BEHAVIOUR AND MECHANISM OF STRAIN HARDEN- ING FOR DUAL PHASE STEEL DP1180 UNDER HIGH STRAIN RATE DEFORMATION

Σχετικά έγγραφα
ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (

RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti 45Al 8Nb ALLOY


Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #

MICROSTRUCTURE EVOLUTION OF HYPEREUTEC- TOID STEELS DURING WARM DEFORMATION II. Cementite Spheroidization and Effects of Al


STUDY ON CYCLIC OXIDATION RESISTANCE OF HIGH NIOBIUM CONTAINING TiAl BASE ALLOY WITH ERBIUM

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

EFFECT OF HIGH MAGNETIC FIELD ON THE TRANSI- TION BEHAVIOR OF Cu RICH PARTICLES IN Cu 80%Pb HYPERMONOTECTIC ALLOY

NUMERICAL SIMULATION OF KEYHOLE SHAPE AND TRANSFORMATION FROM PARTIAL TO OPEN STATES IN PLASMA ARC WELDING

2011 Đ 3 Ñ ACTA METALLURGICA SINICA Mar pp

EFFECT OF LOADING MODES ON MECHANICAL PROPERTY AND STRAIN INDUCED MARTENSITE TRANSFORMATION OF AUSTENITIC STAINLESS STEELS

MICROSTRUCTURE AND MECHANICAL PROPERTIES OF 1500 MPa GRADE ULTRA HIGH STRENGTH LOW ALLOY STEEL

FRACTURE TOUGHNESS OF WELDED JOINTS OF X100 HIGH STRENGTH PIPELINE STEEL

2 SFI

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

CORROSION BEHAVIOR OF X70 PIPELINE STEEL IN SIMULATED KU ERLE SOIL SOLUTION WITH CO 2

High order interpolation function for surface contact problem

48 12 Ö Vol.48 No ACTA METALLURGICA SINICA Dec pp Î µ TG142.1, Á A Ì µ (2012)

AN INVESTIGATION ON THE CREEP BEHAVIOR OF PURE Mg

THE MICRO FABRICATING PROCESS AND ELECTRO- MAGNETIC PROPERTIES OF TWO KINDS OF Fe POWDERS WITH DIFFERENT GRAIN SIZES AND INTERNAL STRAINS

A NEW ONE PARAMETER KINETICS MODEL OF DYNAMIC RECRYSTALLIZATION AND GRAIN SIZE PREDICATION

SYNTHESIS OF PLASTIC Zr BASED BULK METALLIC GLASS WITH CRYSTAL PHASE BY DIRECTIONAL SOLIDIFICATION

Delta Inconel 718 δ» ¼

M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.

CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS I. Experimental Result

PHOTOCATALYTIC PROPERTIES OF TiO 2 THIN FILMS PREPARED BY MICROARC OXIDATION AND DOPING ELECTROLYTES

EFFECT OF WELDING PROCESSING PARAMETERS ON POROSITY FORMATION OF MILD STEEL TREATED BY CO 2 LASER DEEP PENETRATION WELDING

EFFECT OF HAFNIUM CONTENT ON MORPHOLOGY EVOLUTION OF γ PRECIPITATES IN P/M Ni BASED SUPERALLOY

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

Blowup of regular solutions for radial relativistic Euler equations with damping

BEHAVIOR OF MARTENSITE REVERSE TRANSFORMA- TION IN 18Mn TRIP STEEL DURING WARM DEFORMATION

Stress Relaxation Test and Constitutive Equation of Saturated Soft Soil

INFLUENCES OF PHASE PRECIPITATIONS OF TERNARY β Ti Mo Zr(Sn) ALLOYS ON YOUNG S MODULUS AND MECHANICAL PROPERTIES

1-6 Ð Ï Te (mass%) 0% 0.3% 0.5% 0.8% 1.0% 2.0% 2 Î 1 6

Quick algorithm f or computing core attribute

p din,j = p tot,j p stat = ρ 2 v2 j,

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

Constitutive Equation for Plastic Behavior of Hydrostatic Pressure Dependent Polymers

