Μάθημα 3 α) QUIZ στην τάξη. Μέγεθος πυρήνα από μιονικά άτομα β) Μοντέλο σταγόνας: Hμιεμπειρικός τύπος Weitzecker Κοιλάδα β-σταθερότητας

Σχετικά έγγραφα
Μάθημα 6 Μοντέλο σταγόνας: Hμιεμπειρικός τύπος Weitzecker Κοιλάδα β-σταθερότητας

Μάθημα 6 Μοντέλο σταγόνας: Hμιεμπειρικός τύπος μάζας (ή τύπος του Weitzecker). Κοιλάδα β-σταθερότητας

Μάθημα 4 α) QUIZ στην τάξη β) Κοιλάδα β-σταθερότητας γ) Άλφα διάσπαση δ) Σχάση και σύντηξη

Πυρηνική και Στοιχειώδη Ι (5ου εξαμήνου) Επανάληψη μέσω ασκήσεων #2: Κοιλάδα σταθερότητας, ενέργεια σύνδεσης, φράγμα Coulomb

Πυρηνική και Στοιχειώδη Ι (5ου εξαμήνου) α-διάσπαση

Μάθημα 4 α) QUIZ στην τάξη β) Κοιλάδα β-σταθερότητας γ) Άλφα διάσπαση δ) Σχάση και σύντηξη

Μάθημα 4 α) Άλφα διάσπαση β) Σχάση και σύντηξη

Ασκήσεις #1 επιστροφή 11/11/2011

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 7

Ασκήσεις #1 επιστροφή 11/11/2011

Μάθημα 2 α) QUIZ. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Μάθημα 2 α) QUIZ στην τάξη. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Πυρηνική Φυσική και Φυσική Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό ) Τμήμα T3: Κ. Κορδάς & Σ. Ε. Τζαμαρίας. Μάθημα 7 α-διάσπαση

Μάθημα 5 Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Μάθημα 4 Mέγεθος πυρήνα

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 6β

Ασκήσεις #1 επιστροφή 15/10/2012

Μάθημα 2 α) Μέγεθος του πυρήνα β) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας γ) Ασκήσεις σετ #2 - εκφωνήσεις

Μάθημα 12 α-διάσπαση

Μάθημα 4 Mέγεθος πυρήνα

Μάθημα 2 α) Μέγεθος του πυρήνα β) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας γ) Ασκήσεις σετ #2 - εκφωνήσεις

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Χ. Πετρίδου. Μάθημα 6

Μάθημα 2 α) QUIZ στην τάξη. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Ακήσεις #1 Μήκος κύματος σωματιδίων, χρόνος ζωής και ραδιοχρονολόγηση, ενεργός διατομή, μέγεθος πυρήνων

Μάθημα 2 α) QUIZ. Ενεργός διατομή β) Μέγεθος του πυρήνα γ) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Μάθημα 5 α) QUIZ στην τάξη β) Σχάση και σύντηξη γ) Πρώτο σετ ασκήσεων δ) β-διάσπαση (μέρος Α')

Μάθημα 5 α) Μέγεθος του πυρήνα β) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας γ) Ασκήσεις σετ #2 - εκφωνήσεις

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Χ. Πετρίδου. Μάθημα 9

Μάθημα 2 Πείραμα Rutherford και μέγεθος πυρήνων, Πυρήνες-συμβολισμοί

Ασκήσεις #2 Μέγεθος και Μάζα πυρήνα. Ενέργεια σύνδεσης και το Q μιάς αντίδρασης. Κοιλάδα σταθερότητας.

