x. x > 1 x 6 x. , 0 b ±a c Ø d 0, 4a. Exercise a x a b. e f b i c d + +

Σχετικά έγγραφα
Section 8.3 Trigonometric Equations

( )( ) La Salle College Form Six Mock Examination 2013 Mathematics Compulsory Part Paper 2 Solution

Inverse trigonometric functions & General Solution of Trigonometric Equations

ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

CRASH COURSE IN PRECALCULUS

Oscillatory integrals

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

CHAPTER (2) Electric Charges, Electric Charge Densities and Electric Field Intensity

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Homework 8 Model Solution Section

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Solutions to Exercise Sheet 5

Matrices and Determinants

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Trigonometry 1.TRIGONOMETRIC RATIOS

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Rectangular Polar Parametric

26 28 Find an equation of the tangent line to the curve at the given point Discuss the curve under the guidelines of Section

Math 6 SL Probability Distributions Practice Test Mark Scheme

Section 7.6 Double and Half Angle Formulas

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

PARTIAL NOTES for 6.1 Trigonometric Identities

Review-2 and Practice problems. sin 2 (x) cos 2 (x)(sin(x)dx) (1 cos 2 (x)) cos 2 (x)(sin(x)dx) let u = cos(x), du = sin(x)dx. = (1 u 2 )u 2 ( du)

2 Composition. Invertible Mappings

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

If ABC is any oblique triangle with sides a, b, and c, the following equations are valid. 2bc. (a) a 2 b 2 c 2 2bc cos A or cos A b2 c 2 a 2.

Example Sheet 3 Solutions

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Trigonometric Formula Sheet

Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών. Εθνικό Μετσόβιο Πολυτεχνείο. Thales Workshop, 1-3 July 2015.

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

To find the relationships between the coefficients in the original equation and the roots, we have to use a different technique.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

3.4. Click here for solutions. Click here for answers. CURVE SKETCHING. y cos x sin x. x 1 x 2. x 2 x 3 4 y 1 x 2. x 5 2

Chapter 6 BLM Answers

C.S. 430 Assignment 6, Sample Solutions

Solutions 3. February 2, Apply composite Simpson s rule with m = 1, 2, 4 panels to approximate the integrals:

Math221: HW# 1 solutions

EE512: Error Control Coding

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Notes on the Open Economy

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Areas and Lengths in Polar Coordinates

Srednicki Chapter 55

Second Order RLC Filters

Differential equations

D Alembert s Solution to the Wave Equation

Leaving Certificate Applied Maths Higher Level Answers

Solutions_3. 1 Exercise Exercise January 26, 2017

is like multiplying by the conversion factor of. Dividing by 2π gives you the

Rectangular Polar Parametric

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Quadratic Expressions

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Homework 3 Solutions

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

The Simply Typed Lambda Calculus

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Solution to Review Problems for Midterm III

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Areas and Lengths in Polar Coordinates

If we restrict the domain of y = sin x to [ π 2, π 2

Section 9.2 Polar Equations and Graphs

Finite Field Problems: Solutions

4.5 SUMMARY OF CURVE SKETCHING. Click here for answers. Click here for solutions. y cos x sin x. x 2 x 3 4. x 1 x y x 3 x

Reminders: linear functions

SPECIAL FUNCTIONS and POLYNOMIALS

An Inventory of Continuous Distributions

ST5224: Advanced Statistical Theory II

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

AREAS AND LENGTHS IN POLAR COORDINATES. 25. Find the area inside the larger loop and outside the smaller loop

Approximation of distance between locations on earth given by latitude and longitude

( y) Partial Differential Equations

1 String with massive end-points

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

derivation of the Laplacian from rectangular to spherical coordinates

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

AMS 212B Perturbation Methods Lecture 14 Copyright by Hongyun Wang, UCSC. Example: Eigenvalue problem with a turning point inside the interval

Lifting Entry (continued)

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Review Exercises for Chapter 7

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

1. Αφετηρία από στάση χωρίς κριτή (self start όπου πινακίδα εκκίνησης) 5 λεπτά µετά την αφετηρία σας από το TC1B KALO LIVADI OUT

Fourier Series. constant. The ;east value of T>0 is called the period of f(x). f(x) is well defined and single valued periodic function

Parametrized Surfaces

Principles of Mathematics 12 Answer Key, Contents 185

w o = R 1 p. (1) R = p =. = 1

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

COMPLEX NUMBERS. 1. A number of the form.

SOLUTIONS & ANSWERS FOR KERALA ENGINEERING ENTRANCE EXAMINATION-2018 PAPER II VERSION B1

Section 7.7 Product-to-Sum and Sum-to-Product Formulas

Transcript:

MATHEMATICS Higher Level (Core) ANSWERS ANSWERS Eercise. 0 0 c d 0 0 e f 0 [] ] [ c ]0] d ] 0] e ][ f ] [ ] [ c + c d + + c + d e + + 0 + f + i - + ii 0 + i + ii + 0 {±} {±0} c Ø d {} e {} f {0} - 0 0 c d 0 0 ] [ ] [ c ][ + Eercise.. c d e f c d e f c d e f 0 c d + e f g 0 h i + c d e f g h 0 i 0 j - k ± l c d 0 e f 0 ± c Ø d 0 ± Eercise.. < c d e f 0 > c < < c > d ( + ) c d e f g h i c d e f g < > h i p < - + + 0 0 - ( + ) + + - ( ) < > > < < > > 0 > < < < > >

MATHEMATICS Higher Level (Core) ANSWERS < < c 0 < < < < c Eercise.. c d e c + c c d + - + < < - < < < < - + - - / - - / f g h i j - - + - k l m n o p q -/ t - - -/ t - - + / - / / + c d 0 c d f() f() f() Note signs! Eercise.. c d 0 e f c 0 0 d e f c. m m 0 c m. + c d 0 e f - + Eercise.. z 0 z c 0 z d z e f t t z t g z 0 h Eercise.. c 0 d e f g h i j 0 c d e f ± ± c ± d - e f c d e - f - ± - ± g ± h - i j no rel solutions k ± - + - ± ± 0 + - ± + - ± ± f() - ± - ± ±

MATHEMATICS Higher Level (Core) ANSWERS - ± ± l no rel solutions m n o p < p < p ± c p < or p > m m < c m > - ± m ± ] [ ] [ c ] [ k ± ] [ ] [ c ] [ 0 Eercise.. Grphs re shown using the ZOOM viewing window: c - ± c ( 0) ( 0) (0 )( 0) ( 0) (0 )(0. 0) ( 0) (0 ) d e f d e f ( 0) ( 0) (0 )(. 0) (. 0) (0 )( 0) ( 0) (0 ) g h i g h i (0. 0) (. 0) (0 )(. 0) ( 0) (0 )( 0) (0. 0) (0 ) j k l j k l ( 0) (0 )( 0) ( 0) (0 )(0. 0) (. 0) (0 ) Grphs re shown using the ZOOM viewing window: ( ) c i ± 0 ii (0 )

MATHEMATICS Higher Level (Core) ANSWERS ( ) c i ± 0 ii (0 ) k k < c k k k c k ± < k < c k < k > ( )( ) c ( ) d + 0 c ( + ) d + Eercise.. ] [ ] [ [] c ] 0] [ [ d ] [ e ].] [ [ f ]0..[ ] [ ] [ ][ c ] 0.] [ [ d [] e ] - [ f ] ] [ [ g [ ] h [.] i ] [ ]0. [ j ][ k ]0.[ l Ø m Ø n [.] o ] [ ] [ < k < 0 < k < c n 0. i ] [ ] [ ii [] i ] [ ] [ ii [] c i ][ ii ] ] [ [ d i ] [ ii ] ] [ [ e i ] [ ] [ ii [] f i ] + [ ii ] ] [ + [ ]0[ [0.] ( ) < k > > ( ) + ( + ) + + 0 + i ] [ ] + + [ ii ] ( ) ( + ) \{} iii ] i [- ] ii ll rel vlues {: < } {: > } {: < < } c i {: < 0.} ii {: < < 0} i ]0[ (k ); ]0[ (k ) ii Ø k >. Eercise.. ( ) ( ) ( ) ( ) c d ( ) e f ( ) g - h no rel solutions + - + i - - j ( ) ( ) + - + k no rel solutions ( ) ( ) c (0 ) ( ) d ( ) e Ø f ( ) g Ø h ± m < m > c < m < 0. ( ) ( ) 0. c i ( ) - ii ( ) c i A() B( ) ii sq. units Eercise. + + + + c + + d + + e + + + f - m - + + + + - + ( ) ( + ) - + - ( 0 )

MATHEMATICS Higher Level (Core) ANSWERS 0 Eercise...% c % digrm % c 0 Continuous Eercise.. ( )( ) ( )( + 0 + ) + 0 ( + )( + ) + ( )( + ) + ( + )( + ) + ( )( + + + ) Eercise. c d. e 0 c + Eercise. ( )( )( + ) ( ) c d ( )( + )( + ) e ( )( + ) f g ( ) ( + ) h ( ) i j + + + - + + + - + ( ) + ( + ) ( ) + - ( + + ) ( )( )( + ) ( ) ( )( )( + + ) ( ) ( + )( )( + ) 0 ( + )( + )( ) ( + )( + ) ( )( + + ) ( ) ( )( + ) ( )( + )( ) c ( + ) + + + + 0 m ( ) ( + ) m n k ; c ( α + αβ + β ) αβ ( α + β ) Eercise.. c d e f g h ± 0 i ± j ± + + d c d ( )( + )( + ) n k k n ; ( + )( )( + ) 0 ( + )( 0. )( ) 0 c + 0 - ± c d + ( )( + )( + )

MATHEMATICS Higher Level (Core) ANSWERS. 0... c 0.0 d. 0. 0.. 0 No other solutions m n ; Eercise.. ][ ] [ ] ] [] c [] [ [ d ]0 [ \{} e {} [0. [ f ] [ ][ g ] [ ] [\{} h ] ] {} ][ ] [ ] ] [] c [] [ [ d ] [ ] [ e [ [ f ] [ g ] [ h [ 0] [ + 0 [ i ] ] [ + + j ] [ ] [ k ] ] l ] - [ ] - [ Eercise. c 0. ] j k l m n o p q r. d e f / 0. / s t 0. c g h i 0. 0. 0. d e f 000