EFFECTS OF TEMPERING TEMPERATURE ON THE IMPACT TOUGHNESS OF STEEL 42CrMo

ΜΔΛΔΣΖ ΔΝΓΟΣΡΑΥΤΝΖ Δ ΥΑΛΤΒΔ ΘΔΡΜΖ ΔΛΑΖ

Διπλωματική Εργασία. Μελέτη των μηχανικών ιδιοτήτων των stents που χρησιμοποιούνται στην Ιατρική. Αντωνίου Φάνης

CorV CVAC. CorV TU317. 1

AN RFID INDOOR LOCATION ALGORITHM BASED ON FUZZY NEURAL NETWORK MODEL. J. Sys. Sci. & Math. Scis. 34(12) (2014, 12),

UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库

P ƒ.. Š ³ÒÏ,.. Š ³ÒÏ,.. ± ˆ ŒˆŠˆ Š ˆŠ

EXPERIMENTAL RESEARCH ON MELTING SURFACE BEHAVIOR IN MOLD UNDER COMPOUND MAGNETIC FIELD

ØSrÚCa Mg 12Zn 4Al 0.3MnÜ

Effects of Retained Austenite Characteristics on Delayed Fracture Properties of Ultra High-Strength TBF Steels

Motion analysis and simulation of a stratospheric airship


P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ

ˆ ˆ ˆ ˆˆ γ-ˆ ˆŸ ˆ Š Œ ˆ Œ œ Š ˆˆ

FRICTION AND WEAR PROPERTIES OF SURFACE PLASMA Cr W ALLOYING LAYER OF γ TiAl ALLOY

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

Supporting Information

(Mechanical Properties)

,,, (, ) , ;,,, ; -

Fused Bis-Benzothiadiazoles as Electron Acceptors

Electronic Supplementary Information (ESI)

Ó³ Ÿ , º 7(205) Ä1486 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ³ μ 1, ƒ. μ μë,. μ,. ŠÊ² ±μ,. Œ ² μ ± Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

DISCONTINUOUS YIELDING BEHAVIOR OF β PHASE CONTAINING TiAl ALLOY DURING HIGH TEMPERATURE DEFORMATION PROCESS

Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή

CuS * CuS. THz. CuS. THz-TDS. CuS. 1 THz = 33 cm - 1. THz. PACS Ci Bd. CuS. THz. THz. CuS. CuS. THz. http / / wulixb. iphy. ac.

MnZn. MnZn Ferrites with Low Loss and High Flux Density for Power Supply Transformer. Abstract:

EFFECTS OF Al Al 4 C 3 REFINER AND ULTRASONIC FIELD ON MICROSTRUCTURES OF PURE Mg

MECHANICAL PROPERTIES OF MATERIALS

Ó³ Ÿ , º 7(163).. 855Ä862 ˆ ˆŠ ˆ ˆŠ Š ˆ. . ƒ. ² ͱ 1,.. μ μ Íμ,.. μ²ö,.. ƒ² μ,.. ² É,.. ³ μ μ, ƒ.. Š ³ÒÏ,.. Œμ μ μ,. Œ.

Ανώτερα Μαθηματικά ΙI

Θεωρία Συνόλων. Ενότητα: Επιλογής επόμενα. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É.

Ó³ Ÿ , º 7(163).. 798Ä802 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

Studies on the Binding Mechanism of Several Antibiotics and Human Serum Albumin

49 Ö 6 Đ Vol.49 No ACTA METALLURGICA SINICA Jun pp

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

ˆ Œ ˆ Ÿ ˆ ˆŸ Ÿ - ˆ ˆ Šˆ Š ˆŸˆ

Resurvey of Possible Seismic Fissures in the Old-Edo River in Tokyo

v w = v = pr w v = v cos(v,w) = v w

College of Life Science, Dalian Nationalities University, Dalian , PR China.

ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ

Τεχνικές βασισμένες στα Δίκτυα Αναμονής Εισαγωγικά Επιχειρησιακοί νόμοι

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä É ³μ μ μé ³ ±μ²² μ Í LHCb ˆ É ÉÊÉ Ë ± Ò μ± Ì Ô Í μ ²Ó μ μ ² μ É ²Ó ±μ μ Í É ŠÊ Î Éμ ± É ÉÊÉ, μé μ, μ Ö

ER-Tree (Extended R*-Tree)

Αλγόριθμοι Δικτύων και Πολυπλοκότητα Προσεγγιστικοί Αλγόριθμοι. Άρης Παγουρτζής

P ² Ì μ Š ˆ Œˆ Š Œ Œˆ. ² μ Ê ² Nuclear Instruments and Methods in Physics Research.

