49 9 Vol.49 No.9 203 Ë 9 43 47 ACTA METALLURGICA SINICA Sept. 203 pp.43 47 ½ β Ti Mo Zr(Sn) ³ µå» (ű Å ¼ ¼ Ý ², ű Å ¼«, ű 6024) ¾ º º ËÞÁ β Ti Ò [MoTi 4]Zr (Ti 78.2Mo.2Zr 0.6) [SnTi 4]Mo (Ti 75.7Mo 0.9Sn 3.4) Ð ÚËÞÁ ÞÉ É ÒÞ. ³ Cu Á Р̺ º Ý 6 mm Ò, ³³ XRD TEM Ò ÛÇÉÞÏ., β à º α [SnTi 4]Mo Ò º ËÞÁ (70 GPa), ß ω  [MoTi 4]Zr Ò ËÞÁ (80 GPa); Ð [SnTi 4]Mo Ò Ô β ÞÏ Ò ºµµ ÞÉ., [MoTi 4]Zr Ò ¼Đ º, ß [SnTi 4]Mo Ò β Ã Đ ÍÒ, ß Ò Þ. Ti Mo Zr(Sn) Ò, β Ti Ò, ËÞÁ, Æ TG3.2, TG46.2 ± A ± 042 96(203)09 43 05 INFLUENCES OF PHASE PRECIPITATIONS OF TERNARY β Ti Mo Zr(Sn) ALLOYS ON YOUNG S MODULUS AND MECHANICAL PROPERTIES LI Qun, WANG Qing, LI Xiaona, GAO Xiaoxia, DONG Chuang Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, School of Materials Science and Engineering, Dalian University of Technology, Dalian 6024 Correspondent: WANG Qing, associate professor, Tel: (04)8470865, E-mail: wangq@dlut.edu.cn Supported by National Natural Science Foundation of China (Nos.57035, 74044 and 53002) Manuscript received 203 04 09, in revised form 203 07 ABSTRACT The influences of second phase precipitations of low Young s modulus (E) β Ti alloys [MoTi 4 ]Zr (Ti 78.2 Mo.2 Zr 0.6 ) and [SnTi 4 ]Mo (Ti 75.7 Mo 0.9 Sn 3.4 ) on mechanical properties as well as the variation of phase constitutions of alloys during tensile test were investigated. Alloy rods with 6 mm diameter were prepared by copper mould suction cast method. Phase precipitations and microstructures of alloys before and after tension were analyzed by XRD and TEM techniques. The experimental results showed that only a minor amount of α martensite precipitated on β matrix makes the suction cast [SnTi 4 ]Mo alloy possess lower E with a value of 70 GPa, while ω precipitation increases the E (80 GPa) of [MoTi 4 ]Zr alloy. It is due to the thinner β plate twins that makes [SnTi 4 ]Mo alloy have better mechanical properties. During tensile testing, the amount of α martensite induced by stress increases in [MoTi 4 ]Zr alloy while β grains in [SnTi 4 ]Mo alloy are easier to be rotated for deformation, which favors to enhance the ductility of alloys. KEY WORDS Ti Mo Zr(Sn) alloy, β Ti alloy, low Young s modulus, phase precipitation β Ti Ñ ¾ ¹ ÊÝÀ Ô ¾ * ÏÙÛ ÃÒÐÅ 57035, 74044 53002 µï : 203 04 09, µï : 203 07 Ðà : Ú, Ï, 989 Ì, DOI: 0.3724/SP.J.037.203.0079 Ï ß, ³ Ï ²¾. Ü, Ó β ÍÐß Ìß¹ Û Ü,»» Ìß¹ Ý β Ti Ó, Ti 29Nb 3Ta 4.6Zr, Ti 35Nb 5Ta 7Zr Ti 24Nb 4Zr 7.9Sn(¹ ½, %), ÓÀ β Ä Ã Å¹, α ± hcp ω  bcc β [ 7]. α ±» ÇÕÂÅ Õ Æ β Ä
