INFLUENCES OF PHASE PRECIPITATIONS OF TERNARY β Ti Mo Zr(Sn) ALLOYS ON YOUNG S MODULUS AND MECHANICAL PROPERTIES

Σχετικά έγγραφα
STUDY ON CYCLIC OXIDATION RESISTANCE OF HIGH NIOBIUM CONTAINING TiAl BASE ALLOY WITH ERBIUM



Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti 45Al 8Nb ALLOY

ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

MICROSTRUCTURE EVOLUTION OF HYPEREUTEC- TOID STEELS DURING WARM DEFORMATION II. Cementite Spheroidization and Effects of Al

1-6 Ð Ï Te (mass%) 0% 0.3% 0.5% 0.8% 1.0% 2.0% 2 Î 1 6

SYNTHESIS OF PLASTIC Zr BASED BULK METALLIC GLASS WITH CRYSTAL PHASE BY DIRECTIONAL SOLIDIFICATION

ØSrÚCa Mg 12Zn 4Al 0.3MnÜ

Delta Inconel 718 δ» ¼

EFFECTS OF TEMPERATURE GRADIENT ON LAMEL- LAR ORIENTATIONS OF DIRECTIONAL SOLIDIFIED TiAl BASED ALLOY

MICROSTRUCTURE AND MECHANICAL PROPERTIES OF 1500 MPa GRADE ULTRA HIGH STRENGTH LOW ALLOY STEEL

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

MICROSTRUCTURE STABILITY IN A FULLY LAMELLAR HIGH Nb TiAl ALLOY AFTER LONG TERM THERMAL CYCLING

UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库

Estimation of grain boundary segregation enthalpy and its role in stable nanocrystalline alloy design

2011 Đ 3 Ñ ACTA METALLURGICA SINICA Mar pp

CORROSION BEHAVIOR OF X70 PIPELINE STEEL IN SIMULATED KU ERLE SOIL SOLUTION WITH CO 2

DISCONTINUOUS YIELDING BEHAVIOR OF β PHASE CONTAINING TiAl ALLOY DURING HIGH TEMPERATURE DEFORMATION PROCESS

EFFECT OF HIGH MAGNETIC FIELD ON THE TRANSI- TION BEHAVIOR OF Cu RICH PARTICLES IN Cu 80%Pb HYPERMONOTECTIC ALLOY

M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1

Ó³ Ÿ , º 5(147).. 777Ä786. Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ. ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

BEHAVIOUR AND MECHANISM OF STRAIN HARDEN- ING FOR DUAL PHASE STEEL DP1180 UNDER HIGH STRAIN RATE DEFORMATION

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

Blowup of regular solutions for radial relativistic Euler equations with damping

Ó³ Ÿ , º 7(163).. 793Ä797 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

Ó³ Ÿ , º 7(163).. 798Ä802 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

EFFECTS OF TEMPERING TEMPERATURE ON THE IMPACT TOUGHNESS OF STEEL 42CrMo

P ,.. ³,. Š. ³. ˆ ˆŸ Œˆ ˆŸ ˆ ˆ ˆ Š ˆ 9 3 ˆ Œ NiÄNb. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö. Õ³ Ó, μ Ö

PHOTOCATALYTIC PROPERTIES OF TiO 2 THIN FILMS PREPARED BY MICROARC OXIDATION AND DOPING ELECTROLYTES

NUMERICAL SIMULATION OF KEYHOLE SHAPE AND TRANSFORMATION FROM PARTIAL TO OPEN STATES IN PLASMA ARC WELDING

EFFECT OF HAFNIUM CONTENT ON MORPHOLOGY EVOLUTION OF γ PRECIPITATES IN P/M Ni BASED SUPERALLOY

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.