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

SYNTHESIS KINETICS OF (Y, Gd) 2 O 3 Eu 3+ NANO POWDERS DURING PROCESS OF PREPARATION

MICROSTRUCTURE STABILITY IN A FULLY LAMELLAR HIGH Nb TiAl ALLOY AFTER LONG TERM THERMAL CYCLING

Protective Effect of Surface Coatings on Concrete

EFFECTS OF TEMPERATURE GRADIENT ON LAMEL- LAR ORIENTATIONS OF DIRECTIONAL SOLIDIFIED TiAl BASED ALLOY

WAFER LEVEL ELECTRODEPOSION OF Fe Ni NOVEL UBM FILMS

Œ.. ² μ,.. Œ ²μ, ƒ.. μ ±μ,. Ô Ô ², Œ.. ƒê Éμ, Œ.. Œ ² μ *

STRUCTURE AND MAGNETIC BEHAVIOR OF Zn 1 x Co x O CRYSTAL POWDERS PREPARED BY SOL GEL TECHNIQUE

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä616 Š ˆŒ CMS LHC

Editorís Talk. Advisor. Editorial team. Thank

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

Transcript:

Ø 48 Ø 10 Vol.48 No.10 2012 10 Ø 1160 1165 ACTA METALLURGICA SINICA Oct. 2012 pp.1160 1165 Ï DP1180 Æ É ¹Ã ³Ê µ Ô 1) Õ 1) ÙÝ 1) Ñß 1,2) ÐÛÚ 1) 1) ÙºÒ Ù» Ù, 100083 2) ÓÞ, 100043 Ü ĐÛÊ Hopkinson É Þ DP1180 ÎÂÜĵ Ý» 0.001 s 1 Ê 500, 1750 s 1 к ÊÐ ÉÂÍĐ, Swift Í ÍĐÖ Ð Á Ï, ± Crussard Jaoul ÅÀ Swift Ö.  : к ÊÐ ÉÂ, É, Ù Ý À À²; Ù Ý À ; ÜÈ Ý À Æ 3.12% Ï 1.28%. ¹ Ý, Ð ² ± Ý Ñ, Í ÆÄ, ËÁÏ 90 nm, «µđí Ò (GNB) É DP1180 Üĵ ¹ Ý ÄÔµ Å ; Ý» 1750 s 1 Ê, È T=103 Ð Æ. Üĵ, ¹ Ý,, Crussard Jaoul, ĐÍ Ò ¾± TG142.41 ÁÅ A Á ± 0412 1961(2012)10 1160 06 BEHAVIOUR AND MECHANISM OF STRAIN HARDEN- ING FOR DUAL PHASE STEEL DP1180 UNDER HIGH STRAIN RATE DEFORMATION DAI Qifeng 1), SONG Renbo 1), FAN Wuyan 1), GUO Zhifei 1,2), GUAN Xiaoxia 1) 1) School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083 2) Shougang Research Institute of Technology, Beijing 100043 Correspondent: SONG Renbo, professor, Tel: (010)82377990, E-mail: songrb@mater.ustb.edu.cn Supported by High Technology Research and Development Program of China (No.2009AA03Z518) and Basic Theory Research Fund of Engineering Research Institute of USTB (No.YJ2010 006) Manuscript received 2012 06 20, in revised form 2012 07 16 ABSTRACT Strain hardening behaviour and mechanism of a cold rolled dual phase steel DP1180 under quasi static tensile condition at a strain rate of 0.001 s 1 by electronic universal testing machine, and dynamic tensile condition at strain rates of 500 and 1750 s 1 by split Hopkinson tensile bar (SHTB) apparatus were systematically studied. According to the modified Swift true strain stress model, the experimental data was regressed by using nonlinear fitting method, and strain hardening exponent in the modified Swift model was calculated by a modified Crussard Jaoul method. The results revealed that there are two stage strain hardening characteristics of DP1180 steel at the strain rate range of 0.001 1750 s 1, the strain hardening ability of the stage I was enhanced with increase of strain rate, while the strain hardening ability of the stage II was weakened, and the transition strain was decreased. The ferrite near the martensite regions formed cell blocks with dislocation structures, with a size of 90 nm, due to the limit of deformation compatibility, * Á ¹ Ôß Ä È 2009AA03Z518 Ê À Ú ß ÙÂ ß Ù È YJ2010 006 Û» : 2012 06 20,» : 2012 07 16 «Ê :, Å, 1986 Æ, Æ DOI: 10.3724/SP.J.1037.2012.00364