44 Ð 49, β Ä Ìß¹ Ê ß ; ω Õ (<5 nm) ÕÅ, Ê ÓÌß ¹Ê Õ, ß [8 0], Ã, Å Ó Õ, β Ä ÍÐß, Àº ß ÆĐ, ± Ìß¹ ßÊ [ 3]. [4 7],  ² Ø Â٠λ» Ìß¹ β Ti Ó., ß Ú Â, Ó, Ó Ä Ti Î Á H Èß. ÂÙ Ð Ó È [ATi 4 ]B x, A È Ti»Æ H, Ú A È Ø Æ 4 Ti Ø Æ [ATi 4 ] Â, Ti»Õ H B Ȳ Ø, x Ȳ Ø ½., Ti Mo Zr Ti Mo Sn Ð È [MoTi 4 ]Zr [SnTi 4 ]Mo ( H Ti Mo = 4 kj/mol, H Ti Zr = 0 kj/mol, H Ti Sn = 2 kj/mol [8] ). Ð [6], Ä Ìß¹ E È 80 70 GPa, Ñ ßÊ» Ó., X «(XRD) À Ø ÅÜ (TEM), Ô ÐÅ 2 β Ti Ó ÜÈÊ Û ÓÌß¹ ßÊ ±. ¹ «¾È Õ 99.99% Ti, 99.95% Mo, 99.99% Zr 99.99% Sn. Ar «Đ³ [MoTi 4 ]Zr (Ti 78.2 Mo.2 Zr 0.6, ¹ ½, %, ) [SnTi 4 ]Mo (Ti 75.7 Mo 0.9 Sn 3.4 ) Ä Ó. Cu Đ Ý Đ³Ä Ó,, Ü Cu Â Ñ Í» Æ Þ È 6 mm Ó. Ê ¹, Ó ¹ ½¹ 0.%. Bruker D8 Focus Ù XRD(CuK α, λ=0.5406 nm) µ ÓÆ, Philips Tecnai G 2 Ù TEM Æ Å, XRD TEM Æ Æ ß Ú Ê. TEM ¾ È 6%HClO 4 + 35%CH 3 (CH 2 ) 3 OH + 59%CH 3 OH( Æ ½), ¾ ËÕ 30. MTS80 Å ÔÜ, ÕÈ 0.5 mm/min, Æ Âµ GB/T228. 200, Þ 6 mm Ó ¾ Þ 3 mm, Æ Û 000 Êò, Ô Ç, Æ ÞÈ 3 mm, ¼ÕÈ 25 mm, Æ Ç «ÌÌßÓ ÚØß, Ñ Óµ 2. 2 ¹ ¼ ² Á È Ñ Ó [MoTi 4 ]Zr [SnTi 4 ]Mo Õ. µ¹ìßâ¹ E, Ö«Õ σ 0.2, Õ σ b, Ü ε ψ. Óµ» 2 Æ, ßÊ È, [MoTi 4 ]Zr Ó: E=80 GPa, σ 0.2 =73 MPa, σ b =747 MPa, ε=7.2%, ψ=39%; [SnTi 4 ]Mo Ó: E=70 GPa, σ 0.2 =775 MPa, σ b =82 MPa, ε=6.5%, ψ=59%., [SnTi 4 ]Mo Ó» Ìß¹ Õ, Ñ Ìß Ú¹ Æ, È.22%. Ó ßÊ Å 2 Ó Å ß Ã Ó. Á 2 È Ñ Ó [MoTi 4 ]Zr [SnTi 4 ]Mo XRD., Å 2 Ó Ñ Ó Ù β «. Ü, ÓÛ¹, [MoTi 4 ]Zr Ó È (β+α ) ¾, Ó ¹ ½» α ± ; [SnTi 4 ]Mo Ó ÐÈ β.» Ìß¹ β Ti Ó»ÓÀ β Ä Ã Å¹ [8 0]. È ØÐ Ó Engineering stress, MPa 000 800 600 400 200 2 4 0 0.0 0.5.0.5 2.0, % 0 0 2 4 6 8 0 2 4 6 8 20 22 24 Engineering strain, % Ð Ò [MoTi 4 ]Zr [SnTi 4 ]Mo Ô 3, MPa 000 800 600 400 200 2 3 4 2 [MoTi 4 ]Zr - [MoTi 4 ]Zr -2 [SnTi 4 ]Mo - [SnTi 4 ]Mo -2 4 3 Fig. Engineering stress strain curves of suction cast Intensity, a.u. [MoTi 4 ]Zr and [SnTi 4 ]Mo alloys (0) '' (0) (020) '' (002) '' () '' (02) '' (200) [MoTi 4 ]Zr -SC (2) [MoTi 4 ]Zr -tension [SnTi 4 ]Mo -SC [SnTi 4 ]Mo -tension 20 30 40 50 60 70 80 2, deg 2 Ð Ò [MoTi 4 ]Zr [SnTi 4 ]Mo XRD Fig.2 XRD patterns of suction cast [MoTi 4 ]Zr and ''-Ti [SnTi 4 ]Mo alloys before (SC) and after tension -Ti
