Used for Carbon Matrix

100102; 2. Fe Cu Hg. Rapid multi-elemental analysis on four precious Tibetan medicines based on LIBS technique

Quick algorithm f or computing core attribute

Gain self-tuning of PI controller and parameter optimum for PMSM drives

Application of Mohr-Coulomb yield criterion in geo-technical engineering

Transcript:

21 5 2011 5 Vol.21 No.5 The Chinese Journal of Nonferrous Metals May 2011 1004-0609(2011)05-1165-06 ( 100083) 39.96%( ) CaO 100:30:10 1 250 50 min 85% 43µm 92.05% 81.01% 30 µm TF09 X758 A Iron recovery from copper-slag with lignite-based direct reduction followed by magnetic separation YANG Hui-fen, JING Li-li, DANG Chun-ge (Civil and Environmental Engineering School University of Science and Technology Beijing, Beijing 100083, China) Abstract: In order to recycle iron from copper slag with total iron content (TFe) of 39.96%(mass fraction), a technique with lignite-based direct reduction followed by magnetic separation was presented. After analysis of chemical composition and crystalline phase, according to experimental mechanism, the tests for studying the effects of different parameters on the recovery of iron were carried out. The results show that the optimum parameters are proposed as follows: the mass ratio of copper slag/lignite/cao is 100:30:10, the reduction temperature is 1 250, the time is 50 min, and the particle size of 85% roasted product is smaller than 43 µm, under which the direct reduction iron powders with TFe of 92.05% and iron recovery rate of 81.01% are obtained. After reduction, the fayalite (Fe 2 SiO 4 ) and magnetite (Fe 3 O 4 ) in copper slag are reduced to metallic iron. The metallic iron particles whose sizes are mainly larger than 30 µm, are loosely supported on the surface of slag particles. So the monomer dissociation of metallic iron particles is easily achieved by grinding, then the dissociated metallic iron particles are recovered via magnetic separation method. Key words: copper slag; direct reduction; grinding; magnetic separation; metallic iron 800 t Fe Cu Zn Pb Co Ni Au Ag Fe (TFe>27%) [1] [2] [3 5] [6] Cu Zn Pb Co [7 13] Fe Fe Fe (Fe 2 SiO 4 ) [14 17] Fe 3 O 4 Fe 2 O 3 [15, 18] Fe Fe Fe 2 SiO 4 Fe 2010-05-31 2010-09-29 13691283453 E-mail: yanghf@ustb.edu.cn

1166 2011 5 Fe 3 O [16 17] 4 [16] [17] Fe 2 SiO 4 Fe 3 O 4 Fe 2 SiO 4 Fe Fe 1 1.1 2~3 mm ARL-ADVANT XP X 30 1 1 TFe Cu Zn Pb S P 0.12 m(cao+mgo)/m(al 2 O 3 +SiO 2 )=0.12 1 Table 1 Main chemical composition of received copper slag (mass fraction, %) TFe SiO 2 Al 2 O 3 CaO MgO 39.96 20.16 2.99 2.0 0.76 Cu Pb Zn S P 1.45 0.77 0.85 0.72 0.30 1 XRD Fig.1 XRD pattern of received copper slag Fe 2 SiO 4 Fe 3 O 4 [19] Fe 3O4 + 2C = 3Fe + 2CO2 (1) Fe2 SiO4 + 2C = 2Fe + SiO2 + 2CO (2) Fe2 SiO4 + CaO + 2C = CaSiO3 + 2Fe + 2CO (3) 2 (1) (2) (3) G Θ 1 XRD 1 Fe (Fe 2 SiO 4 ) (Fe 3 O 4 ) ( ) 37.09% 43.52% 13.18% 6.21% 0.19% CaO 2 (1)~(3) G Θ Fig.2 Relationship between standard free energy ( G Θ ) and temperature for reactions (1) (3) 1.2 Fe 2 SiO 4 Fe 3 O 4 843 K Fe 3 O 4 Fe 3 O 4 FeO Fe Fe 2 SiO 4 298~1 600 K FeO 2 G Θ Fe 3 O 4 Fe 2 SiO 4 1 045 K CaO Fe 2 SiO 4

21 5 1167 Fe 2 SiO 4 Fe 2 SiO 4 Fe 3 O 4 Fe 2 SiO 4 CaO Fe 3 O 4 Fe 2 SiO 4 1.3 100 g CaO 111 ka/m (4) Fe Fe R Fe =w(fe r )m r /[w(fe s )m s ] (4) R Fe Fe w(fe r ) Fe m r w(fe s ) Fe 39.96% m s 100 g XRD CuK α 40 kv 100 ma 8( )/min 10º~100º 3 Fe Fig.3 Effects of lignite ratio on iron recovery rate Fe 2.2 CaO Fe 30% 1 200 40 min (50% ) 43 µm CaO Fe 4 2 4 ( ) CaO (CaO ) 2.1 Fe CaO 15% 1 200 40 min (50% ) 43 µm Fe 3 3 Fe Fe 30% 4 CaO Fe Fig.4 Effects of CaO ratio on iron recovery rate 4 CaO Fe CaO Fe CaO CaO 10% CaO

1168 2011 5 Fe CaO 50 min CaO CaO Fe 2 SiO 4 2.3 Fe 30% CaO 10% 40 min (50% ) 43 µm Fe 5 6 Fe Fig.6 Effects of reduction time on iron recovery rate 5 Fe Fig.5 Effects of reduction temperature on iron recovery rate 5 Fe Fe 1 200 Fe 2 (1) (2) (3) G Θ Fe 3 O 4 Fe 2 SiO 4 1 300 1 250 2.5 Fe 30% CaO 10% 1 250 50 min Fe 7 7 Fe Fe Fe Fe Fe 85% 43 µm Fe 92.05% Fe 81.02% 2.4 Fe 30% CaO 10% 1 250 (50% ) 43 µm Fe 6 6 Fe 7 Fe Fig.7 Effects of grinding rate( 43 µm) of boasting product on iron recovery rate