Ø 10 Ñ : DP1180 ÛÃ Ü ºÞÚÐ 1161 and the existence of geometrically necessary boundary (GNB) made DP1180 steel not instantly damaged under deformation at high strain rates. In addition, the adiabatic temperature rise of T = 103 made martensite easy to have plastic deformation at a strain rate of 1750 s 1. KEY WORDS dual phase steel, high strain rate, strain hardening, modified Crussard Jaoul analysis, geometrically necessary boundary ÝÅ º Þ Ö»³ Ö» Ó ÝË Æ, Ø ¼¾Ì Ö Å [1 8]. ² Å«Õ Þ 10 3 s 1 ŵ, Á ß ½ Û, º Þ º³ÏÃÝÅ Æ Á Õ Ô Û [9]., ÝÅ Ë» ¼ ÜÒ Å., ÕÇ Ó [10] Ñ Å Ö 600 MPa ºÚÝÅ ¹ Ç, ² ¾ Ë ; Kamp Ó [11] Hollomon Jaffe ÑÓÖ 800 Ë 1000 MPa ÏÃÝÅ Ë Æ Ç; Colla Ó [12] Hollomon, Pickering, Crussard Jaoul Ë Bergstrom 4 Ö Ñ DP600 Ë DP450 ÝÅ ¼. ÝÅ º Þ ¼ Å, ʳ 1000 MPa º³ÏÃÝÅ º Þ ¼ËÜÒ. Ë», ¼Ô ¼³, ¹ Ó Ë³ Õ Ø³ Ó, ¼ Åß ÇÑ¼Ô ß º [13]. Å, Ç» ÊÃÎ Ë Hopkinson ʱ (split Hopkinson tensile bar, SHTB) ÊÃÎ Á, Ð Swift Î Õ º³ÏÃÝÅ DP1180 º Þ (500 Ë 1750 s 1 ) ºÂ, ² Ð Crussard Jaoul «Ð Swift, Á DP1180 ÝÅ º Þ Å Õ Û, ² ÜÒ. 1 Î Î ÏÃÝÅ Û (Ó, %) ¼: C 0.19, Si 0.75, Mn 1.95, Cr 0.02, Nb 0.044, P 0.005, S 0.003, Fe º. Ïà ¼ 1.0 mm. Ïà  ¼ ̼ 50 mm 200 mm 1 mm, Gleeble 3500 Ü ± Ö Ö Ä Î. 10 /s ÞÆ 820 ² 150 s, 5 /s ÞÐÏ 710, 50 /s Ï ÈÖÆÏ 240, ± ÅË Ä, 240 s, ÃÏ, ² 1. 4%( Ý ) Í Ì, ² Û ¹½ (OM) ¹. Photoshop Ä Å Ç, ² Imagetool ² ß ÝÅ ¹ Õ µ ÌË Ý.» ÊÃÎ CMT4105 ¼Ô ܱ, ØÊÃÎ SHTB [9] ±, Î ±.» Þ¼ 0.001 s 1, ÊÃÎ ½ 2 Ö Þ¼ 500 Ë 1750 s 1.» Ë ÊÃÎ Ì ² 2. 2 κ  2.1 ² 3 ¼ DP1180 ÝÅ ¹. Â, Ù ¼ Å ËÑ ÝÅ. DP1180 ¹ ß Ã, DP1180 ÝÅ Õ µ ̼ 3.14 µm, Ì ² ѹ Nb, ѵ,  µ³ ; Õ 1 ÍĐ DP1180 Üĵ Õ³Õ Æ± Fig.1 Schematic diagram of continuous annealing for dual phase steel DP1180 2 к ÉÂÍĐÊÐ ÉÂÍĐÉ ˱ Fig.2 Geometries of tensile specimens for low strain rate (a) and high strain rate (b) tests (unit: mm)