Μάθημα 5 α) β-διάσπαση β) Ασκήσεις

Σχετικιστική Κινηματική

Μάθημα 3α Ενεργός διατομή και μέση ελεύθερη διαδρομή

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 15

Μάθημα 5 Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας

Μάθημα 15 β-διάσπαση Α' μέρος (νετρίνα και ενεργειακές συνθήκες)

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 6

Μάθημα 5 α) Μέγεθος του πυρήνα β) Μάζα πυρήνα, ενέργεια σύνδεσης, έλλειμα μάζας γ) Ασκήσεις σετ #2 - εκφωνήσεις

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων 5ο εξάμηνο Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου. Μάθημα 8

α - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Πυρηνικές διασπάσεις. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Πυρηνική και Στοιχειώδη Ι (5ου εξαμήνου) Eπανάληψη μέσω ασκήσεων #1 μέγεθος πυρήνα, ενέργεια σύνδεσης, η μάζα ως μορφή ενέργειας

Μάθημα 2 Σχετικιστική μηχανική, μoνάδες, εκτίμηση μεγέθους ατόμων και πυρήνων, πυρήνες-συμβολισμοί

Μάθηµα 2 Πείραµα Rutherford και µέγεθος πυρήνων, Πυρήνες-συµβολισµοί

Μάθημα 15 β-διάσπαση B' μέρος (διατήρηση σπίν, επιτρεπτές και απαγορευμένες

Μάθημα 2-3 Σχετικιστική μηχανική, μoνάδες, εκτίμηση μεγέθους ατόμων και πυρήνων, πυρήνες-συμβολισμοί

Εισαγωγή στην Πυρηνική Φυσική και τα Στοιχειώδη Σωμάτια

Μάζες Πυρήνων. Διάλεξη 3η Πετρίδου Χαρά

Διάλεξη 11-12: Ασκήσεις στην Πυρηνική Φυσική

Μάθημα 1 α) Ύλη, τρόπος διαβάσματος και εξέτασης β) Εισαγωγή στο αντικείμενο γ) Πείραμα Rutherford, μονάδες, χρόνος ζωής ενεργός διατομή και ορισμοί

Μάζα των πυρήνων. Α. Λιόλιος Μάθημα Πυρηνικής Φυσικής

Μάθημα 7 Διαγράμματα Feynman

Μάθημα 1 α) Ύλη, τρόπος διαβάσματος και εξέτασης β) Εισαγωγή στο αντικείμενο γ) Πείραμα Rutherford, μονάδες, χρόνος ζωής ενεργός διατομή και ορισμοί

Δ. Σαμψωνίδης & Κ.Κορδάς. Ανιχνευτές : Μάθημα 1α Ενεργός διατομή αλληεπίδρασης σωματιδίων, μέση ελεύθερη διαδρομή σωματιδίου

Μάθημα 2c Ενεργός διατομή, μέση ελεύθερη διαδρομή και ρυθμός διασπάσεων

Μάθημα 17 Σχάση, σύντηξη.

Μάθημα 14 β-διάσπαση B' μέρος

Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό γ) Πυρηνικό μοντέλο των φλοιών

Ενεργός διατοµή Χρυσός Κανόνας του Fermi

Μάθημα Σχάση, σύντηξη.

Ξ. Ασλάνογλου Τμήμα Φυσικής Ακαδ. Έτος ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ

Η ενέργεια σύνδεσης των νουκλεονίων χαρακτηρίζεται από τα εξής χαρακτηριστικά:

Διάλεξη 5: Αποδιέγερσεις α και β

Η κοιλάδα σταθερότητας των πυρήνων

Γενικά χαρακτηριστικά των πυρήνων (Φορτίο, Μάζα, Σταθερότητα) Ισότοπα και Πυρηνικές αντιδράσεις Ραδιενέργεια. Α. Λιόλιος Μάθημα Πυρηνικής Φυσικής

Πυρηνική και Στοιχειώδη Ι (5ου εξαμήνου) Ασκήσεις Πυρηνικής

Σχάση. X (x, y i ) Y 1, Y 2 1.1

Ο Πυρήνας του Ατόμου

Μάθημα 7 α) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό β) Πυρηνικό μοντέλο των φλοιών

Μάθημα 5 - Πυρηνική 1) Ειδη διασπάσεων και Νόμος ραδιενεργών διασπάσεων 2) αλφα, 3) βητα, 4) γαμμα

Το µοντέλο της υγρής σταγόνας

Μάθημα 7 α) QUIZ β-διάσπαση β) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό γ) Πυρηνικό μοντέλο των φλοιών