MATHEMATICS Higher Level (Core) ANSWERS g h i j 0. i ii i ii c d ( + ) e 0 ( ) f + + ( + )( ) c ( + )( )( ) 0. ( + ) ( ) ( + ) ( + )( )( ) ( )( ) c c + {( 0 ) ( + )} { : > + } ( ) ( + ) ( )( ) or Eercise. Sum Product Sum Product c Sum Product d Sum Product e Sum Product f Sum Product g Sum Product h Sum Product - i Sum Product Consider the possiilit of zero denomintor! c d e f g h i The cuic cse: c d gives + + + 0. The fctorized version is: ( α )( β )( γ ) 0. The onl simple conclusion is tht the product of the roots is αβγ d. This is relted to the conjugte root theorem. The coefficients must e rel. Eercise.. + c + c + g + g + g c + + + d + + + + e + + + f + g + + + h + 0 p q + + q + 0q - p + 0q - p + 0q - p + - 0q p + p r + + + Eercise.. 0 c d 0 e p f 0p q g 0p 00000 000 c 0 d 0 e f 0.00 0.000% 0 c 0. d 0.% - + + + 0 ā - c ā - d + - 0 0 i 0 + j + k + + + l + d + d + d m + + + + n + + 0 + 0 + 0 + o - p + 0 + 000 + 0000 + 00 + 00 + + 0 - + 0p + p p 00

MATHEMATICS Higher Level (Core) ANSWERS 0 0 n n 0-0 - ± n ± ± Eercise. dom { } rn { } dom { } rn { 0} c dom {0 } rn { } ] [ [0 [ c ] [ d ] ] e [ ] f ] [ g ] 0] h [0 ] i [0 [ j [ ] k ]0 [ l ] ] [ [ r [ [ d [0 [ r { : 0 }\{} d c r [0 [ \{} d [ [ \{0} d r [ 0[ d [ [ e r ] [ d ] ] [ [ f r [] d [0] one to mn mn to one c mn to one d one to one e mn to mn f one to one \{} ] [ c [] d ] ] [ [ e \{0} f g \{} h [ [ i [0 [ \{ } j ] ] [ [ k l \{ } ] [ ]0] c ] ] d [ [ e \{} f ] [ g [ [ h ] 0[ Eercise. Grphs with grphics clcultor output hve stndrd viewing window unless otherwise stted. i (+) + ii c 0 0 c 0 0 + + + ± c no solution 0 i ii i { } ii { } Window [] [] Rnge: [ ] c d e d e f Window [] [] [0 [ 0 {: > } {:.} 0 onl it is the onl one with identicl rules nd domins [ [ [0] c [ [ d [.[ ] [ i p ( ) + 0< < ii A ( ) 0< < i ii r ][ r ]0] 00

MATHEMATICS Higher Level (Core) ANSWERS Eercise.. c d () c d () c d Eercise.. c d e f 0. c d g h i 0 00

MATHEMATICS Higher Level (Core) ANSWERS c c d e f d e f g h i g h i c () [ [ [ [ [0 [ d e f ] 0] c d c d 00

MATHEMATICS Higher Level (Core) ANSWERS i Ø ii [] iii {±}. 0. { : } { : } hs diltion effect on f () (long the is). c d Eercise.. ( ) ( ) ( 0) ( 0) ( ) ( ) ( ) ( ) c d ( ) ]0 [ ( ) ]0 [ ( ) ]0 [ (.) ]0 [ [] [] c [0.] d [0.] e [0.0.] f [0.0] c d ] [ e ] [ ] e[ ] [ e f g h (.) ]0 [ (.) ]0 [ ( ) ]0 [ ( ) ]0 [. c i f g: ii f > g: < g i j k l ] + e [ [ [ c [ e + e ] ( ) ]0 [ ( /) ]0 [ ( /) ]0 [ ( 0/) ]0 [ 00 f

MATHEMATICS Higher Level (Core) ANSWERS 0 c d e f c c d () () ]0[ {} ] ] () c d [ [ [ [ c [0/] ] ] [0 [ c ]0] d e f [[ [ [ ] [ ]0 [ > ]0 [ < ]0 [ {} [0 [ ( ) EXERCISE.. c d ] [ ]0 [ ] [ 00

MATHEMATICS Higher Level (Core) ANSWERS e f g h c 0. ]0. [ ] [ ]0 [ 0 ]0 [ ]0 [ \{0} \{0} c ]0 [ 0 ]0 [ d e f ] [ / ]/ [ ] [ ] [ d e f ]0 [ ][ c ]0 [ ] [ ] [ ] [ ]0 [ c e e ]0 [ ]0 [ e ]e [ d e f ( ) ]0 [ \{} e \{0} d e f ] /e[ /e ]0 [ e ]0 [ ii 00 i

MATHEMATICS Higher Level (Core) ANSWERS c d /e / / : ā - < < + 0 < < ~. ] 0[ [e [ c d [0 [ ] ] [ [ EXERCISE.. c d / /. c e f g h / / 0.. 0 c + ] [ ]e/ [ d e f \{e} e e - ] 0/[ 0 ] [ c d \{e} e 00

MATHEMATICS Higher Level (Core) ANSWERS iii f/g: \{} where ( f/g ) - + ( ) fog ( ) + gof ( ) ( + ) ] [ ] [. c i ii d e f / / ii fog ( ) + 0 gof ( ) + [ [ [ [ iii fog ( ) gof ( ) ( + ) [0 [ [ [ iv fog ( ) 0 gof ( ) 0 \{0} \{0} v fog ( ) 0 gof ( ) [0 [ [0 [ vi fog ( ) gof() does not eist. ] [ 0 vii fog ( ) 0 gof ( ) 0 ]0 [ ]0 [ viii fog ( ) gof ( ) [ [ [0 [ i fog ( ) + gof ( ) [ [ [0 [ fog() does not eist gof ( ) ( ) [0 [ i fog ( ) [0[ [0 [ gof ( ) + - + EXERCISE.. i f+ g: [ 0 [ where ( f+ g) ( ) + [0 [ ii f+ g: ]0 [ where ( f+ g) ( ) + ln( ) [ [ iii f + g: [ ] [ ] where ( f+ g) ( ) + [ 0] i fg: [ 0 [ where ( fg )( ) / ii iii fg: [ ] [ ] where ( fg )( ) ( )( ) i f g: ] [ where ( f g) ( ) e ] [ ii f g: ] [ where ( f g) ( ) ( + ) + ]0. [ iii f g: ] [ where ( f g) ( ) + [] i ii fg: ]0 [ where ( fg )( ) f/g: \ { 0 } where ( f/g )( ) ln( ) - e e f/g: ] [ where ( f/g )( ) + ii fog ( ) + + gof ( ) + + [ [ [ 0. [ iii fog ( ) gof ( ) [ [ ]0 [ iv fog() does not eist gof ( ) - \{} + v fog() does not eist gof ( ) + ] [ vi [ [ ]0 [ fog ( ) + gof ( ) + c fof ( ) + g ( ) + fog ( ) + + \{ 0} ] ] [ [ gof() does not eist. fog ( ) 0 gof ( ) 0. ± c gog ( ) + + 0 ].] [. [ + 00

MATHEMATICS Higher Level (Core) ANSWERS 0 + rnge ] [ ( ) hof ( ) ( ) + < r f d g nd r gof d h g ( ) ( + ) fog ( ) ]0 [ rnge ]0 [ gof ( ) ( ln ( e ( ) rnge ] [ ) + ) c fof ( ) e ( e ) rnge ]e [ hok does not eist. koh ( ) log ( ) > S \][; T T { : 0 }; S ] ] [ [ gof does not eist fog ( ) 0 Dom f ]0 [ rn f ]e [ Dom g ]0 [ rn g fog does not eist: r g d f ]0 [ gof eists s r f ]e [ d g ]0 [ c gof: ]0 [ where gof ( ) ( + ) + ln ( fog )( ) ; rnge [0 [ c ( ) fog ( ) 0 fof ( ) dom rn ]0 [ gof ( ) +ln 0 d f \ ( ) in f not g g rnge ] [ c rf \ c rf d fof ( ) f EXERCISE.. ( ) c ( + ) d e > 0 f ( ) g > 0 h ( 0 ) d gof: ] [ where gof ( ) fog*: ] [ where gof ( ) d fog [ ] fog c d gof / / [ ] fog rnge [ 0 ] ( + ) ( ) > c d e f g h + + ( 0 ) ( 0 ) (0) 00 f

MATHEMATICS Higher Level (Core) ANSWERS ± - < < c d / e f g h () () f ( ) f ( ) 0 c f ( ) d f ( ) + + e f ( ) / + f f ( ) 0 ( ) f ( ) + + > ( ) dom [ [ rn [ [ 0 f ( ) f ( ) c + f ( ) f ( ) log ( ) > f ( ) log ( + ) c f ( ) d ( log ) > 0 g ( ) + log 0 ( ) e h ( ) log \[0] f g ( ) log + > - + c inverse inverse < > inverse f ( ) ( ) [ [ + \{.} Inverse eists s f is one:one Cse : S ]0 [ Cse : S ] 0[ g ( ) + + g ( ) + d e f ( ) f ( ) ( + ) 0 { : f ( ) f ( )} ( ) inverse inverse inverse 0

MATHEMATICS Higher Level (Core) ANSWERS f ( + ) < ( ) f ( ) ln ( ) 0 < e e > e iii iv { 0 } c d f ( ) e + < 0 0 + /f + f ( ) ( ) > 0 < < 0 i tom ( ) e 0 ii mot ( ) e i ( tom ) ( ) ( ln( )) > ii ( mot ) ( ) ln > 0 c i & ii neither eist d Adjusting domins so tht the functions in prt c eist we hve: t om ( ) ( mot ) ( ) nd m ot ( ) ( tom ) ( ) e Yes s rules of composition OK. 0.0 (tom) 0. (mot) gof eists s r f d g. It is one:one so the inverse eists: f : f ( ) + e i ii f is one:one f ( ) ( ) ( ) < ( + ) > fog eists ut is not one:one c i B [ln [ ii iii EXERCISE. even even c neither d neither e even f odd g odd h even i odd Not if 0 is ecluded from the domin. ln f ( ) 0 ln R g ( fog ) : [0 [ where ( fog ) ( ) ln( + ) 0 f f

MATHEMATICS Higher Level (Core) ANSWERS EXERCISE. c d e + f + 0 g h ( ) ( + ) + ( ) + i ( + ) j k 0 l + i i ii ii iii iii ( + ) iv iv 0 c () () + c c First function in lck second function in lue c d e f.... g h i 0

MATHEMATICS Higher Level (Core) ANSWERS j 0 c d e 0 0 0 f g h i j 0 0 Note: coordintes were sked for. We hve lelled most of these with single numers. c d ( ) 0. ( ) k l k m n o h g ( ) f ( ) + g ( ) f ( + ) c g ( ) f ( ) d g ( ) f ( ) + e g ( ) f ( ) + 0 i ii ( ) (0. 0) ( ) e f g h ( ) iii iv ( ) ( ) ( ) i j k l ( ) ( ) i ii 0 / ( ) m n o ( ) ( ) iii iv c i ii 0 0