EFFECT OF LOADING MODES ON MECHANICAL PROPERTY AND STRAIN INDUCED MARTENSITE TRANSFORMATION OF AUSTENITIC STAINLESS STEELS

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä Œμ Ìμ. ±É- É Ê ± μ Ê É Ò Ê É É, ±É- É Ê, μ Ö

CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS I. Experimental Result

EFFECT OF WELDING PROCESSING PARAMETERS ON POROSITY FORMATION OF MILD STEEL TREATED BY CO 2 LASER DEEP PENETRATION WELDING

ˆ ˆ ˆ ˆˆ γ-ˆ ˆŸ ˆ Š Œ ˆ Œ œ Š ˆˆ

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

THE MICRO FABRICATING PROCESS AND ELECTRO- MAGNETIC PROPERTIES OF TWO KINDS OF Fe POWDERS WITH DIFFERENT GRAIN SIZES AND INTERNAL STRAINS

EFFECTS OF B ON THE MICROSTRUCTURE AND HYDROGEN RESISTANCE PERFORMANCE OF Fe Ni BASE ALLOY

BEHAVIOR OF MARTENSITE REVERSE TRANSFORMA- TION IN 18Mn TRIP STEEL DURING WARM DEFORMATION

FRICTION AND WEAR PROPERTIES OF SURFACE PLASMA Cr W ALLOYING LAYER OF γ TiAl ALLOY

AN INVESTIGATION ON THE CREEP BEHAVIOR OF PURE Mg

ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ

Œ.. ² μ,.. Œ ²μ, ƒ.. μ ±μ,. Ô Ô ², Œ.. ƒê Éμ, Œ.. Œ ² μ *

EFFECTS OF Al Al 4 C 3 REFINER AND ULTRASONIC FIELD ON MICROSTRUCTURES OF PURE Mg

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή

P Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ. ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25

49 Ö 6 Đ Vol.49 No ACTA METALLURGICA SINICA Jun pp

P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É.

2 SFI

2?nom. Bacc. 2 nom. acc. S <u. >nom. 7acc. acc >nom < <

WAFER LEVEL ELECTRODEPOSION OF Fe Ni NOVEL UBM FILMS

2 PbO 2. Pb 3 O 4 Sn. Ti/SnO 2 -Sb 2 O 4 -CF/PbO x SnO 2 -Sb PbO 2. Sn-Sb 1:1. 1 h. Sn:Sb=10:1. PbO 2 - CeO 2 PbO 2. [8] SnO 2 +Sb 2 O 4 _

p din,j = p tot,j p stat = ρ 2 v2 j,

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

Ó³ Ÿ , º 1(130).. 7Ä ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

P Œ ²μ, ƒ.. μ ±μ,. ˆ. ˆ μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. ³ É. ˆŒ ˆ Š ƒ Œ ˆ Ÿ ˆŸ 238 Uˆ 237 U, Œ ƒ Ÿ Š ˆˆ 238 U(γ,n) 237 U.

Ó³ Ÿ , º 7(163).. 855Ä862 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ƒ. ² ͱ 1,.. μ μ Íμ,.. μ²ö,.. ƒ² μ,.. ² É,.. ³ μ μ, ƒ.. Š ³ÒÏ,.. Œμ μ μ,. Œ.

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

ˆŒ œ ƒ ƒ ˆ ˆŸ ˆ Š ˆ 137 Cs Š ˆ Œ.

A NEW ONE PARAMETER KINETICS MODEL OF DYNAMIC RECRYSTALLIZATION AND GRAIN SIZE PREDICATION

Ó³ Ÿ º 3[120] Particles and Nuclei, Letters No. 3[120]

FRACTURE TOUGHNESS OF WELDED JOINTS OF X100 HIGH STRENGTH PIPELINE STEEL

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

ƒê,.. ± É,.. Ëμ μ. ˆŸ Œ ƒ ˆ ƒ Ÿ ˆ ˆˆ ˆ ˆ ˆ Šˆ- ˆŒŒ ˆ ƒ Œ ƒ ˆ. ² μ Ê ² ² ±É Î É μ

P μ,. Œμ α 1,. ²μ ± 1,.. ϱ Î, Ÿ. Ê Í± 2 Œˆ ˆ Œ Š Ÿ Š Ÿ ˆ ˆŒ ˆˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É

