Tsunami Runup and Inundation Simulation in Malaysia Including the Role of Mangroves

Σχετικά έγγραφα
Project: Brimsmore, Ye... Job no: C08127 Designed By kristian Checked By Network W Network Design Table for OUTFALL B.SWS

TUBO LED T8 LLUMOR PROLED 25W 150CM

Consolidated Drained

TUBO LED T8 LLUMOR PROLED 18W 120CM

20/01/ of 8 TOW SSD v3. C 2.78AC Σ Cumul. A*C. Tc 1 =A14+1 =B14+1 =C14+1 =D14+1 =E14+1 =F14+1 =G14+1 =H14+1 =I14+1 =J14+1 =K14+1

TUBO LED T8 LLUMOR PROLED ULTRA 25W 150CM

Photometric Data of Lamp

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Spatiotemporal footprint of the WNV in Greece : Analysis & Risk Αssessment in a GIS Εnvironment

6.4 Superposition of Linear Plane Progressive Waves

Ceramic PTC Thermistor Overload Protection

wave energy Superposition of linear plane progressive waves Marine Hydrodynamics Lecture Oblique Plane Waves:

AT Surface Mount Package SOT-363 (SC-70) I I Y. Pin Connections B 1 C 1 E 1 E 2 C 2 B , 7:56 PM

Hydrologic Process in Wetland

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο, εκφράζουν τον συγγραφέα και δεν πρέπει να ερμηνευτεί ότι αντιπροσωπεύουν τις

4.4 Superposition of Linear Plane Progressive Waves

XKT. Metal Oxide Varistor FEATURES

Design Method of Ball Mill by Discrete Element Method

Thin Film Chip Resistors

deluxe sea view 01/06 21/06 01/08 30/09 01/04 30/05 22/06 29/ suite studio 01/06 21/06 01/08 30/09 deluxe

TSV. Suntan ZINC OXIDE VARISTOR. Operating Temperature Range: -40 ~+85 DIMENSION. T Thickness(max.) L:16mm min

Proses = 0 / 0 Proses = 0 / 36 16" 4576 / 2.3 Barat : 4833 / Utara : 5941 / 3.05 Proses = 63 / 37 Flow : 9936 / 3.2

Data sheet Thick Film Chip Resistor 5% - RS Series 0201/0402/0603/0805/1206

DATA SHEET Surface mount NTC thermistors. BCcomponents

ARISTOTLE UNIVERSITY OF THESSALONIKI FACULTY OF FORESTRY AND NATURAL ENVIRONMENT Institute of Mountainous Water Management and Control

* ** *** *** Jun S HIMADA*, Kyoko O HSUMI**, Kazuhiko O HBA*** and Atsushi M ARUYAMA***

Υδραυλική Εργαστήριο 4. Χρίστος Α. Καραβίτης Διαχείριση Υδατικών Πόρων Τμήμα ΑΦΠ & ΓΜ, Γ.Π.Α.

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

Operational Programme Education and Lifelong Learning. Continuing Education Programme for updating Knowledge of University Graduates:

ITU-R P ITU-R P (ITU-R 204/3 ( )

Journal of the Institute of Science and Engineering. Chuo University

DULUX L LUMILUX IMPROVED LIFETIME & SYSTEM GUARANTEE. DULUX L LUMILUX & QUICKTRONIC TECHNICAL INFORMATION

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

THICK FILM LEAD FREE CHIP RESISTORS

ITU-R P (2012/02) &' (

ΠΟΡΤΑ ΤΗΛΕΣΚΟΠΙΚΗ 2ΦΥΛΛΗ 2 PANEL SIDE OPENING DOOR

Analysis of the Low-Frequency Ferrite Antenna. Kazuaki Abe (CASIO COMPUTER CO., LTD.), Jun-ichi Takada (Tokyo Institute of Technology)

ΠΡΟΒΛΕΨΗ ΤΕΣΣΑΡΑΚΟΝΤΑΕΤΙΑΣ ΤΗΣ ΜΕΤΑΒΟΛΗΣ ΤΗΣ ΑΚΤΟΓΡΑΜΜΗΣ ΣΤΗΝ ΕΥΡΥΤΕΡΗ ΠΕΡΙΟΧΗ ΤΟΥ ΛΙΜΕΝΑ ΤΗΣ ΑΛΕΞΑΝΔΡΟΥΠΟΛΗΣ ΜΕ ΤΗ ΧΡΗΣΗ ΤΟΥ ΛΟΓΙΣΜΙΚΟΥ CEDAS

