Three coupled amplitudes for the πη, K K and πη channels without data

Σχετικά έγγραφα
Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

LIGHT UNFLAVORED MESONS (S = C = B = 0)

Predictions on the second-class currents

Parametrized Surfaces

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

is like multiplying by the conversion factor of. Dividing by 2π gives you the

Matrices and Determinants

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Space-Time Symmetries

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님

Forced Pendulum Numerical approach

Hadronic Tau Decays at BaBar

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

Areas and Lengths in Polar Coordinates

6.4 Superposition of Linear Plane Progressive Waves

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

What happens when two or more waves overlap in a certain region of space at the same time?

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Derivation of Optical-Bloch Equations

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Approximation of distance between locations on earth given by latitude and longitude

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Areas and Lengths in Polar Coordinates

Block Ciphers Modes. Ramki Thurimella

Srednicki Chapter 55

4.6 Autoregressive Moving Average Model ARMA(1,1)

Assalamu `alaikum wr. wb.

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

Tridiagonal matrices. Gérard MEURANT. October, 2008

Unified dispersive approach to real and virtual photon-photon scattering into two pions

measured by ALICE in pp, p-pb and Pb-Pb collisions at the LHC

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Strain gauge and rosettes

ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΒΑΛΕΝΤΙΝΑ ΠΑΠΑΔΟΠΟΥΛΟΥ Α.Μ.: 09/061. Υπεύθυνος Καθηγητής: Σάββας Μακρίδης

Section 9.2 Polar Equations and Graphs

K + Λ photoproduction in a dynamical coupled-channel approach

Example Sheet 3 Solutions

SUPERPOSITION, MEASUREMENT, NORMALIZATION, EXPECTATION VALUES. Reading: QM course packet Ch 5 up to 5.6

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

2 Composition. Invertible Mappings

( ) Sine wave travelling to the right side

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

Spherical Coordinates

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

Section 8.3 Trigonometric Equations

Dark matter from Dark Energy-Baryonic Matter Couplings

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

LESSON 14 (ΜΑΘΗΜΑ ΔΕΚΑΤΕΣΣΕΡΑ) REF : 202/057/34-ADV. 18 February 2014

Solutions to Exercise Sheet 5

Μεταπτυχιακή διατριβή. Ανδρέας Παπαευσταθίου

From the finite to the transfinite: Λµ-terms and streams

Physical DB Design. B-Trees Index files can become quite large for large main files Indices on index files are possible.

Solar Neutrinos: Fluxes

On a four-dimensional hyperbolic manifold with finite volume

X-Y COUPLING GENERATION WITH AC/PULSED SKEW QUADRUPOLE AND ITS APPLICATION

Electronic structure and spectroscopy of HBr and HBr +

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Αναζητώντας παράξενα σωµατίδια στο ALICE

( y) Partial Differential Equations

of the methanol-dimethylamine complex

Instruction Execution Times

8.5 Structural Optimization

4.4 Superposition of Linear Plane Progressive Waves

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

Electronic Supplementary Information (ESI)

Multifunctinality and Crystal Dynamics of Highly Stable Porous Metal-Organic Framework [Zn 4 O(NTB) 2 ]

Small and powerful energy saver gives high quality light, with compact design

(1) Describe the process by which mercury atoms become excited in a fluorescent tube (3)

Small and powerful energy saver gives high quality light, with compact design

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Revisiting the S-matrix approach to the open superstring low energy eective lagrangian

3.4 MI Components, Allowable Load Data and Specifications. MI Girder 90/120. Material Specifications. Ordering Information

Inverse trigonometric functions & General Solution of Trigonometric Equations

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

DuPont Suva 95 Refrigerant

Ηλεκτρονικοί Υπολογιστές IV

ΚΑΝΑΛΙ CHANNEL MTL. Κατάλογος - Catalogue. Eνδοδαπέδια Κανάλια & Κουτιά Παροχών - Διακλαδώσεων Underfloor Channels & Boxes and Juction Boxes

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

A Note on Intuitionistic Fuzzy. Equivalence Relation

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Non-Gaussianity from Lifshitz Scalar

DuPont Suva. DuPont. Thermodynamic Properties of. Refrigerant (R-410A) Technical Information. refrigerants T-410A ENG

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Modbus basic setup notes for IO-Link AL1xxx Master Block

Αστικές παρεμβάσεις ανάπλασης αδιαμόρφωτων χώρων. Δημιουργία βιώσιμου αστικού περιβάλλοντος και σύνδεση τριών κομβικών σημείων στην πόλη της Δράμας

AdS black disk model for small-x DIS

Low Frequency Plasma Conductivity in the Average-Atom Approximation

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Τα γνωστικά επίπεδα των επαγγελματιών υγείας Στην ανοσοποίηση κατά του ιού της γρίπης Σε δομές του νομού Λάρισας

IV. ANHANG 179. Anhang 178

Transcript:

Three coupled amplitudes for the πη, K K and πη channels without data Robert Kamiński IFJ PAN, Kraków and Łukasz Bibrzycki Pedagogical University, Kraków HaSpect meeting, Kraków, V/VI 216