.. ƒ²μ É, Œ. Œ Ï,. Š. μé ±μ,..,.. ³ μ μ, ƒ.. ÒÌ

Quick algorithm f or computing core attribute

Ó³ Ÿ , º 7(205) Ä1540 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. ŠÊ Íμ,.. Ê ±μ,.. ² μ 1. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

P ƒ Ê Î 1, 2,.. ƒê μ 1, 3,. ÉÓ±μ 2, O.M.ˆ μ 1,.. Œ É μë μ 1,.. μ μ 1,. ƒ. Ê±μ ± 1,.. ³ 1,.. ±Ê Éμ 1. ˆ ˆ ˆ ˆ Š ˆ Si- ˆ SiC- Š Š ˆ

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

v w = v = pr w v = v cos(v,w) = v w

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

Š Ÿ Š Ÿ Ÿ ˆ Œ ˆŠ -280

Œ ˆ ˆ Š ƒ ƒˆˆ: Š ˆŸ ˆŸ Š

Œ ˆ Œ Ÿ Œˆ Ÿ ˆŸŒˆ Œˆ Ÿ ˆ œ, Ä ÞŒ Å Š ˆ ˆ Œ Œ ˆˆ

CHARACTERISTIC BEHAVIORS OF PARTICLE PHASES IN NiCrBSi TiC COMPOSITE COATING BY LASER CLADDING ASSISTED BY MECHANICAL VIBRATION

ƒ Š ˆ ˆ ˆˆ. ƒ. Ê ÖÏμ a,.. Š Ê,.. Šμ²μ ÊÉμ a, ƒ..œ ÍÒ a,. ƒ. Œμ²μ± μ a,.. ± a a Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

48 12 Ö Vol.48 No ACTA METALLURGICA SINICA Dec pp Î µ TG142.1, Á A Ì µ (2012)

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä616 Š ˆŒ CMS LHC

ER-Tree (Extended R*-Tree)

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö


AN RFID INDOOR LOCATION ALGORITHM BASED ON FUZZY NEURAL NETWORK MODEL. J. Sys. Sci. & Math. Scis. 34(12) (2014, 12),

Š ˆ ˆ ˆ Š ˆ ˆ Œ.. μ É Ó

Š ˆ œ Ÿ ˆ œ Œ Œ ƒ ˆ Œ Œ LEPTA

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä1350 ˆ ˆ Š -3

Quantitative chemical analyses of rocks with X-ray fluorescence analyzer: major and trace elements in ultrabasic rocks

ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

P ˆ.. ƒê ²μ 1,.. Œ ² ±μ 1,..Šμ Í,.. ʳ,.. μ μ 2. ˆ ˆŸ Š Š ˆ ƒ ˆŒ œ ƒ Œ ƒ ƒ Š-Š ˆ 10- Œ ˆ. ( ), Œμ ± Œμ ± 1 μ Ò É Ì μ²μ ±μ³ μ ÉÒ ±Êʳ ÒÌ μ μ

Ó³ Ÿ , º 7(205) Ä1486 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ³ μ 1, ƒ. μ μë,. μ,. ŠÊ² ±μ,. Œ ² μ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Ó³ Ÿ , º 7(156).. 62Ä69. Š Œ œ ƒˆˆ ˆ ˆŠ. .. ŠÊ²Ö μ 1,. ƒ. ²ÓÖ μ 2. μ ± Ê É É Ê Ò μ μ, Œμ ±

PACS: Pj, Gg

Š Šˆ ATLAS: ˆ ˆŸ ˆ Šˆ, Œ ˆ Œ ˆ.. ƒê ±μ,. ƒ ² Ï ², ƒ.. Š ± ²,. Œ. Ò,.. ŒÖ²±μ ±,.. Ï Ìμ μ,.. Ê ±μ Î,.. ±μ,. Œ. μ