21 5 1169 3 3.1 30% CaO 10% 1 250 50 min XRD 8 XRD 8 9 Fig.9 Microstructure of roasted product under optimized reduction conditions 8 XRD Fig.8 XRD pattern of roasted product under optimized reduction conditions 9 9 30 µm 5 µm 10 XRD Fig.10 XRD pattern of obtained direct reduction iron powders 2 Table 2 Main chemical composition of obtained direct reduction iron powders(mass fraction, %) TFe SiO 2 Al 2 O 3 CaO MgO 92.05 3.65 0.67 1.58 0.57 Cu Pb Zn S P 0.16 0.021 0.005 0.001 0.028 3.2 10 XRD 10 2 Fe 4 1) Fe

1170 30% CaO 10% 1 250 50 min (85% ) 43 µm Fe 92.05% Fe 81.02% 2) 30 µm REFERENCES [1],,,,,,. [J]., 2009(2): 8 11. CAO Hong-yang, FU Nian-xin, WANG Ci-gong, ZHANG Li, XIA Feng-shen, SUI Zhi-tong, FENG Nai-xiang. Selective precipitation and separation of Fe components from copper smelting slags[j]. Multipurpose Utilization of Mineral Resources, 2009(2): 8 11. [2] ALTER H. The composition and environmental hazard of copper slag in the context of the Basel convention[j]. Resources, Conservation and Recycling, 2005, 43(4): 353 360. [3] SHI C J, MEYER C, BEHNOOD A. Utilization of copper slag in cement and concrete[j]. Resources, Conservation and Recycling, 2008, 52(10): 1115 1120. [4] KHANZADI M, BEHNOOD A. Mechanical properties of high-strength concrete incorporating copper slag as coarse aggregate[j]. Construction and Building Materials, 2009, 23(6): 2183 2188. [5] JABRI K S A, HISADA M, ORAIMI S K A, SAIDY A H A. Copper slag as sand replacement for high performance concrete[j]. Cement & Concrete Composites, 2009, 31(7): 483 488. [6] KAMBHAM K, SANGAMESWARAN S, DATER S R, KURA B. Copper slag: optimization of productivity and consumption for cleaner production in dry abrasive blasting[j]. Journal of Cleaner Production, 2007, 15(5): 465 473. [7] BANZA A N, GOCK E, KONGOLO K. Base metals recovery from copper smelter slag by oxidizing leaching and solvent extraction[j]. Hydrometallurgy, 2002, 67(1/3): 63 69. [8] ARSLANA C, ARSLANA F. Recovery of copper, cobalt, and zinc from copper smelter and converter slag[j]. Hydrometallurgy, 2002, 67(1/3): 1 7. [9] RUDNIK E, BURZŃSKA L, GUMOWSKA W. Hydrometallurgical recovery of copper and cobalt from reduction-roasted copper converter slag[j]. Minerals Engineering, 2009, 22(1): 88 95. 2011 5 [10] MAWEJA K, MUKONGO T, MUTOMBO I. Cleaning of a copper matte smelting slag from a water-jacket furnace by direct reduction of heavy metals[j]. Journal of Hazardous Materials, 2009, 164(2/3): 856 862. [11] SARRAFI A, RAHMATI B, HASSANI H R, SHIRAZI H H A. Recovery of copper from reverberatory furnace slag by flotation[j]. Minerals Engineering, 2004, 17(3): 457 459. [12] CARRANZA F, ROMERO R, MAZUELOS A, IGLESIAS N, FORCAT O. Biorecovery of copper from converter slag: Slag characterization and exploratory ferric leaching tests[j]. Hydrometallurgy, 2009, 97(1/2): 39 45. [13],,. [J]., 2001, 11(2): 302 306. DENG Tong, WEN Zheng, LIU Dong. Leaching of copper residue with oxygen in sulfuric acid with participation of chloride[j]. The Chinese Journal of Non ferrous Metals, 2001, 11(2): 302 306. [14],. [J]., 2001, 11(5): 881 885. DENG Tong, LING Yun-han. Process mineralogy of cobalt-bearing copper converter slag[j]. The Chinese Journal of Non ferrous Metals, 2001, 11(5): 881 885. [15],. [J]., 2009, 18(2): 9 12. HAN Wei, QIN Qing-wei. Recovery of copper and iron from copper slag[j]. Mining & Metallurgy, 2009, 18(2): 9 12. [16],,,,. [J]., 2009(1): 71 74. LIU Gang ZHU Rong WANG Chang-an WANG Zhen-zhou GAO Feng. Experiment of molten oxidation iron extraction in copper slag[j]. China Non ferrous Metals, 2009(1): 71 74. [17],,,,,. [J]., 2009, 9(2): 284 188. CAO Hong-yang, FU Nian-xin, ZHANG Li, XIA Feng-shen, SUI Zhi-tong, FENG Nai-xiang. Migration and precipitation behavior of Fe components in copper smelting slag[j]. The Chinese Journal of Process Engineering, 2009, 9(2): 284 188. [18]. [J]., 2003, 13(2): 83 88. WANG Heng. Recovery of copper and iron In the converter slag from a copper smelter[j]. Journal of Guangdong Non-ferrous Metals, 2003, 13(2): 83 88. [19]. [M].. :, 2006. GUO Han-jie. Course of metallurgical physical chemistry [M]. 2nd ed. Beijing: Metallurgical Industry Press, 2006. ( )