Present status of knowledge of interactions in the πη, K K and πη channels NO DATA on the amplitudes! (phase shifts, inelasticities) Positions of the a (98) and a (145), Kinematics: three thresholds: πη 686 MeV, K K 991 MeV and πη 196 MeV, Couplings of both a to the three channels, πη scattering length: a 1.5.1m 1 π radius of the πη form factor: r 2.15 fm 2 (ChPT),

Present status of knowledge of interactions in the πη, K K and πη channels NO DATA on the amplitudes! (phase shifts, inelasticities) Positions of the a (98) and a (145), Kinematics: three thresholds: πη 686 MeV, K K 991 MeV and πη 196 MeV, Couplings of both a to the three channels, πη scattering length: a 1.5.1m 1 π radius of the πη form factor: r 2.15 fm 2 (ChPT),

Present status of knowledge of interactions in the πη, K K and πη channels NO DATA on the amplitudes! (phase shifts, inelasticities) Positions of the a (98) and a (145) 4 parameters, Kinematics: three thresholds: πη 686 MeV, K K 991 MeV and πη 196 MeV, Couplings of both a to the three channels 2 3, πη scattering length: a 1.5.1m 1 π (ChPT) 1, radius of the πη form factor: r 2.15 fm 2 1

Positions of the a (98) and a (145) 4 parameters Separable potential model for two coupled channels πη and K K : "Coupled channel study of a resonances", A. Furman, L. Lesniak, Phys.Lett. B538 (22) 266-274 < p T q > = < p V q > + d 3 s + < p V s >< s G s >< s T q > (2π) 3 < p V ij q >= λ ij g i (p)g j (q) g i (p) = 4π m i 1 p 2 + (β i ) 2 t = λ + λ I t t = (1 λi) 1 λ

Positions of the a (98) and a (145) 4 parameters where I ii = d 3 s (2π) 3 g i (s)g i (s)g i (s) D(E) = det(1 λi(e)) D(k 1, k 2 ) = D πη(k 1 )D KK (k 2 ) C(k 1, k 2 ) Dπη(k 1 ) = 1 Λ 11 J 11 (k 1 ) D KK (k 2 ) = 1 Λ 22 J 22 (k 2 ) C(k 1, k 2 ) = Λ 2 12 J 11(k 1 ) J 22 (k 2 )

Positions of the a (98) and a (145) 4 parameters S 11 = D( k 1, k 2 ) D(k 1, k 2 ), S 22 = D(k 1, k 2 ) D(k 1, k 2 ), S 11 S 22 S 2 12 = D( k 1, k 2 ) D(k 1, k 2 ) S 11 = 1 ik 1E 1 (k 1 ) T 11 (k 1, k 2 ), 2π S 22 = 1 ik 2E 2 (k 2 ) T 22 (k 1, k 2 ), 2π S 12 = S 21 = i k1 E 1 (k 1 )k 2 E 2 (k 2 ) T 12 (k 1, k 2 ) 2π S = ( ηe 2iδπη i 1 η 2 e i(δπη+δ KK ) i 1 η 2 e i(δπη+δ KK ) ηe 2iδ KK )

Positions of the a (98) and a (145) 4 parameters Unitary amplitudes for interactions in two coupled channels πη and K K in the wide energy range from the πη threshold ( 686 MeV) up to 15 MeV. two resonances a (98) and a (145) four parameters found analytically! β 1 = 2. GeV (fixed), β 2 = 21.8 GeV, Λ 1 =.32321, Λ 2 =.6817, Λ 2 12 = 25.2 1 8, Two poles corresponding to the a (98), both very near the K K threshold, for example at 991.5 i33.6 MeV (II nd Riemann sheet i.e Imk 1 <, Imk 2 > ) and 15. i24.5 MeV (III nd Riemann sheet i.e Imk 1 <, Imk 2 < )

2-channel amplitude (4 free parameters) 2 1. 15.8 δ πη 1 η πη.6.4 5.2.8 1. 1.2 1.4 1.6. 1. 1.2 1.4 1.6

2-channel amplitude (4 free parameters) 1. 15.8 δ KK 1 5 η πη.6.4.2 1. 1.2 1.4 1.6. 1. 1.2 1.4 1.6

2-channel amplitude (4 free parameters) 12 14 1 12 σ πη (MeV -2 ) *1 6 8 6 4 σ KK (MeV -2 ) *1 6 1 8 6 4 2 2.8 1. 1.2 1.4 1.6 1. 1.2 1.4 1.6