Transcript:

49 9 Vol.49 No.9 203 Ë 9 43 47 ACTA METALLURGICA SINICA Sept. 203 pp.43 47 ½ β Ti Mo Zr(Sn) ³ µå» (ű Å ¼ ¼ Ý ², ű Å ¼«, ű 6024) ¾ º º ËÞÁ β Ti Ò [MoTi 4]Zr (Ti 78.2Mo.2Zr 0.6) [SnTi 4]Mo (Ti 75.7Mo 0.9Sn 3.4) Ð ÚËÞÁ ÞÉ É ÒÞ. ³ Cu Á Р̺ º Ý 6 mm Ò, ³³ XRD TEM Ò ÛÇÉÞÏ., β à º α [SnTi 4]Mo Ò º ËÞÁ (70 GPa), ß ω  [MoTi 4]Zr Ò ËÞÁ (80 GPa); Ð [SnTi 4]Mo Ò Ô β ÞÏ Ò ºµµ ÞÉ., [MoTi 4]Zr Ò ¼Đ º, ß [SnTi 4]Mo Ò β Ã Đ ÍÒ, ß Ò Þ. Ti Mo Zr(Sn) Ò, β Ti Ò, ËÞÁ, Æ TG3.2, TG46.2 ± A ± 042 96(203)09 43 05 INFLUENCES OF PHASE PRECIPITATIONS OF TERNARY β Ti Mo Zr(Sn) ALLOYS ON YOUNG S MODULUS AND MECHANICAL PROPERTIES LI Qun, WANG Qing, LI Xiaona, GAO Xiaoxia, DONG Chuang Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, School of Materials Science and Engineering, Dalian University of Technology, Dalian 6024 Correspondent: WANG Qing, associate professor, Tel: (04)8470865, E-mail: wangq@dlut.edu.cn Supported by National Natural Science Foundation of China (Nos.57035, 74044 and 53002) Manuscript received 203 04 09, in revised form 203 07 ABSTRACT The influences of second phase precipitations of low Young s modulus (E) β Ti alloys [MoTi 4 ]Zr (Ti 78.2 Mo.2 Zr 0.6 ) and [SnTi 4 ]Mo (Ti 75.7 Mo 0.9 Sn 3.4 ) on mechanical properties as well as the variation of phase constitutions of alloys during tensile test were investigated. Alloy rods with 6 mm diameter were prepared by copper mould suction cast method. Phase precipitations and microstructures of alloys before and after tension were analyzed by XRD and TEM techniques. The experimental results showed that only a minor amount of α martensite precipitated on β matrix makes the suction cast [SnTi 4 ]Mo alloy possess lower E with a value of 70 GPa, while ω precipitation increases the E (80 GPa) of [MoTi 4 ]Zr alloy. It is due to the thinner β plate twins that makes [SnTi 4 ]Mo alloy have better mechanical properties. During tensile testing, the amount of α martensite induced by stress increases in [MoTi 4 ]Zr alloy while β grains in [SnTi 4 ]Mo alloy are easier to be rotated for deformation, which favors to enhance the ductility of alloys. KEY WORDS Ti Mo Zr(Sn) alloy, β Ti alloy, low Young s modulus, phase precipitation β Ti Ñ ¾ ¹ ÊÝÀ Ô ¾ * ÏÙÛ ÃÒÐÅ 57035, 74044 53002 µï : 203 04 09, µï : 203 07 Ðà : Ú, Ï, 989 Ì, DOI: 0.3724/SP.J.037.203.0079 Ï ß, ³ Ï ²¾. Ü, Ó β ÍÐß Ìß¹ Û Ü,»» Ìß¹ Ý β Ti Ó, Ti 29Nb 3Ta 4.6Zr, Ti 35Nb 5Ta 7Zr Ti 24Nb 4Zr 7.9Sn(¹ ½, %), ÓÀ β Ä Ã Å¹, α ± hcp ω  bcc β [ 7]. α ±» ÇÕÂÅ Õ Æ β Ä