Ασκήσεις #7 αποδιεγέρσεις γ

Μάθημα 7 α) Αλληλεπίδραση νουκλεονίου-νουκλεονίου πυρηνική δύναμη και δυναμικό β) Πυρηνικό μοντέλο των φλοιών

Μάθημα 12, 13, 14 Πυρηνικό μοντέλο των φλοιών

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 20 ΜΑΪΟΥ 2015 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Η κατανομή ορμής Από την στατιστική μηχανική, ο αριθμός των μικροσκοπικών καταστάσεων dn στο στοιχείο όγκου του χώρου των φάσεων d 3 p d 3 r είναι

Εισαγωγή στην Πυρηνική Φυσική και τα Στοιχειώδη Σωμάτια Θεόδωρος Μερτζιμέκης, July 15, Προβλήματα διαλέξεων

ΟΙ ΑΣΚΗΣΕΙΣ ΤΩΝ ΕΞΕΤΑΣΕΩΝ ΦΥΣΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙ ΕΙΑΣ Γ ΛΥΚΕΙΟΥ ΣΥΓΓΡΑΦΕΑΣ: ΤΣΙΤΣΑΣ ΓΡΗΓΟΡΗΣ

Μάθημα 6 α) β-διάσπαση β) Χαρακτηριστικά πυρήνων, πέρα από μέγεθος και μάζα

β διάσπαση II Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Μάθημα 3 Πείραμα Rutherford, ορισμοί, χρόνος ζωής ενεργός διατομή

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΥΡΗΝΙΚΗ ΦΥΣΙΚΗ & ΤΑ ΣΤΟΙΧΕΙΩΔΗ ΣΩΜΑΤΙΑ

ΡΑΔΙΟΧΗΜΕΙΑ ΚΕΦΑΛΑΙΟ 2. ΝΟΥΚΛΙΔΙΑ 2. ΕΝΕΡΓΕΙΑ ΤΩΝ ΡΑΔΙΟΝΟΥΚΛΙΔΙΩΝ

α) Θα χρησιμοποιήσουμε το μοντέλο του Bohr καθώς για την ενέργεια δίνει καλά αποτελέσματα:

Aσκήσεις. Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

ΠΥΡΗΝΙΚΑ ΜΟΝΤΕΛΑ Τάσος Λιόλιος Μάθημα Πυρηνικής Φυσικής

β - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό ) Τμήμα T3: Κ. Κορδάς & Χ. Πετρίδου

Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000

β διάσπαση II Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

Niels Bohr ( ) ΘΕΜΑ Α

Δ. Σαμψωνίδης & Κ.Κορδάς. Ανιχνευτές : Μάθημα 1 Ενεργός διατομή αλληεπίδρασης σωματιδίων, μέση ελεύθερη διαδρομή σωματιδίου

ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

i. 3 ii. 4 iii. 16 Ε 1 = -13,6 ev. 1MeV= 1, J.

Θέµατα Φυσικής Γενικής Παιδείας Γ Λυκείου 2000

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

β - διάσπαση Δήμος Σαμψωνίδης ( ) Στοιχεία Πυρηνικής Φυσικής & Φυσικής Στοιχειωδών Σωματιδίων 5 ο Εξάμηνο

ΦΥΣΙΚΗ ΙΑΛΕΞΗ 4: Ο ΑΤΟΜΙΚΟΣ ΠΥΡΗΝΑΣ. ιδάσκων Ευθύµιος Τάγαρης Φυσικός, ρ Περιβαλλοντικών Επιστηµών. ρ Ευθύµιος Α. Τάγαρης

Transcript:

Σοιχεία Πυρηνικής Φυσικής και Στοιχειωδών Σωματιδίων (5ου εξαμήνου, χειμερινό 2011-12) Τμήμα G3: Κ. Κορδάς & Χ. Πετρίδου Μάθημα 3 α) QUIZ στην τάξη. Μέγεθος πυρήνα από μιονικά άτομα β) Μοντέλο σταγόνας: Hμιεμπειρικός τύπος Weitzecker Κοιλάδα β-σταθερότητας Λέκτορας Κώστας Κορδάς Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Πυρηνική & Στοιχειώδη Ι, Αριστοτέλειο Παν. Θ/νίκης, 21 Οκτωβρίου 2011