MATHEMATICS Higher Level (Core) ANSWERS iii iv d i ii ( ) ( ) iii iv f ( + ) + f ( + ) + EXERCISE. c d ( ) i i ii ii iii iii iv iv c d 0

MATHEMATICS Higher Level (Core) ANSWERS f i ii iii iv f( ) (0 ) ( 0) 0 ( ) f( ) k ( ) i ii iii f ( ) h ( ) if ( + ) if 0 if < 0 if < ( ) iv v vi h ( ) if k ( ) if < ( ) if f ( ) if < if if < ( ) ( + ) if 0 if < 0 i ii ( ) (. ) (0 ) f( ) 0 iii iv f( ) (0 ) ( 0) 0 ( ) f( ) ( ) ( ) ( 0) f( ) ( ) f ( ) ( 0) ( ) (/ ) ( ) f ( 0) f ( ) f( ) + f ( ) f ( ) c f ( ) f d f ( ) f e f ( ) f f f ( ) f( ) + c d ( 0) > 0 ( ) ā - ( ) ā - < 0 0

MATHEMATICS Higher Level (Core) ANSWERS 0 0-0 EXERCISE. i ii 0 0 d i ii () e i ii ( ) 0 0 i ii 0 0 c i (0 ) ii ( ) ( ) 0 () (0 (0 ) ) ( 0) ( ) () ( ) ( ) ( ) (0 ) ( ) 0 ( ) f i ii ( ) 0 ( ) c d. (0. ) (0. ) f( ) f( ) c f( + ) d f( ) e f( ) c d ( 0) ( 0) ( 0) ( 0) (0. ).. (0. ) (0. ) (0. ). ( ) 0

MATHEMATICS Higher Level (Core) ANSWERS e f g h i j k l - m n o p 0. - - ( ) ( ) c d e f ( ) g h i j ( ) (0 ) ( ) i ii ( ) ( ) ( ) 0 (0. ) (0. ) 0 ā - ( ) ( ) ( ) ( 0) ( ) ( ) ( 0) ( ) ( ) ( ) ( ) ( ) q r ( ) (0 ) ( ) ( ) ( ) i ii c i ii c - - ( ) ( ) ( ) ( ) 0

MATHEMATICS Higher Level (Core) ANSWERS d e f ( ) ( ) ( ) EXERCISE. c 0. 0. ( ) 0. ( ) j k l 0. / () d e f / c EXERCISE. i ii d e f / ( ) ( 0.) i ii (0 ) (0 ) g h i 0. c i ii / (0 ) / / (0 ) / 0

MATHEMATICS Higher Level (Core) ANSWERS c d c i ii ( ) g i g ii i ii c i ii iii + iv v vi g g c 0. EXERCISE.. - c d e n + - f n + + g n + h ( n + ) i - c) d e f + n + z c d e n n + n + f n g + n n h n n i + + 00 f f f f

MATHEMATICS Higher Level (Core) ANSWERS - m m 0.00.0 kg c. rs d W + - c d e f + - c d e f - ( + h) ( + )( ) n c d e f g h mn p + - q pq - / 0.0.% c. m d. m e I 0 I t / n n c n d m n e n f EXERCISE.. c d e f. g h. i c d. e 0. f 0. g h i. EXERCISE.... c d. e. f. g. h i 0 0. c 0 d e f 0 c d e - ± EXERCISE.. i. ii. iii. i. ii. iii. c i. ii. iii. d i. ii. iii. 0 0. c 0. d0. 0 e. f 0 0. EXERCISE.. c 0. d 0. 0. c 0 0 c d e 0 f.. c. d Ø 0. 0.0 c 0.0 d 0. 0 0. c 0. 0 e k ln( ) EXERCISE. 000 c 000 d 0 ds + n + i ii iii. rs c 0. rs d 0 0.0 c. kg d W e 0 000 C i 00 C ii 00 C c.0 million rs d T 0 000 0.0.0gm c 0 ers d $ million $. mil c 0. ers d 0.0 c 0 d. ers 0 0 cm. cm c 00 ds d ds t 00 Q N 0 t 000 000 V 0 W t t t 0 t

MATHEMATICS Higher Level (Core) ANSWERS i 0 ii c. erl 0 i $. ii $.0. ers c 0.t c T (.0.). C t ~ midnight. c 00 cm cm c. m d m e i.r ii.r iii.r f g t mg/min. min c i. ii. iii min d. mg e f No R A i $ ii $ iii $ c d i $ k ii $. mil iii $. mil f g $. mil & e 00 h Eercise. c d e f g 0 h 0 i j k 0. l log 0 0000 log 0 0.00 c log 0 ( + ) d log 0 p e log ( ) f log ( ) t p R A t t c t d 0 z e 0 f c d e f g h i j k l.. c. d. e. f 0. g. h. i 0.0 Eercise. c d e f log log + log c log log + log c c log log c d log log + 0. log c e log log + log c f log log 0. log c 0. 0.0 c 0.0 z c + d e f c d e f no rel soln g - 0 + h i j k l log w log c log ( + ) [ ] d ( )( + ) log e log 0 f c d e f ± c d c log -. log log log - + d 0. e log 0 log 0. f. g h. i 0. j no rel solution k log 0. l log 0 0. c d 00 0 e f ( log ) 000 c z c e c d Ø - e ln.0 ln 0.0 c ln. d e ln.0 f ln g 0. e 0.0 - log 0.0 log0 ± log - log -. log log log. 0. log ln 0. ( + ) - log 0. log 0 0

MATHEMATICS Higher Level (Core) ANSWERS h. 0. c 00. d 0. e.0.0 f 0. g 0. h i. j Eercise. 0 0 c 0. kg. c. [0[ i. ii. iii 0. rs c As c increses reliilit reduces. d 0 ct e 0.0 λ λ 0 0 k c.% d k Eercise.. i c t n n ii c t n n + iii c t n n + iv 0. c t n 0.n v c t n + n vi c t n n + e.0 i ± e ± 0.0 j Ø k e. l e 0 ln ln c ln ln d 0 e 0 f d e W. I n k L L 0 0 W. 0 0.h h h. W m. L ln ln 0 c d L 0 m 0.0 m λ log λ 0 L 0 L 0 st 0 i ii i ii 0 t n + ( n ) 0 Eercise.. 00 c 0 0 c 0. 0 0 c 00 c th week 0 0 Eercise.. 0.... d 0.0 0 000 0 0 $ weeks 0 $ 0 i m ii 0 m m c Dist d e plers 00 m 00 000 c 0 c n Eercise.. r u u n n r u - u n n c r d r u u n u u n n e r f r n n nn ( ) u u n u u n n n ( ) n 0 t

MATHEMATICS Higher Level (Core) ANSWERS ± ± ± th u n 0 c n times i $0 ii $0.. rs 000 u n - n 0..0 or 0. 0 0 $ $ Eercise.. c d e. f. 0 0 c d e ; ; c ; 0.00 d ;. e ;. f ;. c d 0 e - ; 0 $0.0. cm n 0. gms; 0 weeks. 0. 0. V n V 0 0. n 0 -.0 r. 0 0 $0.. 0 or out 00 illion tonnes. Eercise.. Term AP 0 GP. Sum to terms AP 0 GP 0. - - 0-0 weeks Ken $0 & Bo-Youn $) week week. [~00 depends on rounding errors] Eercise.. c 000 d fish. [NB: t <. If we use n then ns is 0 fish]; 0 000 fish. Overfishing mens tht fewer fish re cught in the long run. or c 0 cm 0 Eercise.. 0. c 00 0 - + ( t ) n + t ( t ) - n + t 0-0 0 + t - t n n - + t - 0-0 0 0

MATHEMATICS Higher Level (Core) ANSWERS ± ( ) ( 0 0) c n m Eercise. $.0 $. $. $ $. $0. $00.0 $. $. $. 0 $. $. interest $.. Flt interest $000 $. $0. 0.0% /month (or.% p..) Eercise. cm cm c cm A B C... 0...0 0... 0. 0. 0. 0... 0.. 0... 0..0. 0... 0 0... 0... 0... 0. 0.. 0... 0... 0. 0. 0.0..0 0... 0.0.. 0 0...0 0... 0...0 0.0.. 0.0.. 0... 0 ( + ) c d ( + ) e ( + ) f 0 0 ( + ) Eercise. i 00 T ii 0 T iii T iv 00 T i N E ii S iii S0 W iv N0 W.m.m ' m/s N W. km. m 0. m. m 0. km. m.0 km N. km E. km E 0. km S c. km E. km N d. km T m Eercise. ' '. cm. cm c ' d 0. cm e 0 ' ' ' c '.. m 0. m. c.. c. m d. m. m ( c) h h + tn c d ( + c) h + + c ( ) + h 0.0 m 0. m. m 0. cm ' c '. m ' c ' h tn c Eercise.. cm. cm c. cm d 0. cm e.0 cm f. cm g. cm h. cm i. cm j. cm k. cm 0

MATHEMATICS Higher Level (Core) ANSWERS l. cm m.0 cm n. cm o. cm m 00 cm. cm.sq units.0 sq units c. sq units. cm ' ( + tn θ ) tn θ Are of ΔACD 0. cm Are of ΔABC. cm Eercise.. cm cm c cm A B C... 0....0 0.. 0........0..0... 0.. 0. 0. 0. 0.... 0..... 0... 0... 0......... 0 0. 0. 0....0 0 0.. 0. 0 Eercise.. c A B C c* B* C*.0.0.0 0.00. 0.....0.0..00 0......0.00.0.00..... 0.0.00..00.... 0..0.0. 0.00...0.. 0.0.0..00......0.0..00......0.0..00......0.0 0..00..... 0.0.0..00.... 0..0.0..00...0...00.0..00......0.0..00..0..0..0.0.0.00.0..0..0.0.0. 0.00.0 0.0..0.0.0 0.0..00..... 0.0.0. 0.00...0...0.0..00.. 0.0...0.0..00..0..0. 0.0 0.0..00.0.0.0.0 0.0 d no tringles eist. Eercise.. 0. km. m. m 0 'T. m.0 m. m.000 m c. m. min hr. min c.0 km $ 0 0 m Eercise.. cm cm c cm A B C... 0. 0.. 0... 0...0. 0.. 0.. 0. 0... 0... 0... 0 0..0.... 0..........0 0.....0 00... 0... 0