44 Ð 49, β Ä Ìß¹ Ê ß ; ω Õ (<5 nm) ÕÅ, Ê ÓÌß ¹Ê Õ, ß [8 0], Ã, Å Ó Õ, β Ä ÍÐß, Àº ß ÆĐ, ± Ìß¹ ßÊ [ 3]. [4 7],  ² Ø Â٠λ» Ìß¹ β Ti Ó., ß Ú Â, Ó, Ó Ä Ti Î Á H Èß. ÂÙ Ð Ó È [ATi 4 ]B x, A È Ti»Æ H, Ú A È Ø Æ 4 Ti Ø Æ [ATi 4 ] Â, Ti»Õ H B Ȳ Ø, x Ȳ Ø ½., Ti Mo Zr Ti Mo Sn Ð È [MoTi 4 ]Zr [SnTi 4 ]Mo ( H Ti Mo = 4 kj/mol, H Ti Zr = 0 kj/mol, H Ti Sn = 2 kj/mol [8] ). Ð [6], Ä Ìß¹ E È 80 70 GPa, Ñ ßÊ» Ó., X «(XRD) À Ø ÅÜ (TEM), Ô ÐÅ 2 β Ti Ó ÜÈÊ Û ÓÌß¹ ßÊ ±. ¹ «¾È Õ 99.99% Ti, 99.95% Mo, 99.99% Zr 99.99% Sn. Ar «Đ³ [MoTi 4 ]Zr (Ti 78.2 Mo.2 Zr 0.6, ¹ ½, %, ) [SnTi 4 ]Mo (Ti 75.7 Mo 0.9 Sn 3.4 ) Ä Ó. Cu Đ Ý Đ³Ä Ó,, Ü Cu Â Ñ Í» Æ Þ È 6 mm Ó. Ê ¹, Ó ¹ ½¹ 0.%. Bruker D8 Focus Ù XRD(CuK α, λ=0.5406 nm) µ ÓÆ, Philips Tecnai G 2 Ù TEM Æ Å, XRD TEM Æ Æ ß Ú Ê. TEM ¾ È 6%HClO 4 + 35%CH 3 (CH 2 ) 3 OH + 59%CH 3 OH( Æ ½), ¾ ËÕ 30. MTS80 Å ÔÜ, ÕÈ 0.5 mm/min, Æ Âµ GB/T228. 200, Þ 6 mm Ó ¾ Þ 3 mm, Æ Û 000 Êò, Ô Ç, Æ ÞÈ 3 mm, ¼ÕÈ 25 mm, Æ Ç «ÌÌßÓ ÚØß, Ñ Óµ 2. 2 ¹ ¼ ² Á È Ñ Ó [MoTi 4 ]Zr [SnTi 4 ]Mo Õ. µ¹ìßâ¹ E, Ö«Õ σ 0.2, Õ σ b, Ü ε ψ. Óµ» 2 Æ, ßÊ È, [MoTi 4 ]Zr Ó: E=80 GPa, σ 0.2 =73 MPa, σ b =747 MPa, ε=7.2%, ψ=39%; [SnTi 4 ]Mo Ó: E=70 GPa, σ 0.2 =775 MPa, σ b =82 MPa, ε=6.5%, ψ=59%., [SnTi 4 ]Mo Ó» Ìß¹ Õ, Ñ Ìß Ú¹ Æ, È.22%. Ó ßÊ Å 2 Ó Å ß Ã Ó. Á 2 È Ñ Ó [MoTi 4 ]Zr [SnTi 4 ]Mo XRD., Å 2 Ó Ñ Ó Ù β «. Ü, ÓÛ¹, [MoTi 4 ]Zr Ó È (β+α ) ¾, Ó ¹ ½» α ± ; [SnTi 4 ]Mo Ó ÐÈ β.» Ìß¹ β Ti Ó»ÓÀ β Ä Ã Å¹ [8 0]. È ØÐ Ó Engineering stress, MPa 000 800 600 400 200 2 4 0 0.0 0.5.0.5 2.0, % 0 0 2 4 6 8 0 2 4 6 8 20 22 24 Engineering strain, % Ð Ò [MoTi 4 ]Zr [SnTi 4 ]Mo Ô 3, MPa 000 800 600 400 200 2 3 4 2 [MoTi 4 ]Zr - [MoTi 4 ]Zr -2 [SnTi 4 ]Mo - [SnTi 4 ]Mo -2 4 3 Fig. Engineering stress strain curves of suction cast Intensity, a.u. [MoTi 4 ]Zr and [SnTi 4 ]Mo alloys (0) '' (0) (020) '' (002) '' () '' (02) '' (200) [MoTi 4 ]Zr -SC (2) [MoTi 4 ]Zr -tension [SnTi 4 ]Mo -SC [SnTi 4 ]Mo -tension 20 30 40 50 60 70 80 2, deg 2 Ð Ò [MoTi 4 ]Zr [SnTi 4 ]Mo XRD Fig.2 XRD patterns of suction cast [MoTi 4 ]Zr and ''-Ti [SnTi 4 ]Mo alloys before (SC) and after tension -Ti

