Supporting Information

Σχετικά έγγραφα
Electronic, Crystal Chemistry, and Nonlinear Optical Property Relationships. or W, and D = P or V)

Theoretical prediction and synthesis of (Cr 2/3 Zr 1/3 ) 2 AlC i-max phase

Electronic Supplementary Information DFT Characterization on the Mechanism of Water Splitting Catalyzed by Single-Ru-substituted Polyoxometalates

Supporting Information

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

Butadiene as a Ligand in Open Sandwich Compounds

Computational study of the structure, UV-vis absorption spectra and conductivity of biphenylene-based polymers and their boron nitride analogues

Multifunctinality and Crystal Dynamics of Highly Stable Porous Metal-Organic Framework [Zn 4 O(NTB) 2 ]

Table of Contents 1 Supplementary Data MCD

Electronic Supplementary Information (ESI)

Supporting Information. Generation Response. Physics & Chemistry of CAS, 40-1 South Beijing Road, Urumqi , China. China , USA

Enantioselective Synthesis of the Anti-inflammatory Agent ( )-Acanthoic Acid

Supporting Information. Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory

Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

Supporting Information

Cycloaddition of Homochiral Dihydroimidazoles: A 1,3-Dipolar Cycloaddition Route to Optically Active Pyrrolo[1,2-a]imidazoles

Dipole-Guided Electron Capture Causes Abnormal Dissociations of Phosphorylated Pentapeptides

An experimental and theoretical study of the gas phase kinetics of atomic chlorine reactions with CH 3 NH 2, (CH 3 ) 2 NH, and (CH 3 ) 3 N

Tunable Ligand Emission of Napthylsalophen Triple-Decker Dinuclear Lanthanide (III) Sandwich Complexes

Supporting Information

Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. Supporting Information

Supporting Information. A Combined Crossed Molecular Beams and ab Initio Investigation on the Formation of Vinylsulfidoboron (C 2 H

C H Activation of Cp* Ligand Coordinated to Ruthenium. Center: Synthesis and Reactivity of a Thiolate-Bridged

Engineering Tunable Single and Dual Optical. Emission from Ru(II)-Polypyridyl Complexes. Through Excited State Design

Supplementary Information for

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

IV. ANHANG 179. Anhang 178

Synthesis, Crystal Structure and Supramolecular Understanding of 1,3,5-Tris(1-phenyl-1H-pyrazol-5- yl)benzenes

Nickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings

Extremely Strong Halogen Bond. The Case of a Double-Charge-Assisted Halogen Bridge

10-π-electron arenes à la carte: Structure. Sr, Ba; n = 6-8) complexes

Supplementary Materials: Exploration of vanadate selenites Solid Phase Space, crystal structures and polymorphism

Supporting Information

Enhancing σ/π-type Copper(I) thiophene Interactions by Metal Doping (Metal = Li, Na, K, Ca, Sc)

Electronic Supplementary Information

Electronic Supplementary Information

SUPPORTING INFORMATION. Pyramidanes: The Covalent Form of the Ionic Compounds

Fused Bis-Benzothiadiazoles as Electron Acceptors

Supporting Information for: electron ligands: Complex formation, oxidation and

stability and aromaticity in the benzonitrile H 2 O complex with Na+ or Cl

Electronic Supplementary Information:

Selecting Critical Properties of Terpenes and Terpenoids through Group-Contribution Methods and Equations of State

Supporting Information To. Microhydration of caesium compounds: Journal of Molecular Modeling

Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

Supporting Information for. A New Diketopiperazine, Cyclo-(4-S-Hydroxy-R-Proline-R-Isoleucine), from an Australian Specimen of the Sponge

Carbohydrates in the gas phase: conformational preference of D-ribose and 2-deoxy-D-ribose

Supporting Information. Enhanced energy storage density and high efficiency of lead-free

Supplementary materials. Mode Analysis. Matthias M. N. Wolf, Christian Schumann, Ruth Groß, Tatiana Domratcheva 1 and Rolf. Diller