1162 Ñ Ø Ø 48 Ý º, 68.7%, Ù Å ³ Ë Î ³, Ç Ê³ 1180 MPa. Õ ¼. ² DP1180 ÝÅ Õ Mn Ç º, ² ѹ Cr, Ç Ö Ë È, Ͼ Ë. µ ÃË ËÐ, Feret Þ [14] ¼ 1.35. 2.2» ² ½ ÍÌ ² 4 ¼ DP1180 ÝÅ Þ¼ 0.001 s 1» ÊÃÎ ÊÃÎ Ë Þ ¼ 500 Ë 1750 s 1 ºÂ.  Á, DP1180 ÝÅ ³ Þ ², ß Ðà ³ R p0.2 Ë Ê³ R m Þ Á Á, ³ Ö. 1 ¼ DP1180 ÝÅ» Ë Î ÊÃÛ Æ. Dz 4 Ë 1 Â, DP1180 Ý Å ³ ÞÁ Áº, ß Ðó Ç 723 MPa Á 988 MPa, ʳ Ç 1207 MPa Á 1515 MPa, ³ Ö.»³ Ç 0.60 Á 0.66, Þ DP1180 ÝÅ» ³ Ç. ² 5 ¼ DP1180 ÝÅ SHTB ÊÃÎ Þ Ë«ºÂ. ² ³ ØËÏ Ê, Þ Å¾ ß,  Á, SHTB ÊÃÎ Þ¾ Ç Ú,  ³Đ ß. 2.3 Ç È ÝÅ ¼, Å Õ Å ¼, Å, ½ ÜÒ Å¾ ¾ n ² Æ Õ ¾ ß ÝÅ [15,16]. Á, ½ Ð C J [17,18] Ð Swift ±, Đ Swift [19] ¼Ô, Đ Hollomm ¼Ô. ½ Ð C J DP1180 º³ ÏÃÝÅ Þ ¼±. DP1180 ÝÅ Þ ¼Ð Swift [12] ε p = ε 0 +cσ m (1) Õ, ε p ¼Î ; σ ¼Î ; ε 0 Ë c ¼¼Ô ; m ¼Ð Swift, Þ, m Ë. ² 6 ÁÑ DP1180 ÝÅ Þ¼ 0.001, 500 Ë 1750 s 1 ε p σ ºÂ ºÂ. 1 DP1180 Đ¼ ÌĐ Ï ÐËÄ Ü Table 1 Quasi static and dynamic tensile properties of DP1180 steel Strain Proof Tensile Percentage Yield rate strength strength elongation after ratio 3 DP1180 Üĵ Fig.3 OM image of DP1180 steel (F ferrite, M Engineering stress, MPa martensite, ND normal direction, RD rolling direction) 1800 1600 1400 1200 1000 800 600 400 200 0.001 s -1 500 s -1 1750 s -1 0 0 1 2 3 4 5 6 7 8 9 10 Engineering strain, % 4 DP1180 µ µ Ý ¹Á Fig.4 Engineering stress strain curves for DP1180 steel at different strain rates ε, s 1 R p0.2, MPa R m, MPa fracture A 50, % R p0.2 /R m 0.001 723 1207 9.0 0.60 500 875 1380 8.3 0.63 1750 998 1515 7.7 0.66 Strain rate, s -1 10 4 10 3 10 2 1750 s -1 500 s -1 10 1 0 2 4 6 8 10 12 14 16 18 Time, ms 5 DP1180 µ SHTB Ð ÉÂÍĐ Ý ÊÅ ¹Á Fig.5 Strain rate time curves for DP1180 steel under dynamic tensile test with split Hopkinson tensile bar (SHTB)