MATHEMATICS Higher Level (Core) ANSWERS... 0 0.0... 0..... 0.. 0.... 0... 0 0 0 Eercise.. 0. km T '. cm. m. m. km W ' S Eercise...0 m. m 0. m 0 T. 0. cm cm left. km 0 m. cm m 0. cm. cm 0 m m c 0 d 0.0. m c. m m m c 0 m Eercise.. cm. m m 0. m.. min. ~0: m d sin φ sin( φ θ) d sin θ sin( φ θ) d sin φtn α i ii or c d - sin( φ θ) d sin θtn β sin( φ θ) sin φcos θ sin( φ θ) Eercise. - cm 0. c cm + cm d m. e f - cm. g.m +.cm h cm 00. i j cm. k cm + cm l - cm m n - cm. o cm 0. 0. c 0.0 m. c cm + - cm + - cm + - cm + - cm cm. cm. m 0. m c. c 0. c 0. c i.0 cm ii. cm c 0. cm.. cm 0. cm. cm cm cm c c 0.. - tnα + cm 0. α 0. α. cm - cm - cm. + - cm + - m cm + - cm cm. + - cm 0 + - cm 0 + - cm + - cm 0

MATHEMATICS Higher Level (Core) ANSWERS Eercise 0. 0 0 c d 0 c c c c d - c c d e f g h i j - k l m n o p q 0 r s 0 t undefined 0 c 0 d e f g h i j k l m n o p q r s t - c d e f g h - c d e f g h - i j k l - - - c d - - - - 0 - c - d + 0 c c k c k k c - - c c - - - - - - - - - - - - - - - - - - - k k c k - k c k sin θ cot θ c d e cot θ f tn θ c d e f Eercise 0.. + k k k c ( ) + ( ) 0 d e + + i ii i ii - c 0 d 0 i ii c ± + k k or i ii i ii + k ( k ) + k i ii + + - k - k + - k - - + i ii iii i ii iii - + 0 0 ± + k k ( - ) + ( - ) - 0

MATHEMATICS Higher Level (Core) ANSWERS Eercise 0.. sin αcos φ+ cos αsin φ cos α cos β sin α sin β c sin cos cos sin d cos φ cos α+ sin φsin α e tn θ tn α f - tn φ tn ω + tn θtn α + tn φ tn ω sin ( α β ) cos ( α + β ) c sin ( + ) d cos( ) e tn ( α β) f tn g h i c c c d c d c d c d + + tn φ c 0 α ± α α α 0 R + tn α 0 R + tn α Eercise 0. + + + + ( + ) sin + α+ β sin c d e f c d 0. c d e f g h i j tn - c d e f g h / c d / / 0. / 0. e f g h / / / c d.. / 0

MATHEMATICS Higher Level (Core) ANSWERS e f g h / / / c sec cot cosec c d e f g h i j k l m n Eercise 0. c d e f g.0 c h 0. c i 0.0 c j. c k 0. c l. c m undefined n. c o.0 c c - c d e f c d undefined e f g h - k - k + k 0 0. [ ] c d [ 0 ] [ ] 0. 00

MATHEMATICS Higher Level (Core) ANSWERS i ii c Cos Sin / tn - n + Eercise 0. c d - e f c - d e - f c d tn e - f 0 0 0 0 c 0 0 d e - - f 0 g h - - 0 00 c d ' e f g h. c.0 c i j k l ' ' m n o Ø ± c d e f g h - + tn - c 0 ± cos tn + tn( ) c / - - tn - - - - ± - ( ) - d 0 sin + 0 sin - - sin - + sin - sin - + sin - ii 0 ii 0 i { k + α( ) k k } ii { k + α ( k + ) α k } c 0 c ± ± ± 0 '0 ' ( '0 ') tn tn( ) Eercise 0. T sin t + c.. ( k + ) k - + 0 cos cos + tn tn( ) { k } k k k - cos ( ) k + k L sin - t +. ( ) k k + k 0

MATHEMATICS Higher Level (Core) ANSWERS 0. 0.. 0 V 0... 000 000 000 c. m. m. sec. sec 0 0 0. c mid-april to end of August 000 months c R d months m c m P S. t sin + sin ( t ) + P 0. sin ( t ) + D 0. t sin + sin - ( t. ) +. t 0 0.... F(t) G(t).0.....0 c d.% d months d i ii [ 0 ] [ ] [ ] c. m Eercise. i ii iii iv 0 v vi i ii iii iv v vi c i i ii i iii + i iv v vi + i i c i d i e f + i i c + i d i e f ( + i ) c d e f + i i c i d ( + i ) e i f c c 0 i i i i ii i i i i ii i iii iv 0 or 0 or oth i i i c i ( + i ) ± ( + i ) i ( + ) + 0 - ( + i ) ( uv ) ( + ) ( ) i i + i 0 + i + i i + i + i ( + i ) ( + i ) 0 t t

MATHEMATICS Higher Level (Core) ANSWERS cos ( θ+ α) + i sin( θ + α) cos ( θ α) + i sin( θ α) c r r ( cos ( θ+ α) + i sin( θ + α) ) d cos( θ ) + e + sin ( α ) + + i c ( + ) z cos ( θ ) + i sin( θ ) cos ( θ ) + i sin( θ ) α 0 α i 0 0 c α d 0 β 0 β 0 i β sin( θ ) + i cos( θ ) d cos ( θ ) i sin( θ ) Eercise. The points to plot re: () (0) () () ()()(0.0.)(). i i ii ( + i) iii i iv + i; Anticlockwise rottion of 0. i Reflection out the Re(z) is. ii Results will lws e rel numer so the point will lws lie on Re(z) is. iii Point will lws lie on the Im ( z ) is. + i c d e i f i g ( + i ) h ( i ) ; ; c ; d ; e ; f ; g ; 0 h ; rctn ; ; i or ii 0 or + ± ( i ) + i + i rctn ( ) + + + Tringle propert; the sum of the lengths of two sides of tringle is lrger thn the third side. 0 c 0 + i ;. ; c ; 0 α n 0 0 β n ; θ ; θ c ; θ sec α α (for Principl rgument) otherwise α + k where k is n integer. sec α α + (for Principl rgument) otherwise α + k is n integer. + k θ cos θ c (for Principl rgument) otherwise + k k is n integer. i ii - + i sin θ i ii θ θ - Im(z) θ Eercise. cis cis c cis c d e f cis ' g h i i c d e f c 0 i i c ( ) + ( + )i c d e f ( + i ) c + i d i e f ( + i ) c d e ( + i ) f ( + i ) 0 i c d e f ( i ) i c i d e f - i ii iii i i ( + i ) c + + i O sin θ cis cis cis Re(z) ( ) cis cis + i i i + i ( + i ) ( + i ) i cis ( ' ) cis ( ' ) - 0cis ( ' ) ( + i ) -i ( + i ) i i ( + i ) 0 i i ( + i ) 0

MATHEMATICS Higher Level (Core) ANSWERS ; ( + i ) i ii c ( cis ( θ )) ( cos θ + cos α )( cos ( θ α) i sin( θ α) ) [or cos( α θ) ] cosec θ θ Eercise.. ( + i )( i ) ( + + i )( + i ) c ( + i )( i ) d ( z + + i )( z + i ) e z ( + i ) z ( + i ) f ( z + + i )( z + i ) g w i w + i i h ( w + i )( w i ) i w - i w + - i ± i c d e f ± i g ± i h ± i i ±i ± ± i ± ± i c ± ± i ( z i )( z + i ) ( z i ) z i c d ( z + + i )( z + i ) e z i f Eercise.. ( z + )( z + i) ( z i) ( z )( z + i) ( z i) c ( z )( z + i )( z i ) ( w + i )( w + + i )( w ) ( z )( z + i )( z i ) c ( z )( z + + i )( z + i ) d ( + )( )( + i) ( i) e ( w + )( w + i )( w i ) f ( z + )( z )( z + i )( z i ) ± i ± i c ± i d ± i e f - ( + i ) ± i - (( ) + ( + )i ) ± i ( z i )( z + i )( z )( z + ) - ± i ± i ( z )( z + i )( z i ) ± i ± i + - ± ( + ) z + + i + - - ( + ) ± i ( )( z + i) ( )( z+ i )( z )( z + ) - ( ) ± i ± i ( z )( z + i) z i ± i 0 ± i ± i ( z )( z + i )( z i ) ( z )( z + i )( z i ) ± i ± i ± i ± i c ± ± i d ± ± i + 0 + 0 0 + 0 c + 0 0 d + + + 0 i ± ± i ( ± ) Eercise.. ± i + i i c i d e ( + + i ) f ± i ± i ± i ; ( z i )( z + i )( z + i )( z + + i ) ± + i i c ± cis cis cis cis cis c f ( ) ( z + )( z )( z + i )( z i ) ± ± i i + i i + i ( + i ) - ( + i ) cis cis cis cis cis cis cis ( + i ) ( + + i ) ± ± i - ( + i ) - cis cis cis c cis cis - i ± - i d cis cis cis e ( ± + i ) i ± cis (( + ) + ( )i ) - 0

MATHEMATICS Higher Level (Core) ANSWERS n n + n c d e f g h n + n + n + n c n n d e Eercise.. - n ( n + n + ) n ( n + ) c d n n ( n ) e f ± -i ± i Eercise.. - n ( n + n + ) nn ( + ) 0 ( n ) n n - + n + nn ( + )( n + ) n n + n n n + n n + n n + n n + nn ( + ) nn ( + ) n + - ( + ) nn - n + 0 + n n n - + n n + n + n n Eercise. i 00 ii 000 0 (0.) Smple size is lrge ut m e issed fctors such s the loction of the ctch. Popultion estimte is 000. i 00 ii 0 00 c 000 c numericl; d e ctegoricl d discrete; c e continuous Eercise. 0 0 Set A Mode. Men. Medin. Set B Mode Men. Medin. Set B is much more spred out thn set A nd lthough the two sets hve similr men the hve ver different mode nd medin. Eercise. Mode g; Men g; Medin g Mode.. g; Men. g; Medin.0 g Set A Mode.; Men.; Medin. Set B Mode ; Men.; Medin. $ $0 c Medin $00 $000 c Medin.. A:. hr B:. hr c Tpe B. crds 0 00 Eercise. Smple A Men. kg; Smple B Men.00 kg Smple A Smple std 0.0 kg; Smple B Smple std 0. kg c Smple A Popultion std 0.0 kg; Smple B Popultion std 0. kg.. Men.; Std. $. $.. $ $ c 0 i 0. ii. c 0. 0 +..................0.0. 0 0 0...0 0

MATHEMATICS Higher Level (Core) ANSWERS 0 - + Eercise. Med Q Q IQR Med. Q. Q. IQR. c Med. Q Q IQR d Med.0 Q 0. Q. IQR. e Med. Q 0 Q IQR 0 Med Q Q IQR Med Q Q IQR c Med Q Q. IQR 0. d Med 0 Q 0 Q 0 IQR 0 e Med 0 Q Q. IQR. 0 0 0 0 0 0 0 0 Eercise. Smple00 rndoml selected ptients popultion ll suffering from AIDS Smple000 working ged people in N.S.W popultion ll working ged people in N.S.W. c Smple John s I.B Higher Mths clss popultion ll seniors t Npp Vlle High School. Discrete: d; Continuous: c e f g. Frequenc score 0 0 0 0 0 0 Cumultive frequenc score suggested nswers onl: 00; ; 0;... 00; 0;... 00 c 0; 0;... 0. Mke use of our grphics clcultor. grphics clcultor c. d. 0 grphics clcultor c 0. d.0. c. d.0 sec.. 0 Q~ Q~ ~ 0 c % d. rnge s..;.0.;... Eercise. 0 0 0 0 0 00 c 0 0!! c i! ii! 0 00 Eercise. 0 00 0 0 0 000 0 Eercise. 0 s n. s n. s n. s n. 0