2-channel amplitude (4 free parameters) 12 2 1 σ πη (MeV -2 ) *1 6 8 6 4 2 σ πη->kk (MeV -2 ) *1 6 15 1 5.8 1. 1.2 1.4 1.6 1. 1.2 1.4 1.6

scattering length a 1 a 1 =.26m 1 π ) What else?.5.1m 1 π couplings to the three channels: πη (686 MeV), K K (991 MeV), πη (196 MeV) radius of the πη form factor: r 2.15 fm 2 three coupled channel amplitude with 9 parameters where ChPT (2-channel amplitude: now D(k 1, k 2, k 3 ) = D πη(k 1 )D KK (k 2 )D πη (k 3 ) C(k 1, k 2, k 3 ) Dπη(k 1 ) = 1 Λ 11 J 11 (k 1 ) D KK (k 2 ) = 1 Λ 22 J 22 (k 2 ) D πη (k 3 ) = 1 Λ 33 J 33 (k 3 ) C(k 1, k 2, k 3 ) = Λ 2 12 J 11(k 1 ) J 22 (k 2 ) + Λ 2 13 J 11(k 1 ) J 33 (k 3 ) + Λ 2 23 J 22(k 2 ) J 33 (k 3 ) + + (Λ 2 12 Λ 3 + Λ 2 13 Λ 2 + Λ 2 23 Λ 1 + Λ 12 Λ 13 Λ 23 ) J 11 (k 1 ) J 22 (k 2 ) J 33 (k 3 )

9 parameters three coupled channel amplitude coupling constants for a (98): Crystal Barrel Coll. 97: g KK /g πη 2 1, PDG:.183 ±.24 N. N. Achasov: g πη = 4.23 GeV, g KK = 3.79 GeV, g πη = 2.13 GeV, "Nature of the a (98) meson in the light of photon-photon collision", PRD 21 F. Giacosa: g πη = 2.496 GeV, g KK = 6.12 GeV, "a (98) revisited", PRD 216 coupling constants for a (145): N. N. Achasov: g πη = 3.3 GeV, g KK =.28 GeV, g πη = 2.91 GeV πη scattering length: a 1.5.1m 1 π (ChPT) Example of results (fit to the poles for both a s, coupling constants and scattering length) β 1 = 2. GeV (fixed), β 2 = 19.8 GeV, β 3 = 29.9 GeV, Λ 1 =.3, Λ 2 =.7, Λ 3 =.2, Λ 2 12 = 25.8 1 8, Λ 2 13 = 1. 1 8, Λ 2 23 = 1.5 1 8

3-channel amplitude (9 free parameters) 2 2 15 15 δ πη 1 δ πη 1 5 5.8 1. 1.2 1.4 1.6.8 1. 1.2 1.4 1.6

3-channel amplitude (9 free parameters) 1. 1..8.8 η πη.6.4 η πη.6.4.2.2. 1. 1.2 1.4 1.6. 1. 1.2 1.4 1.6

3-channel amplitude (9 free parameters) 3 15 δ KK 2 δ KK 1 1 5 1. 1.2 1.4 1.6 1. 1.2 1.4 1.6

3-channel amplitude (9 free parameters) 1. 1..8.8 η KK.6.4 η πη.6.4.2.2. 1. 1.2 1.4 1.6. 1. 1.2 1.4 1.6

3-channel amplitude (9 free parameters) 12 12 1 1 σ πη (MeV -2 ) *1 6 8 6 4 σ πη (MeV -2 ) *1 6 8 6 4 2 2.8 1. 1.2 1.4 1.6.8 1. 1.2 1.4 1.6

3-channel amplitude (9 free parameters) 3 14 25 12 σ KK (MeV -2 ) *1 6 2 15 1 σ KK (MeV -2 ) *1 6 1 8 6 4 5 2 1. 1.2 1.4 1.6 1. 1.2 1.4 1.6

3-channel amplitude (9 free parameters) 2 2 σ πη->kk (MeV -2 ) *1 6 15 1 5 σ πη->kk (MeV -2 ) *1 6 15 1 5 1. 1.2 1.4 1.6 1. 1.2 1.4 1.6

3-channel amplitude (9 free parameters) 2 2. σ πη` (MeV -2 ) *1 6 15 1 5 σ πη->πη` (MeV -2 ) *1 6 1.5 1..5 1. 1.2 1.4 1.6. 1.1 1.2 1.3 1.4 1.5 1.6

3-channel amplitude (9 free parameters) δ πη` -2-4 -6-8 -1-12 -14 1. 1.2 1.4 1.6 η πη` 1..8.6.4.2. 1. 1.2 1.4 1.6

πη form factor Form factor associated with spin zero isospin one operator ūd: F πη (s) =< η(p 1 )π(p 2 ) ūd > < r 2 F πη >= 6 s at s = or < r 2 >= 6 π + s ds δ F πη (s) s 2 < r 2 >=.92 ±.7 fm 2 (ChPT),.12-.18 fm 2 (B. Moussallam 215, EPJ 215, "Form Factors of the isovector scalar current and the πη scattering phase shifts") Below the K K threshold δ F πη (s) = δ πη The integral to K K threshold gives.1 fm 2 The integral in the full range gives.12 fm 2 (upper limit)

Conclusions this is one of the least known channel of interactions of light mesons, enough constrains to fix the amplitude at least qualitatively, but still not enough to find unique and precise amplitudes, data are needed (phase shifts and inelasticities), maybe Roy-like dispersion relations with imposed crossing symmetry will help