Ø 10 Ñ : DP1180 ÛÃ Ü ºÞÚÐ 1163 p 0.10 0.08 0.06 0.04 0.02 0.00 Measured 0.001 s -1 Measured 500 s -1 Measured 1750 s -1 Fitted 0.001 s -1 Fitted 500 s -1 Fitted 1750 s -1 0 200 400 600 800 1000 1200 1400 1600 1800, MPa 6 DP1180 µ µ Ý Swift ÍĐÖ ß Ï¹Á Fig.6 Measured and fitted true strain strain curves for DP1180 steel at different strain rates Þ¼ 0.001, 500 Ë 1750 s 1 Ë, ºÂ  R 2 ¼ 0.978, 0.991 Ë 0.985, º, ¼Î ºÂ È. ½ Ð Swift Â Õ DP1180 ÝÅ Þ. 2.4 ËÀ Das Ë Chattopadhyay [20] Ð C J Ñ Ä DP780 ÝÅ Û, Ý Ë ÝÅ ³ Ç, ². ÆÚÓ [15] Ð C J Ñ DP600 ÃÝÅ Ö Û, ² ÑÝÉ ¼ Ý «. Ð C J º³ÏÃÝ Å º Þ ³. (1) ¹ ²  РC J ln dσ dε p = (1 m)lnσ ln(cm) (2) Þ DP1180 ÝÅ Ð C J ln(dσ/dε p ) lnσ ºÂ ² 7.  Á,» Êà ÊÃ, DP1180 ÝÅ ³ 2 ¾ Þ., ÝÅ ³ 2 ¾, Ì Æ Ç ¼ Ý É [15,20], ε t. ² (2) Â, ln(dσ/dε p ) lnσ  Þм 1 m. 2 ¼ DP1180 ÝÅ Þ Ð C J ¼¾, m 1 Ë m 2 ÚÅ Ë ÚÆ Ð Swift. ² Ð Swift Õ, ¼, m ¼ Hollomm Õ n, Å, Ð Swift Õ m, Æ ³. Ö Þ (0.001 s 1 ) º Þ (500 Ë 1750 s 1 ), DP1180 ÝÅ ÚÅ Ö ³ ln(d /d p ) 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 Stage I t1 =3.12 Stage II t2 =2.75 0.001 s -1 500 s -1 1750 s -1 t3 =1.28 7.0 6.4 6.5 6.6 6.7 6.8 6.9 7.0 7.1 7.2 7.3 7.4 7.5 7.6 ln 7 DP1180 Üĵ µ Ý C J ¹Á Fig.7 Modified C J plot of DP1180 steel at different strain rates (ε t1, ε t2 and ε t3 indicate transition strain in the modified C J plot at strain rates of 0.001 s 1, 500 s 1 and 1750 s 1, respectively) 2 DP1180 ÞÆ ß Ñ Ð C J ½ Ø Table 2 Parameters related to strain hardening behaviour of DP1180 steel at different strain rates ε, s 1 Stage I Stage II Transition m 1 1 m 1 m 2 1 m 2 strain ε t, % 0.001 4.91 3.91 14.56 13.56 3.12 500 3.73 2.73 15.86 14.86 2.75 1750 3.04 2.04 16.77 15.77 1.28 Note: m 1 and m 2 indicate strain hardenging exponet in the modified swift mode of stage I and stage II, respectively Õ, ÚÆ º Æ. Ç 2  Á, ÚÅ Ö Þ Á, Þ 1 m 1 Ç 3.91 Á 2.04, m 1 Ç 4.91 Æ 3.04. Ì,, DP1180 ÝÅ Þ Á ÆÁ³. ÚÆ º Þ Á, Þ 1 m 2 Ç 13.56 Æ 15.77, m 2 Ç 14.56 Á 16.77, Ì, º, DP1180 ÝÅ Þ Á ÆÆ., ε t Þ Á Æ. 2.5 Ä ² 8 ¼ DP1180 ÝÅ Þ¼ 1750 s 1 Î ÝË ÎÁ TEM Ê. º Þ, ÝÅ Õ µ ³ ÕÔÐ«Ç Î. Ö, µ Ä Õ Î µ, ¼ Î, Ô Î Á. Ç ² 8 Õ µ Ä Õ Î ÎÁ Î ÎÁ Ç Î. Dz 8 Õ Â, µ ÕÊ Å [21] (cell block, CB), ¼ Î, Ì Å ²Å α (dense dislocation wall,