MATHEMATICS Higher Level (Core) ANSWERS 00 0 0 0 0 0; 0 0 0 0 000 0 00 c n n C C 0 0 000 00 c 00 000 00 000 0; 0 00 0 000 0 0 Eercise. c {HH HT TH TT} {HHHHHTHTHTHHTTTTTHTHTHTT} c c d c 0 0 c d {GGG GGB. GBG BGG BBB BBG BGB GBB} c 0 c c d {( H)( H)( H)(H)( H)( H)( T)( T)( T)( T)( T)(T)} - c Eercise. c c d.0 0. c 0. 0. 0.0 c 0. 0. 0.0 c 0.0 c c d e 0 c d 0. i 0. ii 0. c d Eercise. 0. 0. c 0.0 d 0. 0. 0. c 0.0 d 0.0 {TTTTTHTHTHTTHHHHHTHTHTHH} i ii iii iv 0

MATHEMATICS Higher Level (Core) ANSWERS c d 0. 0.0 c 0. T c c / / H F /0 /0 /0 0. 0. c 0. d 0. 0 0. 0. c 0. d 0. 0. 0. c 0. 0. 0. 0. 0. c 0. 0. 0. c 0. d 0. 0.0 0. c 0. Eercise. 0.0 0. 0. 0. i ii 0. 0 R R _ / / 0 0 / / / / / / / / / H T H T H T Y B G / / / / Y B G Y B G R R _ R R _ i ii - N m 0.0 0. c 0.0 d 0.0 0.00 0. c 0.000 0 0.0 0. c 0. 0 0. 0.00 0 M 0. Eercise. - c - c d 0 c - - c N m N - - 0 c ( ) N m - 0 m m+ ( N m) n 0

MATHEMATICS Higher Level (Core) ANSWERS - 0-0. Eercise. 0. 0. i 0. ii 0. p0 ( ) p( ) p ( ) p ( ) c { 0 } 0 p() c d p() 0 H p() c p0 ( ) H T / i ii c i 0.0 ii 0.00 0.000 0. p ( 0 ) p ( ) p ( ) i ii 0 0 0 n 0 T p0 ( ) p ( ) p ( ) n P(N n) P(S s) 0. 0. T H T p( ) p ( ) H T H T H T 0 / 0 p ( ) p ( ) p ( ) p() 0 p() P(N n) s 0

MATHEMATICS Higher Level (Core) ANSWERS Eercise... i ii c i ii 0. i. ii. iii 0. i 0. ii. c i ii 0. σ 0. μ. np.. c. 0. i 0. ii c i 0 ii iii. - 0 0 p ( 0 ) p ( ) - p ( ) - p ( ) i 0. ii 0. c W N E(W) 0. $.00 oth the sme 0 c c - 0 0. 0. E(X) p Vr(X) p( p) i n( p) ii np( p) n 0 P(N n) W. 0 E ( X ) + - Vr( X ) ( + ) E(X) Vr(X) 0 EXERCISE. 0. 0. c 0. 0. 0. c 0.0 d 0. 0. 0. c 0. 0. c 0. d 0. 0.0 0.0 0. 0. 0.0 c 0.0 0. 0. c 0.0 d 0. 0. 0. c 0.00 d 0. e. 0 0.00 0. c 0. d 0.. 0 0-0 0 0 0. 0.0 c 0. d 0. 0. c 0 0.0 0. 0.0 0. c $0 d 0.0 i. ii iii.0 iv 0.0 v 0.00 i.0 ii iii. iv 0.0 v 0.0. i 0.0 ii. 0 iii 0. t lest 0 c d 0. 0. 0.000 i ii. i ii. 0... 0. $. $ $0 0.00 c 0 p 0 0.0 c. np np ( p ) - n 0 < p < ( p ) n np ( p ) n EXERCISE. 0. 0.0 0.00 0 c 0.. 0. 0. c 0.0 - - 0. p 00

MATHEMATICS Higher Level (Core) ANSWERS P(X ) 0.0 0. 0. 0. 0.0 0 c 0 0 hpergeometric c - - - - P(X ) - 0 0. 0. i 0. ii 0.00 c 0. 0 c 0 ds eforehnd (plce order on Jul) reminder ~ 0 P(X ) 0. 0. 0.0 0.00 0.00 0 ~ 0% P(Accept) - 0 - - 0 - - EXERCISE. e - 0! PX ( ) i 0. ii 0.0 iii 0.0 iv 0. 0.0 0. 0.0 0. 0. 0. 0.0 0.000 0. 0. 0. 0.0 c 0. 0. 0. 0. 0 0.0 0. 0.00 0.000 0.0 0.0 c 0. 0.; 0. No. 0. 0. 0. c 0. i p ii pln p iii p + pln p c 0. EXERCISE. 0. 0. c 0. d 0. e 0. f 0.00 g 0.0 h 0.0 i 0.00 j 0. k 0. l 0.0 0.00 0. c 0.0 d 0.0 e 0.0 f 0.0 g 0. h 0.0 i 0.0 j 0.0 k 0.0 l 0. m 0.00 n 0. o 0.0 p 0.0 q 0. r 0. EXERCISE. 0.0 0. c 0.0 d 0. e 0.0 f 0. 0. 0.0 c 0. d 0. e 0. f 0.0 0. 0. c 0.0 0. 0. c 0. 0. 0. c 0. 0. 0.0 c 0. 0. 0. c 0. 0.0 0. c. 0. 0. 0 0. 0. c 0.00. 0... c.0..0 % 0.0 0.0 0. c 0. % 0. 0

MATHEMATICS Higher Level (Core) ANSWERS 0 % % %. 0. 0. 0. 0. 0 i 0.00 ii 0.0 iii 0.0 0.0 $. $. 0.00 i 0. ii 0.0 c $ μ. σ 0. $0.S μ. σ. 0 (.) i 0. ii 0. i 0. ii 0. c 0. Eercise. c d e f 0 0. c 0.0 d 0. e 0.0 f. g. h 0 m/s 0 m/s c + h + h m/s m/s + h.ºc/sec cm /cm i. cm /cm ii. cm /cm iii 0.000 cm /cm..ºc/min t to t 0 m m/s c verge speed d m e m/s $0 $. $0.0 $0. $ 00. $0.0 per er Eercise. h t h t h c h t d h e f h t Eercise. h + + h c d h +h - + h c d + h ( + h) c ( + ) + h d + + h + h e ( + h + h ) f + ( )h + h g ( + h ) h i ( )( + h ) + h+ ; + h ; c + h + h ; d + h + h + h ; (t) i ms ii ms iii. ms d Find (limit) s h 0 e t t 0 s(t) i 0 cm ii. cm iii. iv. cm /d c 0 ( 0.h ) cm /d d i. cm /d ii. m /d t t h h t t t 0

MATHEMATICS Higher Level (Core) ANSWERS Eercise. c d. e f. m. ( h + h ) m c. m/s 0 c d e f 0 c + d e ( + ) f 0. / ms ( ) ms (t) i ms ms ii ms c t t ms d sec Eercise. c d e f g h 0 + i + j k l c d e f g h - - - + i 0 j - k l - + - + c d e f g l - Eercise.. m PQ + h ; lim m PQ h 0 P ( ) Q + h - ; ; + h m PQ - lim + h h 0 m PQ c d e f g h t + 0 + - + + h i j k + - + + + + - ± c ( ) + 0 c ( ± ± ) ±- (0 0) : - < < 0 0 f ' ( + ) ( + ) + 0 Eercise.. c ' 0 > 0 ' : > - d e f ' ' g h i ' ' ' ' ' c d 0

MATHEMATICS Higher Level (Core) ANSWERS Eercise.. t - n c d t n n r + θ r r θ + e 0 L f 00 - g h i v l + + h n - + n c s / d + e f t r 0 r Eercise. + + + 0 + c d + + c - ( ) ( d + + ) e f ( ) + ( + ) ( ) ( sin + cos )e ln + c e ( + + + ) d e sin + cos f tn + ( + )sec g ( cos sin ) h e ( cos + sin + sin ) i ( ln + + ln )e sin cos [ sin ( + ) + cos ] e c d e sin - cos sin ( + ) - ( e + ) ( f - + ) ln e g + h i ( + ) ( + ) ( sin cos ) e + cos + sin c ( + ) s + ( + ) d cos + e e sec + e f sin ( ) + e g cos sin cos( ) h 0 i j k l - t e - t t - + θ + - / m m + ln ( + ln ) + sin cos sin + - ln ( ln ) cos + sin cos sec θ cosθ c d e sin θ cos θ f e e cos( ) g sec h i ( log e ) - sin cos θ sin( sin θ ) cos j sin θ sec θ k cos csc ( ) l csc ( ) e e c e d e e f e e g e + h - i e ( )e + j cos ( θ )e sin θ k sin ( θ )e cos θ l m e n ( e + ) ( e + e )( e e ) o e p + )e + ( cos θ + e c + e d e f + g h sin cos i j k + cot l ln( + ) + sin c + sin cos - sin θ cos θ + θ d ( )e + e ( ln + ) sin( ln ) f ln ( ) sin( g ) cos ( )( ) 0 - h - ( ln ( 0 + ) ) ( sin ) [ ln( 0 + )] i ( cos sin )e j ln ( sin ) + cot k ( cos sin ) e l ( sin + cos ) sin( sin ) m + ( 0 ) n ( ) o - + p + 0 - q - + + + r ( + ) + + ( + ) / s t u v w n n ln( n ) 0 0 0 ( ) + sin θ + θ - ln( + ) ( + ) e e ( + ) sin θ - + - cos + n + n n cos ( ln ) sin - ln + tn e cos θ + sin θln( sin θ) sinθcos θ ( + ) - + + e + 0