d9` u^ : 9 β Ti Mo Zr(Sn) 9mX;fuRyH+6" yp[#i 45 6{Xw$ {R %k, w h? [MoTi ]Zr # NO}xKC ω h (I 3b e*i II), =Ga 8 [SnTi ]Mo ;oæ\ px/ TEM Z, I β+α 8 β+ω KC obo, ω h/-hwe. α 6 3 <. F I 3a e $ +X, m> [MoTi ]Zr ;o ω hc : v5, 8tv Æ4LC β, Q C β LCP Gsn Zq8t, w" ojt +X"$?, α 6 ω h 0N-7KC{Q#, (SAED) _ (I 3a e * I) =, β LC KCM =b/ga β+α 6 β+ω o. α =%C8 ω h, m 2 Lo# 8tv w4m>` [SnTi ]Mo ;o, LC β v?p Z=. w?, ;oi P β+α 2h, m α C Z8t r r q β {X (I 4a). r qv Z / G, G"$ /=%C, Z α h/? =b#,4, U β hk jv4 / β Ul:5 -GaGy (I 3b e*i I), w"v?he N-=% Po β i 6 β Ul:5[Eo β i. β 6 C (I 3b), M6 XRD i+ `. CK,? ;oc β P bcc i, Q,4 {, q,!n C 4 4 4 [9,20] 4 $ 3 [l:n [MoTi 4 ]Zr g>\ TEM mq SAED ^ Fig.3 TEM images and SAED patterns (white circles in TEM images) of suction cast [MoTi4 ]Zr alloy before (a) and after (b) tension $ 4 [l:n [SnTi 4 ]Mo g>\ TEM mq SAED ^ Fig.4 TEM images and SAED patterns (white circles in TEM images) of suction cast [SnTi4 ]Mo alloy before (a) and after (b, c) tension
46 Ð 49 XRD SAED. SAED (Á 4a Á), Ó»» ¹ α ±, É [MoTi 4 ]Zr Ó,» ω. ÓÛ¹ Ú Æ¹ÊÄ¹ÝØÆ (Á 4b c); α «Õ, ±»¹»¹Ý, É β «Ã 4 ÎÓ (Á 4c), Ä β Ø Ó, Å Ê Ó ß. Ñ Ó [MoTi 4 ]Zr [SnTi 4 ]Mo Ê ¹ β α «Ò, Ë {2} β /{0} α 0 β / 00 α, É [MoTi 4 ]Zr Ó Ã ¹ {0} β /{020} α 33 β / 00 α Ê α, Ô. β Ti Ó, Mo β ÍÐ, À Ó Ìß¹ E; Zr Sn» È ß, Û β ÍÐß., Zr Ð Õ ÀÛ β ÍÐߺ Å, ¹¹ Sn ÀÞ β ÍÐß [9]. Í, β ÍÐß [MoTi 4 ]Zr Ó ¹ È ½ ±, β ÍÐ ß [SnTi 4 ]Mo Ó ¹ β Ä ÚÁ ÎÊ, Î 2 Ä ßÊ. Í β Íл¹, β Ä À» ω, Í β Íл¹, β Ú Àº Å, È β ÍÐ β β ÍÐ β, Ñ» α ±. ω α Ú Ìß¹ β Ti Ó, Ë E ω >E α >E β [9], É α ¹» β Ä ¹ [2], ω Ä Õ Ê Ó Ìß¹., β ÍÐß [SnTi 4 ]Mo Ó Ìß¹ (E= 70GPa) [MoTi 4 ]Zr Ó(E=80GPa), Ë Ä» ω, Ä Ó β Ä»» ¹ α. Ð, β Ti Ó, Ti 0Mo 3Zr(E=74 GPa) [22], Ti 3Nb 3Zr(E=79 84GPa) [23] Ti 30Nb 7.5Zr(E=60 70GPa) [24], Å 2 Ó» Ìß¹, Å Ó β Ä Í Ðß, Ë Ó Õ β ÍÐ, Ó Ì ß¹. Mo eq È Ó β ÍÐß, Bania [25] : Mo eq =.0Mo+0.67V+0.44W+ 0.28Nb + 0.22Ta + 2.9Fe +.6Cr + 0.77Cu +.Ni +.43Co +.54Mn.0Al (¹ ½, %), ÁÕ, β ÍÐ Mo eq =%Mo; Sn Zr ³ È ß,, Å 2 Ó Mo»¹ È %, Ê β ÍÐ,» Ìß Â¹. Ìß¹, [SnTi 4 ]Mo Ó» Õ ß. [MoTi 4 ]Zr Ó, [SnTi 4 ]Mo Ó ØÅ È 25 nm, Ä Ó Å È 00 nm, À, Ø Õ,» Ó Õ ß, Ë σ b =82 MPa, ε=6.5%. Ã, Á 4c TEM,, β «Ã Æ 4 ÎÓ, Ä Ø Ã ÓÒ Ò, [SnTi 4 ]Mo Ó» ß. [MoTi 4 ]Zr Ó, Ö± ω À Ó Õ (σ b =747 MPa), É ω ² À, Ä À Ó ß (ε=7.2%). Ã, ω»¹, Û Ó ÅÕ Ä β ØÅ Ç Ö. [MoTi 4 ]Zr Ó Û ßÊ [SnTi 4 ]Mo Ó. Wang [6]»ßÊ Õ «Ti 6Al 4V Ó, µ» ßÊ, ½ È E=03 GPa, σ 0.2 =724 MPa, σ b =843 MPa, ε=49%., [MoTi 4 ]Zr [SnTi 4 ]Mo Ó Ìß¹ Ti 6Al 4V Ó; [MoTi 4 ]Zr Ó Õ Ti 6Al 4V, É [SnTi 4 ]Mo Ó Õ Õ Ti 6Al 4V, È Ì Ó., Û Í β Ti Ó Å, Ó