Novel electroluminescent donor-acceptors based on dibenzo[a,c]phenazine as

Supporting Information

Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand

Supplementary information

Supporting Information. Crown Ether Complexes of Actinyls: A Computational Assessment of

High order interpolation function for surface contact problem

difluoroboranyls derived from amides carrying donor group Supporting Information

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

Supplementary Material

SUPPORTING INFORMATION. Polystyrene-immobilized DABCO as a highly efficient and recyclable organocatalyst for Knoevenagel condensation

Supplementary Information Chemical Partition of the Radiative Decay Rate of Luminescence of Europium Complexes

Hydrogen Sorption Efficiency of Titanium Decorated Calix[4]pyrroles

DuPont Suva 95 Refrigerant

Comparison of carbon-sulfur and carbon-amine bond in therapeutic drug: -S-aromatic heterocyclic podophyllum derivatives display antitumor activity

Decomposition of Condensed Phase Energetic Materials: Interplay between Uni- and Bimolecular Mechanisms Supporting Information

Studies in Magnetism and Superconductivity under Extreme Pressure

Constitutive Equation for Plastic Behavior of Hydrostatic Pressure Dependent Polymers

Supporting Information

Discovery of multi-target receptor tyrosine kinase inhibitors as novel anti-angiogenesis agents

Key Laboratory of Functional Materials and Devices for Special Environments, Xinjiang Technical

Supporting Information. Introduction of a α,β-unsaturated carbonyl conjugated pyrene-lactose hybrid

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Experimental. Crystal data

of the methanol-dimethylamine complex

ELECTRONIC SUPPORTING INFORMATION

Supporting Information

The effect of curcumin on the stability of Aβ. dimers

Supporting information. Influence of Aerosol Acidity on the Chemical Composition of Secondary Organic Aerosol from β caryophyllene

Properties of Nikon i-line Glass Series

SUPPORTING INFORMATION TO. On Two Alizarin Polymorphs

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

DuPont Suva 95 Refrigerant

Supporting Information

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Supplementary Information For

Supporting Information: Design principles for α-tocopherol analogues

data reports 2-(4-Methylphenyl)-2-oxoethyl 3,4-dimethoxybenzoate Structure description Synthesis and crystallization Refinement

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

Electronic Supplementary Information (ESI)

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

ADVANCED STRUCTURAL MECHANICS

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Supporting Information

Technical Information T-9100 SI. Suva. refrigerants. Thermodynamic Properties of. Suva Refrigerant [R-410A (50/50)]

chlorostibine Iou-Sheng Ke and François P. Gabbai Department of Chemistry, Texas A&M University, College Station, TX

Synthesis of New Heteroscorpionate Iridium(I) and Iridium(III) Complexes

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Structure-Metabolism-Relationships in the microsomal clearance of. piperazin-1-ylpyridazines

LP N to BD* C-C = BD C-C to BD* O-H = LP* C to LP* B =5.

Supporting Information for Substituent Effects on the Properties of Borafluorenes

Transcript:

Supporting Information Prediction of Novel High-Pressure Structures of Magnesium Niobium Dihydride Chuanzhao Zhang,,, Guoliang Sun, Jingjing Wang, Cheng Lu,*,, Yuanyuan Jin, Xiaoyu Kuang,*, and Andreas Hermann*, Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China Department of Physics, Nanyang Normal University, Nanyang 473061, China Department of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China Department of Physics and High Pressure Science and Engineering Center, University of Nevada, Las Vegas, Nevada 89154, United States Centre for Science at Extreme Conditions and SUPA, School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH93JZ, United Kingdom *E-mail: lucheng@calypso.cn. *E-mail: scu_kuang@163.com. *E-mail: a.hermann@ed.ac.uk. S-1

Figure S1. Predicted structures of MgH2. S-2

Figure S2. Volume-pressure relations for MgH 2. S-3

Figure S3. Phonon dispersion curves of five considered MgH 2 phases: (a) α-mgh 2 at 1 atm, (b) γ-mgh 2 at 5 GPa, (c) δ-mgh 2 at 10 GPa, (d) ε-mgh 2 at 100 GPa, and (e) ζ-mgh 2 at 180 GPa. S-4