d9` u^ : 9 β Ti Mo Zr(Sn) 9mX;fuRyH+6" yp[#i 45 6{Xw$ {R %k, w h? [MoTi ]Zr # NO}xKC ω h (I 3b e*i II), =Ga 8 [SnTi ]Mo ;oæ\ px/ TEM Z, I β+α 8 β+ω KC obo, ω h/-hwe. α 6 3 <. F I 3a e $ +X, m> [MoTi ]Zr ;o ω hc : v5, 8tv Æ4LC β, Q C β LCP Gsn Zq8t, w" ojt +X"$?, α 6 ω h 0N-7KC{Q#, (SAED) _ (I 3a e * I) =, β LC KCM =b/ga β+α 6 β+ω o. α =%C8 ω h, m 2 Lo# 8tv w4m>` [SnTi ]Mo ;o, LC β v?p Z=. w?, ;oi P β+α 2h, m α C Z8t r r q β {X (I 4a). r qv Z / G, G"$ /=%C, Z α h/? =b#,4, U β hk jv4 / β Ul:5 -GaGy (I 3b e*i I), w"v?he N-=% Po β i 6 β Ul:5[Eo β i. β 6 C (I 3b), M6 XRD i+ `. CK,? ;oc β P bcc i, Q,4 {, q,!n C 4 4 4 [9,20] 4 $ 3 [l:n [MoTi 4 ]Zr g>\ TEM mq SAED ^ Fig.3 TEM images and SAED patterns (white circles in TEM images) of suction cast [MoTi4 ]Zr alloy before (a) and after (b) tension $ 4 [l:n [SnTi 4 ]Mo g>\ TEM mq SAED ^ Fig.4 TEM images and SAED patterns (white circles in TEM images) of suction cast [SnTi4 ]Mo alloy before (a) and after (b, c) tension