MATHACHij = γ00 + u0j + rij

Current Sensing Chip Resistor

Metal Oxide Varistors (MOV) Data Sheet


EVERFINE GONIOPHOTOMETERS SYSTEM TEST REPORT Page 1 Of 9

Eulerian Simulation of Large Deformations

ΤΜΗΜΑ ΦΥΣΙΚΩΝ ΠΟΡΩΝ & ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΓΥΑΛΙΝΗ ΠΟΡΤΑ GLASS DOOR

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

ΜΑΛΑΙΣΙΑ. ΞΕΝΟΔΟΧΕΙΑ ΚΑΤ ΔΙΑΤΡΟΦΗ ΕΠΟΧΙΚΟΤΗΤΑ 8ΗΜ/5ΝΥΧ 2-κλινο 1-κλινο 3-κλινο 01/11-14/12 & 03/01-31/ /12-02/

Oscillatory Gap Damping

Light Source Test Report

VAR Series Zinc Oxide Varistor

Thick Film Array Chip Resistor

TRIAXIAL TEST, CORPS OF ENGINEERS FORMAT

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

EXPERIMENTAL AND NUMERICAL STUDY OF A STEEL-TO-COMPOSITE ADHESIVE JOINT UNDER BENDING MOMENTS

3-dimensional motion simulation of a ship in waves using composite grid method

Study on the Strengthen Method of Masonry Structure by Steel Truss for Collapse Prevention

Parametrized Surfaces

LED Floodlight BLP FL72W01(4500K) V(B) Range: DEG V(B) Interval: 0.5DEG Test System:EVERFINE GO-2000B_V1 SYSTEM V

Current Sense Metal Strip Resistors (CSMS Series)

The effect of curcumin on the stability of Aβ. dimers

STREETLIGHT PHOTOMETRIC TEST REPORT

NPIS Shielded Power Inductors

Lifting Entry (continued)

SQC and Digital Engineering Technological Trends in Design Parameter Optimization and Current Issues

CSK series. Current Sensing Chip Resistor. Features. Applications. Construction FAITHFUL LINK

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

Current Sensing Thick Film Chip Resistor-SMDB Series Size: 0402/0603/0805/1206/1210/2010/2512. official distributor of

NPI Unshielded Power Inductors

Fin coil calculation with NTU

Bulletin 1489 UL489 Circuit Breakers

LUMINAIRE PHOTOMETRIC TEST REPORT

Βαθμονόμηση και Επαλήθευση του Λογισμικού SWMM σε μια Λεκάνη του Παντορροϊκού Συστήματος Αποχέτευσης της Αθήνας

Magnet Wire General Engineering Data Bare and Film Insulated Copper and Aluminum

RANGE OF APPLICATION HYDRO TOTAL MRL. ver sion 3.1 / web: info@doppler.gr

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)

Thick Film Chip Resistors

A life-table metamodel to support management of data deficient species, exemplified in sturgeons and shads. Electronic Supplementary Material

Chapter 1 Introduction to Observational Studies Part 2 Cross-Sectional Selection Bias Adjustment

Shenzhen XXX OPTO Co.,Ltd

LED LUMINAIRE PHOTOMETRIC TEST REPORT

CONSULTING Engineering Calculation Sheet

ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΟΜΕΑΣ

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

ΤΕΧΝΙΚΕΣ ΠΡΟΔΙΑΓΡΑΦΕΣ ΓΙΑ ΤΗΝ ΠΡΟΣΕΓΓΙΣΗ ΠΛΟΙΩΝ ΣΤΟΝ ΤΕΡΜΑΤΙΚΟ ΣΤΑΘΜΟ Υ.Φ.Α. ΡΕΒΥΘΟΥΣΑΣ

Laboratory Studies on the Irradiation of Solid Ethane Analog Ices and Implications to Titan s Chemistry

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Swirl diffusers, Variable swirl diffusers Swirl diffusers

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

By R.L. Snyder (Revised March 24, 2005)

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

MS SERIES MS DESK TOP ENCLOSURE APPLICATION EXAMPLE FEATURE. Measuring instruments. Power supply equipments

ΠΟΡΤΕΣ ΑΝΑΚΑΙΝΙΣΗΣ DOORS FOR MODERNIZATION

Core Mathematics C34

NKT NTC Thermistor. Negative Temperature Coefficient Thermistor FEATURES

Development and Verification of Multi-Level Sub- Meshing Techniques of PEEC to Model High- Speed Power and Ground Plane-Pairs of PFBS