1164 Ñ Ø Ø 48 8 DP1180 Üĵ Ý» 1750 s 1 Í TEM É Fig.8 TEM image of dislocation structure in DP1180 steel deformed at strain rate of 1750 s 1 (Area A is larger cell block with 0.7 0.8 µm; areas B and C are smaller cell blocks with about 90 nm) DDW) ½. ² 8 Õ ¾ A ¼ Å, Ì ¼ 0.7 0.8 µm; ¾ B Ë C ¼ Å, Ì ¼ 90 nm. Ì ¼, ŵ Þ, µ Õ ¾ Åß «, µ ¾ «, Ç µ Æ, ² 8 Õ ²Å α ½ Å. ÌÖ µ Î, ¼Ñ Ö¼Ô Æ Ç [22]. DP1180 ÝÅ, Þ, ¼Ô РƲ, ¼Ô Á ¹ [23]. Î Ë«Á, ¾ Ý, Å, µ Õ, µ ³ ¹Æ µ ̼ 0.7 0.8 µm Å ¹, ² Þ ¾ «ÖÆ, 90 nm ŵ. ½ ÅË Î ¼ Î Ó (geometrically necessary boundary, GNB) [21,24], ² Ì GNB Ê DP1180 ÝÅ º Þ Å Ð«, ³Åß Þ, Ì DP1180 ÝÅ Þ Á ³ Á Ã Þ Ì. ² 9 ¼ DP1180 ÝÅ Þ 1750 s 1 TEM Ê.  Á, Ç ËÁ Æ, Ç Õ. Æ Ô Ç Î, Ì Î Ä, Æ Æ» ² Ç. ص, Õ DP1180 ÝÅ ± º Þ ÊÃÎ, Ì¼Ö Þ» Û.» Å Â Å¾Ó Å,  ¼ ž Å 9 DP1180 Üĵ Ý 1750 s 1 Ð TEM É Fig.9 TEM image of plastic deformation of martensite for DP1180 steel at strain rate of 1750 s 1. Å» ÊÃ, ² º ÊÃÅ Õ ¹ Ë Ó, Ç Æ Ë«Æ½¹ È Õ, Ç ¹ ɺ. É T  ² «[25,26] : T = G ρc v = η ρ ε2 ε 1 σ c v dε (3) Õ, G ¼Ü ÆË ÆÝ ; ρ ¼¼Ô, ¼ 7.8 g/cm 3 ; c v ¼Ó, ¼ 0.48 J/(g K); η ¼ Ý, ¼ 0.95; ε 1 ¼ Î, ¼ 0; ε 2 ¼ Î ; ε ¼Î ; σ ¼Î. Å (1)  «Á DP1180 ÝÅ Þ¼ 1750 s 1 Ë, T=103. ²ÅÂ, Å Õ É¼ 103, º Þ ¼Ô ¹, Å, µ ³ º, É, ÖÑ» ³, ± Ç. ² 7 Ë 2, ÚÅ Ö, Þ Á m Æ, ÆÁ³. ÌÙ ² DP1180 ÝÅ Ù ², Þ º, Õ Î Á, Î Ë Ó Î Á. Ì Ñ DP1180 ÝÅ R p0.2 Þ Á Á. DP1180 ÝÅ º Þ Ç Å¾ Þ³ Ë É Ë «Å ¾ Å : Å, º Þ, ¼ ÔЫ, Î Á, Î «Ì Ç«, ¼¼Ô ³ Á ; ØÅ, É ¼Ô, Î «, ¼Ô³ Ö. Å, DP1180 ÝÅ º Þ Ê³ Ð Ì ¾ Ç, ² ʳ Þ Á Á,