46 Ð 49 XRD SAED. SAED (Á 4a Á), Ó»» ¹ α ±, É [MoTi 4 ]Zr Ó,» ω. ÓÛ¹ Ú Æ¹ÊÄ¹ÝØÆ (Á 4b c); α «Õ, ±»¹»¹Ý, É β «Ã 4 ÎÓ (Á 4c), Ä β Ø Ó, Å Ê Ó ß. Ñ Ó [MoTi 4 ]Zr [SnTi 4 ]Mo Ê ¹ β α «Ò, Ë {2} β /{0} α 0 β / 00 α, É [MoTi 4 ]Zr Ó Ã ¹ {0} β /{020} α 33 β / 00 α Ê α, Ô. β Ti Ó, Mo β ÍÐ, À Ó Ìß¹ E; Zr Sn» È ß, Û β ÍÐß., Zr Ð Õ ÀÛ β ÍÐߺ Å, ¹¹ Sn ÀÞ β ÍÐß [9]. Í, β ÍÐß [MoTi 4 ]Zr Ó ¹ È ½ ±, β ÍÐ ß [SnTi 4 ]Mo Ó ¹ β Ä ÚÁ ÎÊ, Î 2 Ä ßÊ. Í β Íл¹, β Ä À» ω, Í β Íл¹, β Ú Àº Å, È β ÍÐ β β ÍÐ β, Ñ» α ±. ω α Ú Ìß¹ β Ti Ó, Ë E ω >E α >E β [9], É α ¹» β Ä ¹ [2], ω Ä Õ Ê Ó Ìß¹., β ÍÐß [SnTi 4 ]Mo Ó Ìß¹ (E= 70GPa) [MoTi 4 ]Zr Ó(E=80GPa), Ë Ä» ω, Ä Ó β Ä»» ¹ α. Ð, β Ti Ó, Ti 0Mo 3Zr(E=74 GPa) [22], Ti 3Nb 3Zr(E=79 84GPa) [23] Ti 30Nb 7.5Zr(E=60 70GPa) [24], Å 2 Ó» Ìß¹, Å Ó β Ä Í Ðß, Ë Ó Õ β ÍÐ, Ó Ì ß¹. Mo eq È Ó β ÍÐß, Bania [25] : Mo eq =.0Mo+0.67V+0.44W+ 0.28Nb + 0.22Ta + 2.9Fe +.6Cr + 0.77Cu +.Ni +.43Co +.54Mn.0Al (¹ ½, %), ÁÕ, β ÍÐ Mo eq =%Mo; Sn Zr ³ È ß,, Å 2 Ó Mo»¹ È %, Ê β ÍÐ,» Ìß Â¹. Ìß¹, [SnTi 4 ]Mo Ó» Õ ß. [MoTi 4 ]Zr Ó, [SnTi 4 ]Mo Ó ØÅ È 25 nm, Ä Ó Å È 00 nm, À, Ø Õ,» Ó Õ ß, Ë σ b =82 MPa, ε=6.5%. Ã, Á 4c TEM,, β «Ã Æ 4 ÎÓ, Ä Ø Ã ÓÒ Ò, [SnTi 4 ]Mo Ó» ß. [MoTi 4 ]Zr Ó, Ö± ω À Ó Õ (σ b =747 MPa), É ω ² À, Ä À Ó ß (ε=7.2%). Ã, ω»¹, Û Ó ÅÕ Ä β ØÅ Ç Ö. [MoTi 4 ]Zr Ó Û ßÊ [SnTi 4 ]Mo Ó. Wang [6]»ßÊ Õ «Ti 6Al 4V Ó, µ» ßÊ, ½ È E=03 GPa, σ 0.2 =724 MPa, σ b =843 MPa, ε=49%., [MoTi 4 ]Zr [SnTi 4 ]Mo Ó Ìß¹ Ti 6Al 4V Ó; [MoTi 4 ]Zr Ó Õ Ti 6Al 4V, É [SnTi 4 ]Mo Ó Õ Õ Ti 6Al 4V, È Ì Ó., Û Í β Ti Ó Å, Ó Ê β ÍÐ, β Ä ß ÈÅ Õ, ÑÔ ω, Ó» Ìß¹ ßÊ. 3 () Ñ [SnTi 4 ]Mo Ó Ìß¹ (E= 70 GPa) Ó β Ä» ¹ α ±, Ñ [MoTi 4 ]Zr Ó» α Ã, ω Ìß¹ (E=80 GPa); Ã, [SnTi 4 ]Mo Ó Å Õ β Øß Ó» Õ (σ b =82 MPa) ß (ε=6.5%). (2) [MoTi 4 ]Zr Ó ¹ ½ ±»¹, [SnTi 4 ]Mo Ó β Ä Ø ÓÒ, ß., Ó Ê β ÍÐ, β Ä ß ÈÅ Õ, Ñ ω, Ó» Ì ß¹ ßÊ. ± [] Long M, Rack H J. Biomaterials, 998; 9: 62 [2] Niinomi M. Mater Sci Eng, 998; A243: 23 [3] Saito T, Furuta T, Hwang J H, Kuramoto S, Nishino K, Suzuki N, Chen R, Yamada A, Ito K, Seno Y. Science, 2003; 300: 464 [4] Ahmed T, Long M, Silvestri J, Ruiz C, Rack H J. In: Blenkinsop P, Evans W J, Flower H M eds., Preceeding 8th World Titanium Conference, Birmingham, UK: The Institute of Metals, 996: 760