MATHEMATICS Higher Level (Core) ANSWERS e - cos 0 cos sin c - sin 0 i sincos + cos - sin ii e ( cos ln cos sin ln cos sin tn ) i ( ln ) ii - i ii e cos( e ) cos e sin k m n + m+ n 0 { θ:n tn θ m tn θ n mθ m n } csc( ) sec ( ) tn ( ) c cot ( ) csc ( ) d sin( ) e csc f sec ( ) tn( ) sec ( ) tn ( ) sec c tn d cot csc e cos + sin f cot csc g csc ( ) cot ( ) csc( ) h cot sec ( ) csc tn( ) i - sec tn sin cos + sec e sec sec tn e sec ( e ) tn ( e ) c e sec ( ) + e sec ( ) tn( ) d csc ( log ) e csc( ) sec( ) f cot( ) csc ( ) log g cos cot( sin ) csc ( sin ) h cos( csc ) cot csc i 0 Eercise. c d e + - c d - f - g - h i ( + ) j - k l + + + + - - sin cos - ( ) + + if sin > 0 if sin < 0 e e f g h i j k l ( + )[ tn ( )] ( sin ( )) / m n o Tn sin c i - - + + Sin - d tn + tn e - log + sin ( ) ( + ) f - cos g e tn ( e ) e h 0 k k / - Sin f ' ( ) > nd ; () ] f ' ( ) - ; dom ( f ' ) > c f ' ( ) ( ) < < ; dom () f [ ] - Cos d f ' ( ) > 0 nd ; ] [ + e f ' ( ) ; < + e dom () f f f ' ( ) nd f ' ( ) - - < < - or - < < ; dom () f [ ] e + cos ( cos ) - e rcsin ( cos ( )) + + e tn + < dom f dom () f - Sin < 0 dom () f + - < <- [ ] [ 0

MATHEMATICS Higher Level (Core) ANSWERS g f ' ( ) > 0 nd ; ] [ h f ' ( ) < nd ; ] [ n 0 c d e f ( + ) 0 Eercise. ( ln ) ( ln ) c ( ln ) d ( ln ) e f g ( ln ) h ( ln ) + i ( ln ) ( ln ) + cos ( ) + ln ( ) sin( ) c ln ( ) e d ( ) ( + ) ( + ) ln( ) ln e - f sin + ln c d e n n + n ( ln ) + + < 0 dom () f + > dom () f + + + ( rctn ) n + - > 0 ( + ) - ( ln0 ) ( ln ) ( + ) ( ln )( + ) f g log h log i ( ln ) log ( ln ) ( ) ( ln ) log ( ln( 0 )) log 0 ( + ) j - k l ( ln )( log ) ln ( 0 )( log 0 ( + )) ln 0 ln - ln + ln. 0 + 0 ln 0 ( ln ) cos( ) c d 0 + ( ln ) ln 0 ln0 + ( ln ) ( )( ) ( ln ) ( ln 0 )0 ( ln )( + ) e ( ln( )) log - ln ( )( log ) ( ) cos + ( ln ) 0 + ln ( ) ln c 0 ( ) ln 0 d ln e ( ) + f cos ln sin g cos ln h sin cos ln i ( ln + ) sin sin c d cos ln + ( ln ) ln ( ) ln Eercise. 0 c d e f g h i j k l cos sin m cos + sin sin n 0 o p q ( + ) e + e + e r cos ( sin s + ) 0 t c d e ( + ) ( ) / ( ) / ( + ) f g h + / i ( + ) ln cos ln sin - cos - cot c d ln sec ( ) ln ( 0 ) ln 0 ln ( tn ) e f g sin ln ( ( ) + ) tn ( ) ln ( ) ln h i - ( ) ln ( ) ln 0 ( + ) tn ( + ) ( ) sin θ - rctn ( ) - / ( ) / ln n ln + n ( ) ln n - n + ( + ) ( + ) Sin - ( ) + - ( + ) - ( ) sin cos e e ( + e ) ( e ) e ( ) ( ) / 0

MATHEMATICS Higher Level (Core) ANSWERS c f ' ( ) f (v) ( ) f ( ) 0 [0.0[ ].] Eercise.. sin c d e f g h i j k l () 0-0. 0 - + 0 - + 0. 0 0 c d e Hperol Dom Rn [] c d smll ( ) e Dom Rn [kk] f ν pγ ( + ) f '' ( ) ( + ) f (iii) ( ) ( + ) f (iv) ( ) 0 ( + ) f (n) ( ) ( ) n n! ( + ) n + + - n f '' ( ) n e ( ) n n n! ( + ) n + n k : n k : + - - n ( n + ) + ( ) - n ( n ) ( ) ( ) k k sin ( + ) k ( + ) ( n ) ( ) ( ) k + k cos ( + ) k - + - ± 0 - cos + sin nm ( ) m mn ( + ) n d d - + d d + n n e - + e - + + ± 0-0 ( + )( tn ) - + 0 undefined At (0.0 0.) grd.; t (0.0 0.) grd. Eercise.. f d cos d - sin g d cos d - cos tn cos + - cos h d + d - + + i d + d ( + ) c d c 0 d Dom [0] Rn [] Eercise. 0 c d cos ( ) + sin( ) e ( + ) f ( + ) g e h l e cos ( ) + 0e sin( ) sin ( ) cos( ) cos( ) c sin( ) d tn ( ) + tn ( ) + 0 ( ln( )) ln( ) c d d d d d - d 0 c d - ( ln( )) d - d d d d d d d - + ( + ) e - + d - d d - d d - d d d e + t 0 ( ) ln ln( ) ( ) [ + ln( ) ] - + + ( + ) d d d - d ( + ) - - ln( ) d - d 0 + - 0

MATHEMATICS Higher Level (Core) ANSWERS Eercise 0. 0 + c + d + e + f + g h + 0 c + d e f + g + h e e e c d e f g e h + e + e + c d e + f ( e ) e+ e e + g e h + A: B: Isosceles. sq. units 0 log e ( + ) ; ( + ) + + A: + B: + Tngents: tngent nd norml meet t (0. 0.) m n + 0 c + d e At ( ) ; At ( ) l : + l : + l : l : c l : + l : + Q ( ) z ( 0 ) e e + + ( ) e ( ) + e ( ) Eercise 0. c d ( ) ( ) ( 0) (0 ) m t ( ) min t c min t ( ) m ( ) d m t (0 ) min t ( -) e m t ( ) min t ( ) f min t + m t g min t ( ) 0 - h m t (0 ) min t ( 0) min t ( 0) i min t ( 0) m t j min t k min t ( ) m t ( ) l min t ( ) min t ( ) ( 0) 0 - + - c d (..) ( ). e f g h ( ) ( 0) (..0) ( ) (..0) ( 0) (0 ) 0

MATHEMATICS Higher Level (Core) ANSWERS i j - 0 () min t ( ) m t ( ) non-sttionr infl ( ) d ¼/ ¼/ i ( )e ii ( )e i ii c St. pt. ( e ) Inf. pt. ( e ) ( e ) ( e ) ( ) ( ) i (cos - sin)e ii cos.e i ii c Inf. e e d i e (sin + cos) ii e cos i ii c St. pts. -e Infl. pts. - e e d i e (cos sin) ii sin.e i ii 0 c St.pts. -e Inf. pts. (0 ) ( e ) ( e ) - e / / e 0 0 c d min vlue m vlue pt A: i Yes ii non-sttionr pt of inflect; pt B: i Yes ii Sttionr point (locl/ glol min); pt C: i Yes ii non-sttionr pt of inflect. pt A: i No ii. Locl/glol m; pt B: i No ii Locl/glol min; pt C: i Yes ii Sttionr point (locl m) c pt A: i Yes ii Sttionr point (locl/glol m); pt B: i Yes ii Sttionr point (locl min); pt C i Yes ii non-sttionr pt of inflect. d pt A: i Yes ii Sttionr pt (locl/glol m); pt B: i No ii Locl min; pt C: i Yes ii Sttionr point (locl m) e pt A: i No ii Cusp (locl min); pt B: i Yes ii Sttionr pt of inflect; pt C: i Yes ii Sttionr point (locl m) f pt A: i Yes ii Sttionr point (locl/glol m); pt B: i Yes ii Sttionr point (locl/glol min); pt C: i No ii Tngent prllel to is. i A ii B iii C i C ii B iii A c f ' ( ) f'' ( ) f ' ( ). f'' ( ) f ' ( ) f'' ( ) 0

MATHEMATICS Higher Level (Core) ANSWERS + + + f ( ) m 0. n. f ( ) 0 ln 0 0 0 ( ) 0.0 0 i ii i ii c 0 Sttionr points: locl min t ( 0) nd locl m t ( e ). Inflection pts re: ( + ( + )e ( + ) ) nd ( ( )e ( ) ) + Asolute min t ~ -. locl m t ~ Inflection pts t ~ (0..) nd (. 0.) re left s questions for clssroom discussion. 0-0.0 c d c - d f ( ) 0... Use grphics clcultor to verif our sketch. Eecise 0. Locl min. t locl m t Locl m. t 0 locl min. t ± c Locl m. t 0. d Locl m. t e none f Locl m. t 0. locl min. t 0 g Locl m. t locl min. t h none m. 0 min. m. min. c m. 0. min. 0 d m. min. 0.. (.) (/) (//) (//) ¼ ( 0) -e - ( ) - 00

MATHEMATICS Higher Level (Core) ANSWERS Sttionr points occur where tn Glol min. t ( c ); c ( ) Locl min. t ( ); infl. pt. t + Locl min. t ( ); locl m. t ( ) c none ( ) ( e /.e ) 0 e / e Glol m. t ( e 0. 0.e ); infl. pt. t e / e. Verif our grphs with grphics clcultor. Glol min. t (0 0); locl m. t ( e ) Infl. pts. ( ( )e ( ) ) ( + ( + )e ( + ) ) Glol m. t ( 0 e ) infl. pt. t ± - e. c Locl m. t e Glol m. t ( e e ). Infl. pt. t e..e. ( ) Glol min. t - + ln c Glol min. t ( + ln); Infl. pt. t ( + ln) d none 0 Glol min. t f ' ( ) ( ) ( + ) (( + ) + ( ) ) i f ( ) - ; none + ii f ( ) ( ) ( + ); locl m. t - ; locl min. t ( 0) iii f ( ) ( ) ( + ) ; locl min. t (± 0) locl m. t (0 ). Locl min. t ( c c + c ) c Eercise 0. c d e 0 f c c 0. - d e f - 0.. 0. 0 /

MATHEMATICS Higher Level (Core) ANSWERS Asmptotes: + 0 + 0 c d + 0 i (0 ) ( 0) ii ( ) + + 0 i (0 ) ( 0) ii iii iv d \{} ( ) 0. f : \{-} where f ( ) ( ) c ( + ) c dom \{0} rn \{} 0. f( ) Asmptotes: 0 0 c 0 d 0 0 Asmptotes: 0 0 c 0 d 0 Rnge \{} dom \{0.0} rn \{0.} g( ) ( ) Eercise. i < 0 ii > iii 0 i < < ii < < < iii c i < < ii < iii d i 0 < < ii < < iii < 0 < e i ii < < iii f i < < < < ii < < < < iii Eercise.. ( deer per er to nerest integer) 00 cm. cm /d 0