Biostatistics for Health Sciences Review Sheet

LED Flood Light BLP FL48W01. V(B) Range:-80-80DEG V(B) Interval: 5.0DEG Test System:EVERFINE GO-2000B_V1 SYSTEM V

Transcript:

Tsunami Runup and Inundation Simulation in Malaysia Including the Role of Mangroves Teh Su Yean, Koh Hock Lye, Philip Liu, Ahmad Izani Md Ismail and 3 Lee Hooi Ling School of Mathematical Sciences, Universiti Sains Malaysia, 8 Penang, Malaysia. e-mail: hlkoh@cs.usm.my School of Civil and Environmental Engineering, Cornell University 3 Technip GeoProduction Malaysia

6 December 4 Tsunami

t = 6 s t = s 9 9 8 8 7 7 6 6 Y (km) 5 Y (km) 5 4 4 3 3 3 4 5 6 7 8 9 3 4 5 6 7 8 9 X (km) X (km) t = 8 s t = 4 s 9 9 8 8 7 7 6 6 Y (km) 5 Y (km) 5 4 4 3 3 3 4 5 6 7 8 9 3 4 5 6 7 8 9 X (km) X (km) 3 9 8 7 6 5 4 3 - - -3-4 -5-6 -7-8 -9 - - - -3-3 - - - -9-8 -7-6 -5-4 -3 - - 3 4 5 6 7 8 9 3 Elevation (m)

.4.8..6.4.8..6 Simulated Tsunami Wave Heights. 3 A: Penang B: Langkawi C: Kantang.8 4.4.4 - -4.8 -.5.5.5.5 Elevation (m) 8 4 D: Phuket 8 E: Tasai 4-4 Time (h) -4-8 -8 -

Survey runup heights for the December 6 4 tsunami Location Name Date (5) Lat. (N) Min. Long. (E) Min. Runup Height (m) Distance to Shore (m) B. Ferringhi (Teluk Bayu) B. Ferringhi (Miami Beach) Tanjung Tokong Tanjung Tokong Tanjung Tokong Tanjung Bungah Tanjung Bungah /4 5 8.3 4.6 3.46 9. /4 5 8.7 6. 4. 5.6 /4 5 7.6 8.5 3.65 35.8 /4 5 7.6 8.4 N/A 9. /4 5 7.7 8.5.6 8.3 /4 5 8. 6.7.3 8.38 /4 5 8. 6.7.94 36.

Location Name Date (5) Lat. (N) Long. (E) Runup Height Min. Min. (m) Distance to Shore (m) Kuala Kedah /8 6 6. 6..9 N/A Yan (Kg. K.S. Limau) /8 5 53...7.9 Sg udang /8 5 48...5 N/A Tanjung Dawai /8 5 4...385 75.39 Kota K. Muda /8 5 34.. 3.8.54 Kuala Kurau 3/8 5. 5..93 N/A Pantai Acheh 3/8 5 4...55 3.4 Pantai Tengah (Lanai Hotel) 4/8 6 5. 99 43. 3.66 44.5 Pantai Chenang (Pelangi Hotel) Kuala Teriang Pantai Kok (Mutiara Beach Resort) 4/8 6 7. 99 43. 3.749 54.7 4/8 6. 99 4. 3.9 7.38 4/8 6. 99 4..46 5.84 Pantai Kok (Berjaya Hotel) 4/8 6. 99 4..983 34.879

U = velocity [m/s] η = surface elevation [m] H = depth [m]; ( ) ( ) x η g x u u t u x H η u t η = = -D Runup Model

Staggered Scheme t x u η ( ) ( ) x g x u u u t u u x H H u x u u H t n i n i n i n i n i n i n i n i i n i i n i n i n i n i i n i n i = Δ η η Δ Δ = Δ η η Δ η Δ η η

MBC: Study domain 5 5 h/5. (mm - ) η (m) 3 - -3-5 -7-9 MSL MSL Toe of the slope 4 3 - - h/5. (mm - ) η (m) (a) - -3 5 53 4 55 36 357 48 38 387 394 4 48 x (m) (b) x (m)

Runup Onto Dry Land 5 5 3 3 - - -3-3 -5-5 -7-7 -9-9 - 5 53 4 55 36 357 48-5 53 4 55 36 357 48 5 5 3 3 - - -3-3 -5-5 -7-7 -9-5 53 4 55 36 357 48-9 - 5 53 4 55 36 357 48