Figure S4. Electronic band structures and densities of states for five considered MgH 2 phases: (a) α-mgh 2 at 1 atm, (b) γ-mgh 2 at 5 GPa, (c) δ-mgh 2 at 10 GPa, (d) ε-mgh 2 at 100 GPa, and (e) ζ-mgh 2 at 180 GPa. S-5

Figure S5. Electronic localization function for five considered MgH 2 compounds: (a) (001) plane for α-mgh 2 at 1 atm, (b) (010) plane for γ-mgh 2 at 5 GPa, (c) (001) plane for δ-mgh 2 at 10 GPa, (d) (010) plane for ε-mgh 2 at 100 GPa, and (e) (001) plane for ζ-mgh 2 at 180 GPa. S-6

Figure S6. Predicted structures of NbH 2. S-7

Figure S7. Volume-pressure relations for NbH 2. S-8

Figure S8. Phonon dispersion curves of two considered NbH 2 compounds: (a) the Fm-3m phase at 1 atm and (b) Pnma phase at 100 GPa. S-9

Figure S9. Electronic band structures and densities of states for two considered NbH 2 compounds: (a) the Fm-3m phase at 1 atm and (b) Pnma phase at 100 GPa. S-10

Figure S10. Electronic localization function for two considered NbH 2 phases: (a) (110) plane for the Fm-3m phase at 1 atm and (b) (010) plane for the Pnma phase at 100 GPa. S-11

Figure S11. Predicted structures of MgNbH 2. S-12

Figure S12. Enthalpy-pressure relations for Mg with respect to the P6 3 /mmc phase. S-13

Figure S13. Enthalpy-pressure relations for Nb with respect to the Im-3m phase. S-14

Figure S14. Volume-pressure relations for MgNbH 2. S-15

Table S1. Structural information of the predicted structures for MgH 2 at ambient pressure. Phase P4 2 /mnm (136) P2 1 /m (11) P4/nmm (129) P-62m (189) P6 3 /mmc (194) Pbc2 1 (29) Pnma (62) Pbcn (60) Pbca (61) Lattice parameters (Å, ) a=4.5058 b=4.5058 c=3.0069 a=9.4698 b=3.1711 c=5.3441 β=99.6073 a=3.2548 b=3.2548 c=4.8475 a=5.2354 b=5.2354 c=3.0973 γ=120 a=3.2396 b=3.2396 c=5.6525 γ=120 a=4.8926 b=4.6437 c=4.7747 a=5.2875 b=3.1159 c=6.0056 a=4.4889 b=5.4326 c=4.9214 a=9.3077 b=4.8906 Atom coordinates (fractional) Atom x y z Mg1(2a) 0.00000 0.00000 0.00000 H1(4f) 0.30426 0.30426 0.00000 Mg1(2e) 0.86594 0.75000 0.33696 Mg2(2e) 0.44191 0.75000 0.73647 Mg3(2e) 0.76684 0.25000 0.81853 H1(2e) 0.44524 0.75000 0.34736 H2(2e) 0.86881 0.75000 0.96651 H3(2e) 0.92556 0.25000 0.59940 H4(2e) 0.76347 0.25000 0.20841 H5(2e) 0.39522 0.25000 0.01913 H6(2e) 0.28532 0.25000 0.46129 Mg1(2c) 0.00000 0.50000 0.23446 H1(2a) 0.00000 0.00000 0.00000 H2(2c) 0.50000 0.00000 0.37334 Mg1(2d) 0.33333 0.66667 0.50000 Mg2(1a) 0.00000 0.00000 0.00000 H1(3g) 0.25902 0.00000 0.50000 H2(3f) 0.40336 0.40336 0.00000 Mg1(2d) 0.33333 0.66667 0.75000 H1(2c) 0.33333 0.66667 0.25000 H2(2a) 0.00000 0.00000 0.00000 Mg1(4a) 0.03070 0.26536 0.25049 H1(4a) 0.38205 0.09660 0.14154 H2(4a) 0.25787 0.55697 0.96957 Mg1(4c) 0.75129 0.25000 0.60218 H1(4c) 0.52030 0.25000 0.33471 H2(4c) 0.36142 0.75000 0.07575 Mg1(4c) 0.00000 0.33352 0.75000 H1(8d) 0.27177 0.10971 0.58064 Mg1(8c) 0.38288 0.02988 0.77489 H1(8c) 0.29827 0.38137 0.66944 S-16