Ê β ÍÐ, β Ä ß ÈÅ Õ, ÑÔ ω, Ó» Ìß¹ ßÊ. 3 () Ñ [SnTi 4 ]Mo Ó Ìß¹ (E= 70 GPa) Ó β Ä» ¹ α ±, Ñ [MoTi 4 ]Zr Ó» α Ã, ω Ìß¹ (E=80 GPa); Ã, [SnTi 4 ]Mo Ó Å Õ β Øß Ó» Õ (σ b =82 MPa) ß (ε=6.5%). (2) [MoTi 4 ]Zr Ó ¹ ½ ±»¹, [SnTi 4 ]Mo Ó β Ä Ø ÓÒ, ß., Ó Ê β ÍÐ, β Ä ß ÈÅ Õ, Ñ ω, Ó» Ì ß¹ ßÊ. ± [] Long M, Rack H J. Biomaterials, 998; 9: 62 [2] Niinomi M. Mater Sci Eng, 998; A243: 23 [3] Saito T, Furuta T, Hwang J H, Kuramoto S, Nishino K, Suzuki N, Chen R, Yamada A, Ito K, Seno Y. Science, 2003; 300: 464 [4] Ahmed T, Long M, Silvestri J, Ruiz C, Rack H J. In: Blenkinsop P, Evans W J, Flower H M eds., Preceeding 8th World Titanium Conference, Birmingham, UK: The Institute of Metals, 996: 760
9 Ù : β Ti Mo Zr(Sn) Ñ ÙÊÝÀ ÝÈ 47 [5] Ikeda M, Komatsu S Y, Sowa I, Niinomi M. Metall Mater Trans, 2002; 33A: 487 [6] Hao Y L, Li S J, Sun S Y, Zheng C Y, Yang R. Acta Biomater, 2007; 3: 277 [7] Ho W F. J Med Biol Eng, 2008; 28(): 47 [8] Guo S, Bao Z Z, Meng Q K,Hu L, Zhao X Q. Metall Mater Trans, 202; 43A: 3447 [9] Abdel Hady M, Hinoshita K, Morinaga M. Scr Mater, 2006; 55: 477 [0] Hao Y L, Yang R, Niinomi M, Kuroda D, Zhou Y L, Fukunaga K, Suzuki A. Metall Mater Trans, 2002; 33A: 337 [] Wood R M. Acta Metall, 963; : 907 [2] Talling R J, Dashwood R J, Jackson M, Dye D. Acta Mater, 2009; 57: 88 [3] Zhao X L, Niinomi M, Nakai M, Miyamoto G, Furuhara T. Acta Biomater, 20; 7: 3230 [4] Dong C, Wang Q, Qiang J B, Wang Y M, Jiang N, Han G, Li Y H, Wu J, Xia J H. J Phys, 2007; 40D: R273 [5] Hao C P, Wang Q, Ma R T, Wang Y M, Qiang J B, Dong C. Acta Phys Sin, 20; 60: 60 (½, Ä Ò, Þ, Ä,, Ñ. Î, 20; 60: 60) [6] Wang Q, Ji C J, Wang Y M, Qiang J B, Dong C. Metall Mater Trans, 203; 44A: 872 [7] Ma R T, Hao C P, Wang Q, Ren M F, Wang Y M, Dong C. Acta Metall Sin, 200; 46: 034 ( Þ, ½, Ä Ò, ß, Ä, Ñ. Ò¹, 200; 46: 034) [8] Takeuchi A, Inoue A. Mater Trans, 2005; 46: 287 [9] Hao Y L, Li S J, Sun S Y, Yang R. Mater Sci Eng, 2006; A44: 2 [20] Moffat D L, Larbalestier D C. Metall Mater Trans, 988; 9A: 677 [2] Xu Z Y. Acta Metall Sin, 997; 33: 45 ( Ý. Ò¹, 997; 33: 45) [22] Huang L J. PhD Dissertation, Beijing Institute of Aeronautical Material, 2006 (. ÆÙ¼Æ±½ É Ì, 2006) [23] Niinomi M. Mater Sci Eng, 998; A243: 23 [24] Martins D Q, Osório W R, Souza M E, Caram R, Garcia A. Electrochim Acta, 2008; 53: 2809 [25] Bania P J. J Met, 994; 64(7): 6 ( : )