Σήμερα Μέγεθος πυρήνα εκτίμηση από μιονικά άτομα Βιβλίο C&G, Κεφ. 4, παρ. 4.2 Σημειώσεις Πυρηνικής, Κεφ. 3, παρ 3.2, 3.3 Ημιεμπειρικός τύπος μάζας πυρήνων και κοιλάδα βσταθερότητας Βιβλίο C&G, Κεφ. 4, παρ. 4.5-4.7. Σημειώσεις Πυρηνικής, Κεφ. 3, παρ 3.2, 3.3 Ενέργεια σύνδεσης πυρήνων και Q-values από αδιάσπαση και σχάση Υπολογισμός από ημιεμπειρικό τύπο Σύγκριση με πειραματικές τιμές για α-διασπαση Βιβλίο C&G, Κεφ. 4, παρ. 4.8 & Κεφ. 6, παρ. 6.1 Ιστοσελίδα: http://www.physics.auth.gr/course/show/125 2

Μάζα και ενέργεια σύνδεσης πυρήνων Ενέργεια σύνδεσης = Β(Ν,Ζ) Η μάζα ενός πυρήνα είναι μικρότερη από το άθροισμα των μαζών των νουκλεονίων που περιέχει: Μπυρήνα = Σm (ελεύθερα νουκλεόνια) - Β(Ν,Ζ) Πίνακας 4.2 του βιβλίου σας ς έ ιμ τ ς έ ικ τ α μ α ρ ι Πε Προσπάθεια εκτίμησης των ενεργειών σύνδεσης: μοντέλο της σταγόνας ημιεμπειρκικός τύπος μάζας του Weitzecker 3

Ημιεμπειρικός τύπος μάζας πυρήνων Ενέργεια σύνδεσης πυρήνα = B(N,Z) συνάρτηση και του Ζ και του Ν και τα δύο είδη νουκλεονίων παίζουν ρόλο όχι όπως στά άτομα που φτάνει μόνο το Ζ γιατί έχουμε να κάνουμε μόνο με ηλεκτρομαγνητικές δυνάμεις 4

Ενέργεια σύνδεσης - ημιεμπειρικός τύπος Β(Ζ,Ν) = aa (όγκου) - b A2/3 (επιφάνειας) - s (N-Z)2 / A (ασυμμετρίας) - d Z2 / A1/3 (Coulomb) - δ / A1/2 (ζευγαρώματος) a=15.835 MeV, b=18.33 MeV s=23.20 MeV, d=0.714 MeV +11.2 MeV περιτοί-περιτοί (Ζ περιττό και Ν περιττό) δ= 0 περιτοί-άρτιοι (π.χ: Ζ άρτιο και Ν περιττό) -11.2 MeV άρτιοι-άρτιοι (Ζ άρτιο και Ν άρτιο) 5

Ενέργεια σύνδεσης - ημιεμπειρικός τύπος Β(Ζ,Ν) = aa - b A2/3 - s (N-Z)2 / A - d Z2 / A1/3 - δ / A1/2 a=15.835 MeV, b=18.33 MeV s=23.20 MeV Ευνοούνται τα ζεύγη p-n (μεγαλύτερη ενέργεια σύνδεσης όταν Ζ=Ν) Η άπωση Coulomb μεταξύ των πρωτονίων έχει διαλυτικές τάσεις, d=0.714 MeV +11.2 MeV περιτοί-περιτοί (Ζ περιττό και Ν περιττό) δ= 0 περιτοί-άρτιοι (π.χ: Ζ άρτιο και Ν περιττό) -11.2 MeV άρτιοι-άρτιοι (Ζ άρτιο και Ν άρτιο) 6