9 Ù : β Ti Mo Zr(Sn) Ñ ÙÊÝÀ ÝÈ 47 [5] Ikeda M, Komatsu S Y, Sowa I, Niinomi M. Metall Mater Trans, 2002; 33A: 487 [6] Hao Y L, Li S J, Sun S Y, Zheng C Y, Yang R. Acta Biomater, 2007; 3: 277 [7] Ho W F. J Med Biol Eng, 2008; 28(): 47 [8] Guo S, Bao Z Z, Meng Q K,Hu L, Zhao X Q. Metall Mater Trans, 202; 43A: 3447 [9] Abdel Hady M, Hinoshita K, Morinaga M. Scr Mater, 2006; 55: 477 [0] Hao Y L, Yang R, Niinomi M, Kuroda D, Zhou Y L, Fukunaga K, Suzuki A. Metall Mater Trans, 2002; 33A: 337 [] Wood R M. Acta Metall, 963; : 907 [2] Talling R J, Dashwood R J, Jackson M, Dye D. Acta Mater, 2009; 57: 88 [3] Zhao X L, Niinomi M, Nakai M, Miyamoto G, Furuhara T. Acta Biomater, 20; 7: 3230 [4] Dong C, Wang Q, Qiang J B, Wang Y M, Jiang N, Han G, Li Y H, Wu J, Xia J H. J Phys, 2007; 40D: R273 [5] Hao C P, Wang Q, Ma R T, Wang Y M, Qiang J B, Dong C. Acta Phys Sin, 20; 60: 60 (½, Ä Ò, Þ, Ä,, Ñ. Î, 20; 60: 60) [6] Wang Q, Ji C J, Wang Y M, Qiang J B, Dong C. Metall Mater Trans, 203; 44A: 872 [7] Ma R T, Hao C P, Wang Q, Ren M F, Wang Y M, Dong C. Acta Metall Sin, 200; 46: 034 ( Þ, ½, Ä Ò, ß, Ä, Ñ. Ò¹, 200; 46: 034) [8] Takeuchi A, Inoue A. Mater Trans, 2005; 46: 287 [9] Hao Y L, Li S J, Sun S Y, Yang R. Mater Sci Eng, 2006; A44: 2 [20] Moffat D L, Larbalestier D C. Metall Mater Trans, 988; 9A: 677 [2] Xu Z Y. Acta Metall Sin, 997; 33: 45 ( Ý. Ò¹, 997; 33: 45) [22] Huang L J. PhD Dissertation, Beijing Institute of Aeronautical Material, 2006 (. ÆÙ¼Æ±½ É Ì, 2006) [23] Niinomi M. Mater Sci Eng, 998; A243: 23 [24] Martins D Q, Osório W R, Souza M E, Caram R, Garcia A. Electrochim Acta, 2008; 53: 2809 [25] Bania P J. J Met, 994; 64(7): 6 ( : )