c=4.7624 H2(8c) 0.47353 0.74246 1.01345 P6 3 (173) Pa-3 (205) Fm-3m (225) I4 1 /amd (141) Pnnm (58) a=3.1937 b=3.1937 c=6.1236 γ=120 a=4.8039 b=4.8039 c=4.8039 a=4.7451 b=4.7451 c=4.7451 a=3.8434 b=3.8434 c=9.0603 a=4.5145 b=4.4960 c=3.0096 Mg1(2c) 0.33333 0.66667 0.25000 H1(2d) 0.33333 0.66667 0.75000 H2(2a) 0.00000 0.00000 0.00000 Mg1(4a) 0.00000 0.00000 0.00000 H1(8c) 0.34673 0.34673 0.34673 Mg1(4a) 0.00000 0.00000 0.00000 H1(8c) 0.25000 0.25000 0.25000 Mg1(4b) 0.50000 0.50000 0.00000 H1(8e) 0.50000 0.50000 0.21514 Mg1(2b) 0.00000 0.00000 0.50000 H1(4g) 0.30826 0.30042 0.50000 S-17

Table S2. Structural information of five considered MgH 2 phases. Phase Pressure Lattice parameters (Ǻ, ) α-mgh 2 1 atm a=4.506, b=4.506, c=3.007 γ-mgh 2 5 GPa a=4.372, b=5.245, c=4.784 δ-mgh 2 10 GPa a=4.705, b=4.434, c=4.451 ε-mgh 2 100 GPa a=4.259, b=2.626, c=5.009 ζ-mgh 2 180 GPa a=2.734, b=2.734, c=3.529, γ=120 Atom coordinates (fractional) Atom x y z Mg1(2b) 0.000 0.000 0.500 H1(4g) 0.304 0.304 0.500 Mg1(4c) 0.000 0.327 0.750 H1(8d) 0.267 0.102 0.576 Mg1(4a) 0.030 0.267 0.229 H1(4a) 0.402 0.118 0.168 H2(4a) 0.254 0.556 0.965 Mg1(4c) 0.250 0.250 0.608 H1(4c) 0.026 0.250 0.311 H2(4c) 0.147 0.750 0.073 Mg1(2d) 0.333 0.667 0.750 H1(2c) 0.333 0.667 0. 250 H2(2a) 0.000 0.000 0.000 S-18

Table S3. The calculated Bader charges of Mg and H atoms in five considered MgH 2 crystals. Phase Pressure Atom Charge value (e) ω (e) α-mgh 2 1 atm Mg 0.01 1.99 H 1.99 0.99 γ-mgh 2 5 GPa Mg 0.41 1.59 H 1.80 0.80 δ-mgh 2 10 GPa Mg 0.39 1.61 H 1.80 0.80 ε-mgh 2 100 GPa Mg 0.45 1.55 H 1.78 0.78 ζ-mgh 2 180 GPa Mg 0.49 1.51 H 1.76 0.76 ω is the charge transfer from Mg to a H atom. S-19