Επιφάνεια πυρήνα-σταγόνας. Hλεκτροστατική άπωση V = const * A 4 3 π R =const A 3 R = R0 * A1/3 R=1.1 fm A R3 A R A 1 3 1 3 Επιφάνεια = 4πR2 = 4π R02 * A2/3 Ηλεκτροστατική ενέργεια (EC) σταγόνας με ομοιόμορφα κατανεμημένο φορτίο Ζ στον όγκο της: 2 2 3 Ze Z ΕC = =0.79 MeV 1 /3 1/ 3 5 R0 A A 7

Ενέργεια σύνδεσης - ημιεμπειρικός τύπος Β(Ζ,Ν) = aa - b A2/3 - s (N-Z)2 / A - d Z2 / A1/3 - δ / A1/2 a=15.835 MeV, b=18.33 MeV s=23.20 MeV, d=0.714 MeV +11.2 MeV περιτοί-περιτοί δ= 0 περιτοί-άρτιοι -11.2 MeV άρτιοι-άρτιοι 8

Ενέργεια σύνδεσης - ημιεμπειρικός τύπος Β(Ζ,Ν) = 56 Fe aa - b A2/3 - s (N-Z)2 / A - d Z2 / A1/3 - δ / A1/2 a=15.835 MeV, b=18.33 MeV s=23.20 MeV, d=0.714 MeV ΠΡΟΣΟΧΗ: Η περιγραφή είναι γενικά καλή αλλά όχι τέλεια! +11.2 MeV περιτοί-περιτοί δ= 0 περιτοί-άρτιοι -11.2 MeV άρτιοι-άρτιοι Άρτιο Ζ, άρτιο Ν 9

Ενέργεια σύνδεσης - ημιεμπειρικός τύπος Υπολογισμός από ημιεμπειρικό τύπο: Πειραματική τιμή (πίνακας 4.2) ( 28.30 MeV) B(42Ηe) = B(Z=2, N=2) = 20.95 MeV B(84Be) = B(Z=4, N=4) = 51.6 MeV ( 56.5 MeV) B(12 6O) = B(Z=6, N=6) = 121.64 MeV (127.62 MeV) Υπολογισμός από ημιεμπειρικό τύπο ΠΡΟΣΟΧΗ: Η περιγραφή είναι γενικά καλή αλλά όχι τέλεια! Δεν φτάνει μόνο ο ημιεμπειρικός τύπος. Ο πυρήνας δέν είναι μια υγρή σταγόνα. Υπάρχουν κι άλλα πράγματα που πρέπει να λάβουμε υπ' όψιν μας ( φλοώδη δομή των πυρήνων). Όχι μόνο απλά τον αριθμό πρωτονίων και νετρονίων. 10

Ενέργεια σύνδεσης - μεταβάλοντας το Α Τι κερδίζουμε συνθέτοντας και αποσυνθέτοντας πυρήνες? Π.χ., α) 20 Χ + 20 Χ 40 Υ, β) 240 Χ -> 120 Υ + 120 Υ, γ) ΑΧ Α 4 Υ + α 11

Κοιλάδα σταθερότητας Το σταθερότερο Ζ για κάθε Α 12

Κοιλάδα β-σταθερότητας: Για κάθε Α, έχει τo σταθερότερο Ζ Ενέργεια σύνδεσης πυρήνα: Β(Ζ,Ν) = a A - b A2/3 - s (N-Z)2 / A - d Z2 / A1/3 - δ / A1/2 Αντικαθιστώντας Ν=Α-Ζ, έχουμε Β(Α,Ζ) αντί για Β(Ζ,Ν): Β(A,Z) = a A - b A2/3 - s (Α-2Z)2 / A - d Z2 / A1/3 - δ / A1/2 B(A,Z) = c1 + c2 * Z + c3 * Z2 = παραβολή (για Α=σταθ.) Β(Ζ Α=σταθ.) Το Β ως συνάρτηση του Ζ, για Α=σταθ. Ζ 13

β-σταθερό, τo σταθερότερο Ζ σε κάθε Α: μέγιστη ενέργεια σύνδεσης Μέγιστο Β(Α,Ζ), για κάθε Α=σταθερό: Άρα το Ζ που δίνει το μέγιστο Β(Α,Ζ), για κάθε Α είναι: Z= A 2 d /2s A s=23.20 MeV 2/3 Z= A 2 0.0154 A 2/ 3, d=0.714 MeV Ζ < Α/2 14