MATHEMATICS Higher Level (Core) ANSWERS No $0. $ 0. per er c $. per er.0. c.0 0 < < 0 ppro. i 0 < < 000 ii 000 < < 0000 to nerest integer to nerest integer. d. e 0 < < 00 0000 ( + ) D' ( ) -. items/dollr ( + + 0 ) 000 0 i ii ( + ) 0 i 0 mm/s ii ~ 0. mm/s 0. sec. cm/s never c never e ms This question is est done using grphics clcultor: From the grph the prticles pss ech other three times c 0 s; s; s d i v ms ii ms A 0.e 0.t v B 0e t ( t ) e Yes on two occssions. m in positive direction i s ii never c 00 ms 0 A B Eercise. i v t > ii t > i v ( e t e t ) t 0 ( t ) ( t ) ii e t e t ( + ) t 0 c i v - 0 t < ii t t d i v ii ( t + ) ln 0 t + log 0 ( + ) t 0 ln0 e i v te t t 0 ii e t ( t ) t 0 f i v ( ln ) t + ( ln ) t t 0 ii v ms never t rest c i m from O in negtive direction ii ms d 0 m e s ms never c t or t d 0 ms t v t + ; t ~ sec c once d use grphics clcultor m in positive direction i m ii m c ms e oscilltion out origin with mplitude m nd period seconds 00 m in negtive direction times c i 0 ms ii ms d m m. units min. unit s c i cos( t ) ii ( ) 0 m ove i v.e 0.t ii 0.e 0.t c 0 m d 0. ( v + ) 0 0 < t < 0 or t > t > 0 c t or t - ( t + ) ( ln ) t t ( t ) 0 t < + t 0 t + + ( ln ) t t 0 window: [0 ] [0 ] i ms ii 0 ms c s d m window: [0 ] [ ] Eercise. r cm s cms cm s da - dt cm s ( side length) cms. cm h 0 cm h c 0. g cm h ~ 0. cms 0. cm min 0.0 ms 0.0 ms cm min kmh 0 rd s V h + h m min c 0. m min 0 m min 00 0 /

MATHEMATICS Higher Level (Core) ANSWERS 0 cm s 0. ms. ms 0 0.t [0 00] c i cm s ii.0 cm s d V 0 units c At infl. pts. when. cos ¼ ~. ms ~0.0 ms 0 + 0t t ~0. ms 0.0 cms 0. cm s i 0t ii 0t 0t c 0 kmh d. kmh 0. ms 0.0 ms. ms 0.0 m min. per sec rd per second % per second % per second 0 0.0 per er % per second 0. rd per second Eercise.. m. mh $. per km 00 $00000 $. $0.0. m 0. m m m 0 0 0 0 r dim of rect. i.e. prro.00 m.00 m θ - 0.00 00 00 -.00 + - + - + m 0.. 00 A (00 ) 0 < < 0 c 0 00-0 < < 0 cm 00 mls 0 s c R.. c d 0 00 $000 0 & 0 ~. cm rdius 0 cm height 0 cm cm (0 00) 00 C 000 -. (0.) 0 t 0 t

MATHEMATICS Higher Level (Core) ANSWERS h r r c r h r r : h : 0 ~ (0..). m where XP : PY : km r : h : cm : 0 0 0. km from P r h r ltitude height of cone ~.0 m wide nd.00 m high when θ rcsin i.e. ppro..00 km from P. tnθ l k + kl + kl ( + k) c if k < c swimmer should row directl to Q. i r h + r ii c r : h : r + rh ( / + / ) / km long the ech c row directl to destintion R First integer greter thn α βeln - lnα β ln R S lnα - β ln 0 0 m isosceles tringle isoscles right-ngled tringle r + sq. units k + k sq. units k( k+ ) c r Eercise. c d e f g + c h + c + c c 0 + c d + c e + c f + c g + c h + c c d e f g h i c f + c + c + c + c / + + c + c + + c / + + c + c d e + + + + c / / + + / + c + c u u + c + c + c c d e f + c t + t + c t + + c + + c c + + z + z + c d e t t + c f z z + + + c u ( + ) + c + + c + + + c + c + + c + c + c t + t+ c ( ) + c / / + c - + c + + c + c u + u + u+ c βln α lnα - β ln S 0

MATHEMATICS Higher Level (Core) ANSWERS Eercise. + + c d e + 0 + + f g h $.0. cm + P ( ) 0 + + - N + + Vol ~ 0 cm 0 cm Eercise. c d e f g 0.e 0. + c h e + c i e + + c j e + c k e / + c l e + c + 0000 t 0.0 + 00 t 0 + ( + + ) f ( ) 0 e + c + 0 e + c + + + log + c > 0 log + c > 0 c e + + e + c 0e 0. + c d log e ( + ) + c > e log f e + c > 0 log e g h + log e + c > 0 ln ( + ) + c c d cos ( ) + c e sin ( ) + c log e + c > 0 tn ( ) + c cos ( ) + c ( + ) e + c e + c + c > 0 c d e e f e + log g e + c > 0 h cos + log + c > 0 i j k l m n cos + o c c d e f + c g h i ( + ) j k + c ln ( + ) + c > ln ( + ) + c > l ln( ) + c m ln ( ) + c < n + c o i cos( ) ( ) e ( ) + c d 0 tn ( 0. ) + c e ln ( + ) + e +c f g + ln ( + ) ln ( + ) + c h ln ( + ).ms or.ms 0. cm e sin( ) + + c sin( ) + c cos + c e e + c ( ) + c ln ( + ) + c sin e + + c + e + < > - e ( + ) + c 0 + cos ( ) + c e + e + + c ( ) + c tn ( ) c cos + c sin + + + c + ln + ( + ) + c f ( ) ( + ) f ( ) ln ( ) + c f ( ) sin ( + ) + d f ( ) e + c + / + c > 0 log e e cos( + ) + c sin ( ) + c ( ) + c ( + ) + c + + sin ln( ) ( + ) + c + ln + e + + + e ln ( + ) + c ( ) + c ( + ) + c e < + c 0

MATHEMATICS Higher Level (Core) ANSWERS p + q 0. 0. g V' () t..% c ~. litres 0. m noon pm pm m V' () t B 000 c. d d ds Eercise. + c d c d 0 e f g 0 h i j 0 k l 0 e e ( e ) c 0 d e ( e ) e e + e f g e h e i / e ( ) ( e e ) ln ln c + ln d e f ln g h ln i ln A e ( sin cos ) + c c d e f 0 g 0 h i 0 j - c 0 d e f ln g t - 0 - t ln - ( e e ) h i ( e + ) / ( e / ) 0 ln sin + cos ; 0 m n m + c n d m ( ) e n e 0. + 0.e 0. ; 0e 0. 00e 0. + c i ccidents ii N t + 0te 0.t 00e 0.t + suscriers 0 ~ flies Eercise. sq.units sq.units c sq.units d sq.units e sq.units e sq.units ( e sq.units c sq.units e ) ( e+ e ) d ( e e ) sq.units ln sq.units ln sq.units c ln sq.units d 0. sq.units sq.units sq.units c sq.units d sq. units e sq.units sq. units sq.units. ln +. sq.units. sq.units. 0 sq. units 0. sq. units sq. unit c ( ) sq. units tn; ln sq.units sq. units sq. units sq.unit 0 sq. units ln + c sq. unit sq. units + 0 /

MATHEMATICS Higher Level (Core) ANSWERS sq. units sq. units i sq. units ii sq. units 0 sq. units i e + e sq. units ii sq. unit iii ln() sq. units.0 sq. units sq. units e sq. units e sq. units c e e e ~ 0.00 sq. units Eercise. t + t + 0 t 0 sin t + cos t t 0 c t e + t + t 0 t t t 0 00 c 00 m ( + t ) + t +. m - m - s;. m s m 0. m st () t 0. m c. m d. m v + k - t > 0 k c. m 0 0.0 m Eercise.. k 0. k 0.0 0.00 0-0. ln k t cos t t 0. c.% d 0. 0. c 0. d 0. 0 Eercise.. Both 0. Vrince ; SD 0. Mode ; Men 0.; Medin 0. Vr. 0.0; SD 0. All g Vr. 0.; SD 0. c [.0.] Mode Men Medin. SD 0. c Men 0. s c s d s e s All. Men. cm Vr... 0 k c. ds d. ds ( ) / i. ii / 0. ; 0 iii 0. Eercise. All vlues re in cuic units. ln 0 ln.0 Ft () e c Use grphics clcultor. t 0 t 0 c mode. ( e 0 e ) 0 - ln - ( ) ( sin ) - 0 0.0 0 / /

MATHEMATICS Higher Level (Core) ANSWERS 0 k 0 k - i ii + ( + ) - + + Two possile solutions: solving + 0 0.; solving 0 then 0. 00 - - c - Eercise.. c d ( + ) / + c ( + ) / + c ( + c + ) e f g h ( + e ) / + c i j k l m n ( e ) + c o p ( + ) + c q r s ( + sin ) / + c t u v cos w + sin + c ( ) + c ( + + ) + c + + c + c ( + ) ( + ) / + c e + + c + c ( + ) / c + c ( + tn ) + + + c e + + c e + c c d e + sin + c ( / + ) / + c ( + cos ) / + c ( + / ) + c - ( ) + c e tn + c e ( + ) + c e ( + ) + c cos + c f e ( + ) + c g cos ( e ) + c h + i ln e j ln ( + e ) + c k ( + e ) / + c l cos ( + ) + c 0 cos + c c sin + d + c e log ( cos ) + c f log ( + tn ) + c g ( tn ( ) + ) h sin ( ln ) + c i ( + cos ) / c j k ln sin l + c m sec + c n o + c e Sin f + c Tn + c Sin c + c Sin + c d e Sin + c f g h i j k l + + e c ln ( + ) d Tn e n Tn ( ) o Tn p Sin q Sin r Tn s t u Tn Tn - v w + c ( e c ) ( ln( + e )) + c - + c ( + ) + c ( cos ) / + c + sin ( e ) + c e ( + ) + c [ ln( + e )] + c Tn Tn c Tn d Tn + c Cos Sin Tn + c + c + c Sin - + c -Tn + c Sin Sin + c tn + c + c + c Tn f cos g h i j k 0 l m / 0 e e ln -Sin sin + c e sin( e ) 0