Enlarged Runup Frames 5 4 3 - - -3 38 387 394 4 48 5 4 3 - - -3 38 387 394 4 48 5 4 3 - - -3 38 387 394 4 48 5 4 3 - - -3 38 387 394 4 48

Effects of Coastal Vegetation

Rhizophora stylosa

Bruguiera gymnorrhiza

Morison Equation M t x M D gd η x gn MM M = flow flux, m /s; D = (ηh) = total water depth, m; h = still water depth, m; n = Manning coefficient; g = gravitational acceleration, m/s ; C D = drag coefficient; A = projected area of trees under water surface, per m. D MM 7 / 3 C D A D = Drag Coefficient V V CD = 8.4.66.. 7 V V V = total volume of obstacles (m 3 ); V = control volume (m 3 );

P L = leaf porosity; N T = number of trees per m ; N R = number of prop roots per tree; D T = diameter of stem, m; D R = diameter of each prop root, m; D L = diameter of leaf part, m; H R = height of root part, m; H T = height of stem part, m; H L = height of leaf part, m.

.4 Δx = 4. m. Elevation (m).8.6.4. 4 6 8 4 6 8 x (m) n =. n =. n =.

.4..8 (a) Δx =. m.4..8 (b) Δx =. m Elevation (m).6.4. Elevation (m).6.4. -. -.4 -.6 4 6 8 4 6 8 -. x (m) -.4 -.6 n =. n =. 4 6 8 4 6 8 x (m) n =. n =..4..8 (c) Δx = 5. m Elevation (m).6.4. -. -.4 -.6 4 6 8 4 6 8 x (m) n =. n =.

.6.4.6 (a) Δx = 4. m.4 (b) Δx =. m.6.4 (c) Δx =. m....8.8.8 Elevation (m ).6.4. Elevation (m ).6.4. (m ) Elevation.6.4. 4 6 8 4 6 8 4 6 8 4 6 8 -. -. x (m) x (m) -.4 -.4 4 6 8 4 6 8 -. x (m) -.4 -.6 -.6 -.6.6.4 (d) Δx = 5. m.6.4.6 (e) Δx =.5 m.4 (f) Δx =.5 m....8.8.8 Elevation (m ).6.4. (m ) Elevation.6.4. (m ) Elevation.6.4. 4 6 8 4 6 8 4 6 8 4 6 8 -. -. -. x (m) x (m) -.4 -.4 -.4 4 6 8 4 6 8 x (m) -.6 -.6 -.6

Linear Approximation η t = h u x u t = g η x γ h u u γ h u u - R u f = gn h 4 / 3 u u Analytical. Solution u = ae βx sin( σt kx α) η = β abe x sin( σt kx) u u e β x η η e βx

π γ = h R f v 3 / h gn = γ π = π = h gn ) h h gn ( R 3 4 / 3 / f v v = f σ R gh σ k f m ghk R σ = β

R f << σ Case (a) R σ f k = σ gh R f >> σ Case (b) k gh R σ f σ = σ = R f gh R σ f k = β = decay number, m - ; n = Manning coefficient, sm -/3 ; h = water depth, m; T = wave period, s; v = wave maximum velocity, ms - ; x = half distance, m. >> σr f gh β = R f σ ghk = R f σ gh gh σr f = R f σ gh = k n v β = xˆ = ln (.5) / 3 h Th β

Decay number β (n,t) T (min) n (sm -/3 )...3.4.5.6.7 3.64 7.7.9 4.55 8.9.8 5.46.57 5.4 7.7.9.86 5.43 8. 3. 4. 6.3 8.4.5.6 4.7 4.8 3.64 5.46 7.7 9.9.9.73 5.63 3.5 4.88 6.5 8.3 9.76.39 6.48.97 4.45 5.94 7.4 8.9.39

Half distance x(n,t) T (min) n (sm -/3 )...3.4.5.6.7 9.58 95.9 63.53 47.64 38. 3.76 7.3 69.5 34.76 89.84 67.38 53.9 44.9 38.5 3 33.9 65.5.3 8.5 66. 55. 47.6 4 38.6 9.58 7.5 95.9 76.3 63.53 54.45 5 46.5 3.7 4.5 6.54 85.3 7. 6.88 6 466.8 33.4 55.6 6.7 93.36 77.8 66.69