Κοιλάδα β-σταθερότητας: Για κάθε Α, έχει τo σταθερότερο Ζ Αν λάβουμε υπ'όψιν το άτομο ως σύνολο, με μάζα Μ(Α,Ζ): 0 M(A,Z) = Σm B(A,Z) B(Coulomb ηλεκτρονίων) B(Coulomb ηλεκτρονίων) ~ 0 (τάξη μεγέθους ev, ενώ στον πυρήνα έχουμε MeV) ==> M(A,Z) = Z mp + Z me + (A-Z) mn [a A - b A2/3 - s (Α-2Z)2 / A - d Z2 / A1/3 - δ / A1/2 ] M(A,Z) =άλλη παραβολή ως πρός Ζ για Α=σταθ. Μ(Ζ Α=σταθ.) Το Μ ως συνάρτηση του Ζ, για Α=σταθ. Ζ 15

β-σταθερό, τo σταθερότερο Ζ σε κάθε Α: ελάχιστη μάζα (ενέργεια) ατόμου δ=0 Ελάχιστη μάζα Μ(Α,Ζ) για κάθε Α=σταθερό: Στο βιβλίο σας Άρα το Ζ που δίνει την ελάχιστη Μ(Α,Ζ), για κάθε Α είναι: m(n) = 939.57 MeV / c2 m(p) = 938.27 MeV /c2 m(e) = 0.511 MeV / c2 s=23.20 MeV, d=0.714 MeV Z= A 1.983 0.0153 A 2/3 Ζ < Α/2 16

Α περιττός: άρτιος-περιττός πυρήνας, δ=0 Μία παραβολή π.χ., Α=135 Αν υπάρχει Ζ<Ζmin διασπάται με β- β(-) -διάσπαση: (Α,Ζ) (Α,Ζ+1) και Μ(Α,Ζ) > Μ(Α,Ζ+1) β- Αν Ζ>Ζmin θα διασπασθεί με β(+) - β+ ββ54 52 Te I Xe EC 56 Cs Ba διάσπαση: (Α,Ζ) (Α,Ζ-1) και Μ(Α,Ζ) > Μ(Α,Ζ-1) 58 La Ce Pr Το Ζmin αντιστοιχεί σε Μη διασπώμενο-σταθερό- πυρήνα πάνω στην παραβολή των ισοβαρών σε κάθε περιττό Α αντιστοιχεί 1 μόνο σταθερό ισοβαρές 17

Α άρτιος: άρτιος-άρτιος (δ>0) ή περιττός-περιττός (δ<0) πυρήνας Ατομική μάζα Δύο παραβολές π.χ., Α=102 περιττόπεριττό β+ ββ+ β- 2δ/Α 1/ 2 ββ+ 44 42 Mo Tc Ru άρτιο-άρτιο 46 Rh Pd Ag 48 Cd Σχεδόν όλοι οι περιττοί -περιττοί πυρήνες μπορούν να διασπασθούν με β-διάσπαση σε άρτιουςάρτιους που να είναι σταθεροί Ο πυρήνας με Ζmin στη περίπτωση περιττόςπεριττός (Ζ-Ν) έχει συνήθως δύο δυνατότητες βδιάσπασης (β+ και β-) καταλήγοντας σε δύο διαφορετικού Ζ (άρτιο) σταθερούς πυρήνες Οι μοναδικοί περιττοίπεριττοί πυρήνες που είναι σταθεροί είναι οι τεσσερεις ελαφρύτεροι: 21Η, 63Li, 10 5Bi, 14 7N 18