Ø 10 Ñ : DP1180 ÛÃ Ü ºÞÚÐ 1165 º Þ, Ë Þ³ É. ² 7 Ë 2, ÚÆ º, Þ Á m Á, ÆÆ. Ë [16,17,20] Ð C J ÁÑÝÅ» ÜÒ: ÚÅ, ³Â Î Å Ç ; ÚÆ, Å Ë ¹ Ç.  Á, Å Ç ÚÆ ÆÆ Ù. ²² 8 Ë 9 Â, ÚÆ ÆÆ ¼: Å, É Ç, Ô Å Å ÆÆ; Æ, ² Æ Å Î, Å», ºÑ Í, Ç. Õ ¾ DP1180 ÝÅ ÚÆ Õ Æ Þ Á Æ, Ë ε t Þ Á Æ. 3 º (1) Ð Swift Î Â Õ DP1180 ÝÅ º Þ ÊÃÕ. (2) Ð C J Ñ DP1180 ÝÅ Û,» Ë ÊÃ, Ê : ÚÅ, Þ Á Æ Á³; ÚÆ, Þ Á ÆÆ; Ý É Þ Á Æ. (3) DP1180 ÝÅ º Þ, ³ ² Ð Þ ÀÒ, Î Å. Ö, Å ÖÆ Å, Ì ¼ 90 nm. ² Î Ó Ê, DP1180 ÝÅ º Þ Å Ð«, ³Åß Þ. (4) DP1180 ÝÅ º Þ, É Ç, Ô Å Å ÆÆ. ² Æ Å Î, ºÑ Í, Ç. ÚÆ Æ Þ Á Æ, Ë ÝÉ Þ Á Æ. ¼ÁÅ [1] Chongthairungruang B, Uthaisangsuk V, Suranuntchai S, Jirathearanat S. Mater Des, 2012; 39: 318 [2] Giri S K, Bhattacharjee D. J Mater Eng Perform, 2012; 21: 988 [3] Pouranvari M. Mater Sci Eng, 2012; A546: 129 [4] Queiroz R R U, Cunha F G G, Gonzalez B M. Mater Sci Eng, 2012; A543: 84 [5] Ahmad E, Manzoor T, Ziai M M A, Hussain N. J Mater Eng Perform, 2012; 21: 382 [6] Nouri A, Saghafian H, Kheirandish S. Int J Mater Res, 2010; 101: 1286 [7] Calcagnotto M,Adachi Y,Ponge D,Raabe D. Acta Mater, 2011; 59: 658 [8] Sun X, Choi K S, Soulami A, Liu W N, Khaleel M A. Mater Sci Eng, 2009; A526: 140 [9] Huh H, Kang W J, Han S S. Exp Mech, 2002; 42(1): 8 [10] Deng Z J, Liu J, Wang H, Li P H. J Mater Therm Treat, 2011; 32: 111 (ÔÆ, Ù º, Ò, Ê.»Ó à Ú, 2011; 32: 111) [11] Kamp A, Celotto S, Hanlon D N. Mater Sci Eng, 2012; A538: 35 [12] Colla V, De Sanctis M, Dimatteo A, Lovicu G, Solina A, Valentini R. Metall Mater Trans, 2009; 40A: 2557 [13] Sung J H, Kim J H, Wagoner R H. Int J Plast, 2010; 26: 1746 [14] Beynon N D, Jones T B, Fourlaris G. Mater Sci Technol, 2005; 21: 103 [15] Kuang S, Kang Y L, Yu H, Liu R D. J Mater Eng, 2009; (2): 11 ( Ù, Ö, É, Ù.»Ó, 2009; (2): 11) [16] Ramos L F, Matlock D K, Krauss G. Metall Trans, 1979; 10A: 259 [17] Samuel F H. Mater Sci Eng, 1987; 92: L1 [18] Jha B K, Avtar R, Dwivedi V S, Ramaswamy V. J Mater Sci Lett, 1987; 6: 891 [19] Swift H W. J Mech Phys Solids, 1952; (1): 1 [20] Das D, Chattopadhyay P P. J Mater Sci, 2009; 44: 2957 [21] Yu Y N. Fundamentals of Materials Science. Beijing: High Education Press, 2006: 566 (¹.»ÓÀÚÙÂ. : ¹Ò À À, 2006: 566) [22] Winther G, Jensen D J, Hansen N. Acta Mater, 1997; 45: 5059 [23] Sha G Y, Sun X G, Liu T, Zhu Y H, Feng X G. Chin J Mater Res, 2010; 24: 567 ( À, Î, Ù, ½, γ.»Óß Ú, 2010; 24: 567) [24] Hughes D A, Hansen N, Bammann D J. Scr Mater, 2003; 48: 147 [25] Wu Z Q, Tang Z Y, Li H Y, Zhang H D. Acta Metall Sin, 2012; 48: 593 ( ²,,, ÅÆ. ÒÚ, 2012; 48: 593) [26] Wu C C, Wang S H, Chen C Y, Yang J R, Chiu P K, Fang J. Scr Mater, 2007; 56: 717 (ÞÖ Ó: ÜØÒ)