MATHEMATICS Higher Level (Core) ANSWERS Eercise.. c + d ln e - f g h ( + ) + c e ( + ) + c ln ( z + z ) + c i e sin + c j ln [ e + ] + c k l c d + e ln ( ) + c f g ( ln ) h i + c ln ( + e ) + c ln ( ln ) + c 0 c d e f g h i c d e f g h i c d e ln f 0 c d e f + ln Tn ( + ) + c c d e sin f sin g h ( rccos ) + c i A B Tn k i ii c 0 ( + ) / + c 0 ( + ) / + c ( ) / + ( ) / + c sin + c ( ) / + ( ) / + c e tn c - ln ( + e ) / ( e / ) ln ln ( cos ) Sin - + + c ln( + ) ln k ln -Tn ln 0 - ln ( ). c ( ) / + c Sin + c ( rcsin ) + c ( + ) + c ( t ) / + c ( + ) / ( + ) / + c ( ) / + ( ) / + c ( e e ) + c + c + c ( rcsin ) + c c d e f g Tn Eercise.. sin cos + c cos + sin + c c sin cos + c d e ( + ) + c e e + f g + c ln + c h ( cos + sin ) + c i cos sin j + c ln cos + tn + c k ( )( + ) / + c c Cos + c Tn ln ( + ) + c c Sin Cos + c c ( )Sin + + c c d e f - + sin ( ln ) + c c Sin ln ln + + c ( e + ) [ + ln( + ) ] cos( ln ) ( e ) ( )( + ) + c Sin ( ) ( + )( ) / + c Eercise.. e ( + ) + c cos + sin c + c e d ( cos sin ) + c e cos + sin + c cos( ln ) ( + )Tn + c + sin ( ln ) + c ln + c ( + )( + ) / + c log + + c + c 00

MATHEMATICS Higher Level (Core) ANSWERS e f ( cos sin ) + c g cos sin cos + sin + c h + i ln ( ) + ( ln( )) + c j ( ln ) c k l e + e cos + sin + c m n sin ln + c o ( + ln( + )) + c p ln q Tn c ( e e / ) d ln e + e f + e + c e cos Eercise. ln. m m c. m c i sq. units ii sq. units Cos / Sin cos + c - - - + + - 0 0 + + c ( + ) + c ( ln ) + c vector sclr sclr Eercise. c d d cuic units d c {egu}; {df} {df}; {c}; {e} c {g}{cg} d {df} {e} e {df} {e} {cg} c d e f g -/ ( e + e + e ) ( e ) cuic units 0. Eercise. vector sclr sclr vector vector 0 AC AB c AD d BA e 0 Y N c Y d Y e N 0

MATHEMATICS Higher Level (Core) ANSWERS. N E N N long river 0 i 00 kph N ii. kph N W i 00 ii. Eercise. c c c c d 0 PS c AY d OC ( + ) ( + ) c c c+ c + c m n m Eercise. i + j k i + j + k c i j k d i j + k i + j + k c i j d 0 c d i i c i C A N W E S km 0 B C 0 km A 0 km 0 0 km B 0 0 m/s 0 0 m/s ii iv 0 ( cos 0 ) v 0 cos 0 ( + ) ( + ) ( + + c ) + i k + k i + j + k i j k i j k c i + j + k d 0i + j 0k 0 c d A B ( ) ( ) c ( ) 0 Depends on sis used. Here we used: Est s i North j nd verticll up k D 00i 00j + 0k A 00i 00j + 0k c 00i 00j Eercise. 0 c 0 d e f g h - ( i+ j) ( i + j ) c - ( i j ) d ( i + j k ) e - ( i + k ) f ( i j k ) g h Depends on the sis: i + j+ k or i j ( i j + k ) Eercise.. c c d f g h i j 0 0 c d 0 e f g 0 h 0. c Not possile d e Not possile f 0 c d Not possile 0. ( ) 0 ± ± ( i + j + k ) ( i j+ k ) 0 0 + k 0

MATHEMATICS Higher Level (Core) ANSWERS λ ( i 0j + k ) e.g. i+ j+ k c if c or c -.. 0. - θ vˆ û i û ( i j ) ii vˆ - ( i + j ) 0 c. 0 ( i + j + k ) Use i s km estwrd vector nd j s km northwrd vector. WD i + j WS i+ j nd DS i j c ( i + j ) 0 d d ( i + j ) e i + j 0 Eercise.. i r i + j ii r i + j iii r i j line joins ( ) nd ( ) r i + j + λ ( i j ) r i + j + λ ( i + j ) c r j + λ ( i + j ) d r i j + λ ( i + j ) e r or + λ r i j + λ ( i + 0j ) 0 f r or + λ r i + j + λ ( i + j) r i + j + λ ( i + j ) r i + j + λ ( i j ) c r i j + λ ( i+ j) r i + j + λ ( i j ) r i j + t( i j ) c r i + j + λ ( i + j ) d r i + j + μ i + μ μ +.μ c d 0 + μ μ + 0.μ j 0. 0.t 0. + 0.t c d e f r j + t ( i + j ) r i + t ( i+ j) c r i + t ( i+ j) i + j i j r i + j + t ( i + j ) ( ) ( ) ( ) d r i j + λ ( i + j ) e i M L ii + ii nd iii ( ) Eercise.. r i+ j+ k + t ( i j + k ) r i j k + t ( i + k ) r i + k + t ( i + j + k ) r i j + k + t ( i + j k ) c r i + j + k + t ( i + k ) c r k ( i + 0j ) + t t c t d 0 ( 0) + - + 0. Ø c Lines re coincident ll points re common. t + t z t 0 + t r z + 0.t - + z + t - + +.t z t z + z z + z t z + t z z z + t + t z + 0.t 0. M L 0

MATHEMATICS Higher Level (Core) ANSWERS + t t z z 0 r 0. t. +. Line psses through ( 0. ) nd is prllel to the vector i j + k.. c. ( 0. ) Does not intersect. L: M: Ø c. d i ( 00 ) ii 0 0 k 0 or z z z plne - + + - + z i + j k (or n multiple thereof) Not prllel. Do not intersect. Lines re skew. Eercise.. c 0 d e 0 + t z 0 z + t z plne c Eercise.. i + k 0i j k c i j d e i + j + k f 0i j k 0 i + j k i 0 ii 0 i + j k 0. The must e prllel. Eercise.. c. 0 sq. units λk λ ( i j + k ) ( i j + k ) 0 0 0 0i + j k 0 0

MATHEMATICS Higher Level (Core) ANSWERS OA cos αi + sin αj cuic units k 0. OB βi Eercise.. r i+ k+ λ ( i + j+ k) + μ( i j + k ) r i + j + k + λ ( i j + k ) + μ( i j + k ) c r i+ j+ k + λ ( i + j k) + μ( i j+ k ) d r i j k + λ ( i + j k ) + μ i j + k + z z c d + 0z i r λ μ + + ii + z i r λ μ + + ii z i r λ μ + + ii r λ i + z ii + z 0 c d Coefficients re the negtive of those in prt. Eercise.. + z + z c d + + z 0 c nd d + z c + z. 0 c 0 d 0 c z + z + z cos + sin βj z + 0 r i + j + k + t ( i + j + k ) i + j+ k c. + + + z + μ i j + k + z 0 Eercise.. + z ; r ; 0 r z 0 c d Eercise.. ( ) Lines tht intersect re nd c; ( 0);. ( ) ( 0 ) Eercise.. i ( ) ii. i ( ) ii 0. c i ( ) ii. d i ( ) ii. (0 ) Plne is prllel to the z-is slicing the - plne on the line +. forms plne. z is in this plne prllel to the -z plne. ( ) Eercise.. + + z or - z ; or ; c plnes prllel + z + z + z 0-0z d z ; Eercise.. e.g. the fces of tringulr prism. z or - z or - + + z 0 z z + 0 0 0

MATHEMATICS Higher Level (Core) ANSWERS No solution Unique solution ( ) c Unique solution ( ) d Intersect on plne C D z E( 0) + None of these plnes is prllel ut the lines of intersection of pirs of plnes re skew. 0 k ; r. t. + or r i j + k c i iii not r t ( + c + c + + c) c 0 c For k Revision Eercises Set A i ] [ ii f ( ) ln( + ) c 0 i 0 ii c 0 F z B G(0 ) t s (.) O H. 0. t z t s z s c + z d e. 0 + λ z c ā - + + + + c c f Asolute m. t ± - ; locl min. t (0 0); -intercept t (± 0) Locl min. t ± - ; smptotes t 0. ± ( ) ( ) nd ( 0) S [0 [ rnge [ [ c f : [ [ f () (ln) ( ) ( ) c d ( ) f() g() ( 0) ( ) ( ) ( 0) ( ) (0 ) ( ) ( 0) ( 0) ( ) 0 f

MATHEMATICS Higher Level (Core) ANSWERS i ii i h + h + h ii + h + h 0 i or ii i \{ } ii 0. iii 0 e i or ii ( e ) i 0 < < ii iii log 0. iv gf ( ( )) \{ ± } P ( ) i ii + c i fg ( ( )) ii []\{0} ln ln 0. + Cuic through ( 0) ( 0) ( + 0) with locl m. t ( ) nd locl min. t ( ) c i k < ii k ± iii < k < c ( 0) (0 ) ( 0) k 0 or ( )( + )( + ) c 0 < < 0 < < 0 c i P ( ) ( + )( )( ) ii < < i ii { > } 0 ± + c < < 0 or > < < c + e gf ( ( )) 0 ii p + p p p c < < or > ( ) e 0. - 0. 0. + e 0. ( ) 0 c P ( ) ( + )( + + ) ( + ) d nd or nd ( ) ( ) c { < } { < < } < k < p q 0 c i { < < } { < < } ii { < } - n 0 ii {±} i ( ) ii 0 c ] ] c ] [ sq units d 0 c d c d c c d 0 c d c c c i & ii i ii $00 iii $ iv t 0 0 0 f ( ) + - f ( ) g f g ( ) e + e 00 e 00 c d t 0

MATHEMATICS Higher Level (Core) ANSWERS i ]0 [ ii c ( log d e e ) 00 c 0 d 000 e t > f 000 00 Bt () t 0 0 Bt At h ( ) 0 rnge ] ] Use grphics clcultor. f ( ) log e ( ) < c Use grphics clcultor. 0 0 λ λ z λ λ r g d f fog eists; r f d g gof doesn t eist. < or > λ λ z + λλ λ λ λ z - λ c S ][ f ( ) ( ) < r g d f f og does not eist; r f d g gof eists. c F ( ) t or t c + λ λ z λ λ i 0 ii 0e. c d i 0 ii. 00 Q(t) P(t) 0 0 cm cm c hrs d [0 ] e f Use grphics clcultor. g. hrs z ]0 ] c No ( 0). 0 c r f d g i.e. does not eist g ( ) + t h ( ) g( ). t - 0. g ( ) f Incresing t decresing rte g ~ 0 wsps h ii t 0 nd Revision Eercises Set B c d km c d km e 0 i A: $000; B: $00; C: $00 ii A: $000; B: $000; C: $00 % c i months ii C never reches its trget ( i) c r 0 cm or c i ii iii ( k + )( k )! - i ii + i or i cis ( θ ) c i ii 0 R α t 0 log e 0