Table S4. Structural information of the predicted structures for NbH 2 at ambient pressure. Phase Pnma (62) Fm-3m (225) P6 3 mc (186) P4/nmm (129) P-3m1 (164) Lattice parameters (Å, ) a=5.2531 b=3.2015 c=5.5609 a=4.5773 b=4.5773 c=4.5773 a=3.2461 b=3.2461 c=5.2112 γ=120 a=3.1246 b=3.1246 c=4.7347 a=3.2146 b=3.2146 c=5.0819 γ=120 Atom coordinates (fractional) Atom x y z Nb1(4c) 0.23817 0.25000 0.42514 H1(4c) 0.11526 0.75000 0.91449 H2(4c) 0.46703 0.75000 0.17059 Nb1(4b) 0.00000 0.00000 0.50000 H1(8c) 0.25000 0.75000 0.75000 Nb1(2b) 0.66667 0.33333 0.82180 H1(2b) 0.66667 0.33333 0.18961 H2(2a) 0.00000 0.00000 0.42546 Nb1(2c) 0.50000 0.00000 0.73493 H1(2c) 0.50000 0.00000 0.32978 H2(2a) 0.50000 0.50000 0.00000 Nb1(2d) 0.66667 0.33333 0.24308 H1(2d) 0.66667 0.33333 0.63617 H2(1b) 0.00000 0.00000 0.50000 H3(1a) 0.00000 0.00000 0.00000 S-20

Table S5. Structural information of two considered NbH 2 phases. Phase Fm-3m (225) Pnma (62) Pressure Lattice parameters (Ǻ, ) 1 atm a=4.577, b=4.577, c=4.577 100 GPa a=4.696, b=2.862, c=5.092 Atom coordinates (fractional) Atom x y z Nb1(4b) 0.000 0.000 0.500 H1(8c) 0.250 0.750 0.750 Nb1(4c) 0.736 0.250 0.410 H1(4c) 0.382 0.250 0.924 H2(4c) 0.000 0.750 0.218 S-21

Table S6. The calculated Bader charges of Nb and H atoms in two considered NbH 2 crystals. Phase Pressure Atom Charge value (e) ω (e) Fm-3m 1 atm Nb 9.77 1.33 H 1.61 0.61 Pnma 100 GPa Nb 10.02 0.98 H 1.49 0.49 ω is the charge transfer from Nb to a H atom. S-22

Table S7. Structural information of the predicted structures for MgNbH 2 at ambient pressure. Phase Pmmn (59) P-6m2 (187) Cmcm (63) P4/mmm (123) Pmma (51) Lattice parameters (Å, ) a=3.7082 b=3.3246 c=7.2781 a=3.1147 b=3.1147 c=4.9538 γ=120 a=3.1236 b=11.0181 c=4.7017 a=3.0436 b=3.0436 c=4.3633 a=4.9747 b=3.0406 c=5.4033 Atom coordinates (fractional) Atom x y z Mg1(2b) 0.00000 0.50000 0.86688 Nb1(2b) 0.00000 0.50000 0.38019 H1(2a) 0.00000 0.00000 0.23820 H2(2a) 0.00000 0.00000 0.53170 Mg1(1d) 0.33333 0.66667 0.50000 Nb1(1a) 0.00000 0.00000 0.00000 H1(2i) 0.66667 0.33333 0.78867 Mg1(4c) 0.50000 0.93481 0.75000 Nb1(4c) 0.00000 0.17798 0.75000 H1(4c) 0.00000 0.79449 0.75000 H2(4a) 0.00000 0.00000 0.50000 Mg1(1d) 0.50000 0.50000 0.50000 Nb1(1a) 0.00000 0.00000 0.00000 H1(1b) 0.00000 0.00000 0.50000 H2(1c) 0.50000 0.50000 0.00000 Mg1(2f) 0.25000 0.50000 0.65423 Nb1(2e) 0.25000 0.00000 0.15227 H1(2c) 0.50000 0.00000 0.50000 H2(2b) 0.00000 0.50000 0.00000 S-23

Table S8. Calculated elastic constants C ij (GPa), bulk modulus B (GPa), shear modulus G (GPa), Young s modulus E (GPa), B/G and Poisson s ratio ν for two stable MgNbH 2 compounds: (a) the P-6m2 phase at 100 GPa and (b) the Cmcm phase at 160 GPa. Phase C 11 C 12 C 13 C 22 C 23 C 33 C 44 C 55 C 66 B G E B/G ν P-6m2 656 310 367 664 220 173 451 182 481 2.48 0.32 Cmcm 719 563 535 939 546 709 191 215 45 621 119 336 5.22 0.41 S-24