η t M x = M t x M D gd η x gn D MM 7/3 C D A MM D = η = elevation, m; M = flow flux, m /s; H = still water depth, m; D = (ηh) = total water depth, m; n = Manning coefficient; g = gravitational acceleration, m/s ; CD = drag coefficient; A = projected area of trees under water surface, m ; Δx, Δy = spatial grid size, m.

n =.5 * C D A gδxδy D f /3 Leaf porosity PL =.3 Number of trees per m NT = 3 Number of prop roots per tree NR = Diameter of stem DT =.5 m Diameter of each prop root DR =.35 m Diameter of leaf part DL = m Height of root part HR = m Height of stem part HT = m Height of leaf part HL = 8 m Forest width W = m

Elevation (m).6.4..8.6.4..8.6.4. -. 4 6 8 4 6 8 x (m) (a) Time =. hr.6.4..8 Elevation (m).6.4..8.6.4. -. 4 6 8 4 6 8 x (m) (b) Time =.5 hr Elevation (m).6.4..8.6.4..8.6.4. -. 4 6 8 4 6 8 x (m) (c) Time =.3 hr

Elevation ( m ).6.4..8.6.4..8.6.4. -. 4 6 8 4 6 8 -. 4 6 8 4 6 8 -. x (m) (a) Time =.5 hr Mangrove Forest Width W = km Manning n =.3 s/m /3 ( m ) E levation.6.4..8.6.4..8.6.4. x (m) (b) Time =. hr.6 ( m ) Elevation.4..8.6.4..8.6.4. 4 6 8 4 6 8 x (m) (c) Time =.5 hr Elevation ( m ).6.4..8.6.4..8 (d) Time =. hr.6 (e) Time =.5 hr.6.4.4...8.8 ( m ) Elevation.6.4..8.6.6.6.4.4.4... -. 4 6 8 4 6 8 -. 4 6 8 4 6 8 -. x (m) x (m) ( m ) E levation.6.4..8 4 6 8 4 6 8 x (m) (f) Time =.3 hr

Reduction Ratio r η = η for η max max r = u u for max u max r η = reduction ratio of elevation; η formax = maximum elevation with mangrove forest; η max = maximum elevation without mangrove forest; r u = reduction ratio of velocity; u formax = maximum velocity with mangrove forest; u max = maximum velocity without mangrove forest.

. Wave Period T (mins) Reduction Ratio of Elevation r η.8.6.4. r η 3 4 5 6 Wave Period Reduction Ratio of Velocity r u...8.6.4.. 3 4 5 6 7 r u Forest Width W (m) Wave Period T (mins) 3 4 5 6 3 4 5 6 7 Forest Width W (m) vs. Forest Width

. Reduction Ratio of Elevation r η.8.6.4.. r η Wave Period Wave Period (mins) vs. 3 4 5 6 3 4 5 Forest 6 Density Forest Density (trees per m ). Reduction Ratio of Velocity r u.8.6.4.. r u Wave Period (mins) 3 4 5 6 3 4 5 6 Forest Density (trees per m )

. Reduction Ratio of Elevation r η Reduction Ratio of Velocity r u.8.6.4....8.6.4.. r η Forest Density (trees per m ) 3 5 3 4 5 6 Forest 7 Density Forest Width W (m) r u vs. Forest Density (trees per m ) 3 5 Forest Width 3 4 5 6 7 Forest Width W (m)

Penang Case Study

Pantai Mas Mangrove Forest Parameter values Forest Density (trees per m ) 3 P L.3.3.3 N T (trees per m ) 3 N R (roots per m ) 6, 6, 6, D L (m) 4. 3.. D T (m).8.8.7 D R (m).8.8.8 H L (m) 4. 3.. H T (m) 6. 5.5 5. H R (m).8.8.8

Reduction Ratio of Elevation r η.5.4.3....5 Wave Period (mins) 3 4 5 6 5 5 5 3 35 Forest Density (trees per m ) Forest Width r η = m Reduction Ratio of Velocity r u.4.3... Wave Period (mins) 3 4 5 6 5 5 5 3 35 r u Forest Density (trees per m )

Reduction Ratio of Elevation r η.7.6.5.4.3... Wave Period (mins) 3 4 5 6 5 5 5 3 35 Forest Density (trees per m ) Forest Width r η = 5 m.7.6 Reduction Ratio of Velocity r u.5.4.3.. Wave Period (mins) 3 4 5 6 r u. 5 5 5 3 35 Forest Density (trees per m )

Thank you