Κοιλάδα β-σταθερότητας Ζ < Α/2 Ν Σχήμα 4.6 στο βιβλίο σας Ζ 19

Η κοιλάδα β-σταθερότητας N=Z N=160 A=σταθ. Z=110 Z=92 (U) N = Z Z Πολλοί προτιμούν το Ζ στον άξονα των y. Για κάθε Α, τα β-σταθερά νουκλίδια είναι στη μαύρη ζώνη ( κοιλάδα σταθερότητας valuey of stability ). Αυτά που είναι μακρυά απ'την κοιλάδα, πάνε προς αυτήν με β+ ή βdecays Z A=σταθερό: διαφέρουν ως προς το Ζ (και N) N unstable to β+ decay (or ecapture) of y e ll ity va abil st unstable to β- decay N 20

α και β διάσπαση: οι πυρήνες αλλάζουν Αριθμός πρωτονίων Η α διάσπαση μασ μεταφέρει πάνω-κάτω στην κοιλάδα σταθερότητας Η β διάσπαση μας μεταφέρει προς την κοιλάδα σταθερότητας Z+1 β Ζ + ή σύλληψη ηλεκτρονίου β α Z-1 Ζ-2 Ν-2 Ν Ν+1 Αριθμός νετρονίων 21

Διασπάσεις α γενικά α-διάσπαση: M(A,Z) M(A-4, Z-2) + α + Q ( Μητρικός Θυγατρκός + α + Q) Οπότε: Z Mp + N Mn B(A,Z) = (Z-2) Mp + (N-2) Mn B(A-4,Z-2) + 2 Mp + 2 Mn B(4He) +Q Κι έτσι: Q = B(A-4,Z-2) + 28.3 MeV B(A,Z) 22

Διασπάση α π.χ, Πολώνιο Q = B(A-4,Z-2) + 28.3 MeV B(A,Z) Από τον ημιεμπειρικό τύπο μάζας (δηλ., ενέργειας σύνδεσης): B(206 B(210 82 84 Pb) = B(Z=82, N= 124) = 1611.874 MeV Po) = B(Z=84, N= 126) = 1636.054 MeV Q = 1611.874 + 28.3 1636.054 = 4.12 MeV Πώς συγκρίνεται αυτός ο υπολογισμός με την πειραματική τιμή? 5.4 MeV Από φασματογράφους μάζας και την απόσταση που διανύουν τα α μέχρι να χάσουν όλη τους την ενέργεια με ιονισμούς ατόμων στο διάβα τους (de/dx) 23

Σχετικιστική κινηματική Σχετικιστική κινηματική: E = mc ενέργεια μάζα Η μάζα είναι μια μορφή ενέργειας 2 c = ταχύτητα του φωτός γενικά, με κινητική ενέργεια Τ, έχου με : E=m γ c 2, όπου γ = 1 1 β 2 E=T m c 2, και β=υ / c, με υ=ταχύτητα σω ματιδίου p=m γ υ=m γ βc, όπου p= ορμή 2 2 2 2 E = pc m c E [MeV], p [MeV/c], m [MeV/c2 ] Σημ είωση: μ cε = 1, έχουμ ε : E 2 =p2 +m2,κλπ. 24

Μονάδες 8 c= 3 10 m / s μονάδα ταχύτητας μονάδα ενέργειας 1 ev =1.6 10 19 Cb V =1.6 10 19 Joule Συνήθως χρησιμοποιούμε το MeV (= 109 ev) Σταθερά του Plank = h = 6.626 x 10-34 J s h ℏ c= 197 MeV fm, όπου ℏ= μονάδα δράσης 2π 1 e2 e2 α= [ SI ]= [ GKS ]= 4 πε 0 ℏ c ℏc 137 ενέργειας χρόνου 1 ( σταθερά λεπτής υφής ) Μετράμε: Μάζα: MeV/c2 (αφού Ε = mc2) Ορμή: MeV/c (αφού p = mγβc) Χρόνο σε: 1/MeV (αφού η μονάδα Ενέργειας * Xρόνου = 1) Μήκος σε: μονάδες χρόνου = 1/MeV (αφού η μονάδα ταχύτητας=1) 1 amu = 1/12 μάζας ουδέτρου ατόμου 12 C = 931.5 MeV/c2 Μάζα πρωτονίου ~ 938 MeV, Mάζα ηλεκτρονίου = 0.511 MeV. 25