1 Bhabha scattering (1936)

Σχετικά έγγραφα
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

( ) ( t) ( 0) ( ) dw w. = = β. Then the solution of (1.1) is easily found to. wt = t+ t. We generalize this to the following nonlinear differential

Homework 3 Solutions

Appendix. The solution begins with Eq. (2.15) from the text, which we repeat here for 1, (A.1)

Math221: HW# 1 solutions

Higher Derivative Gravity Theories

Matrices and Determinants

Srednicki Chapter 55

2 Composition. Invertible Mappings

Concrete Mathematics Exercises from 30 September 2016

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Finite Field Problems: Solutions

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Section 8.3 Trigonometric Equations

Example Sheet 3 Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

derivation of the Laplacian from rectangular to spherical coordinates

Inverse trigonometric functions & General Solution of Trigonometric Equations

EE512: Error Control Coding

CRASH COURSE IN PRECALCULUS

C.S. 430 Assignment 6, Sample Solutions

PARTIAL NOTES for 6.1 Trigonometric Identities

Section 7.6 Double and Half Angle Formulas

The Simply Typed Lambda Calculus

Right Rear Door. Let's now finish the door hinge saga with the right rear door

Dirac Trace Techniques

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

ω = radians per sec, t = 3 sec

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Section 9: Quantum Electrodynamics

Quadratic Expressions

Section 9.2 Polar Equations and Graphs

( y) Partial Differential Equations

If we restrict the domain of y = sin x to [ π 2, π 2

Other Test Constructions: Likelihood Ratio & Bayes Tests

The Euler Equations! λ 1. λ 2. λ 3. ρ ρu. E = e + u 2 /2. E + p ρ. = de /dt. = dh / dt; h = h( T ); c p. / c v. ; γ = c p. p = ( γ 1)ρe. c v.

Trigonometric Formula Sheet

= {{D α, D α }, D α }. = [D α, 4iσ µ α α D α µ ] = 4iσ µ α α [Dα, D α ] µ.

Homework 8 Model Solution Section

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Second Order Partial Differential Equations

Problem Set 3: Solutions

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Approximation of distance between locations on earth given by latitude and longitude

Areas and Lengths in Polar Coordinates

= e 6t. = t 1 = t. 5 t 8L 1[ 1 = 3L 1 [ 1. L 1 [ π. = 3 π. = L 1 3s = L. = 3L 1 s t. = 3 cos(5t) sin(5t).

Solution Series 9. i=1 x i and i=1 x i.

Trigonometry 1.TRIGONOMETRIC RATIOS

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Lecture 12 Modulation and Sampling

( ) ( ) ( ) Fourier series. ; m is an integer. r(t) is periodic (T>0), r(t+t) = r(t), t Fundamental period T 0 = smallest T. Fundamental frequency ω

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

D Alembert s Solution to the Wave Equation

( ) 2 and compare to M.

Reminders: linear functions

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

Math 6 SL Probability Distributions Practice Test Mark Scheme

Statistical Inference I Locally most powerful tests

ST5224: Advanced Statistical Theory II

Econ Spring 2004 Instructor: Prof. Kiefer Solution to Problem set # 5. γ (0)

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 7η: Consumer Behavior Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

Lecture 2. Soundness and completeness of propositional logic

Areas and Lengths in Polar Coordinates

4.6 Autoregressive Moving Average Model ARMA(1,1)

Solutions to Exercise Sheet 5

Συστήματα Διαχείρισης Βάσεων Δεδομένων

APPENDIX A DERIVATION OF JOINT FAILURE DENSITIES

6.003: Signals and Systems. Modulation

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Partial Differential Equations in Biology The boundary element method. March 26, 2013

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

F-TF Sum and Difference angle

Οδηγίες Αγοράς Ηλεκτρονικού Βιβλίου Instructions for Buying an ebook

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

F19MC2 Solutions 9 Complex Analysis

Strain gauge and rosettes

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Answer sheet: Third Midterm for Math 2339

Assalamu `alaikum wr. wb.

The challenges of non-stable predicates

IIT JEE (2013) (Trigonomtery 1) Solutions

Space-Time Symmetries

r t te 2t i t Find the derivative of the vector function. 19. r t e t cos t i e t sin t j ln t k Evaluate the integral.

Advanced Subsidiary Unit 1: Understanding and Written Response

Differential equations

Differentiation exercise show differential equation

Transcript:

Bhabha scaering 936 Consider he scaering of an elecron and a posiron. We have already compued he annihilaion of an elecron/posiron in finding he cross-secion for producing muon pairs. I is also possible for he final paricles o be an elecron-posiron pair. In addiion, he iniial paricles may exchage a phoon wihou annihilaing. Since he paricles are diinguishable, we have only he -channel diagram for his, wihou he crossed diagram. Le he in and ou elecrons have momena p, p, respecively and he iniial and final posirons have momena k,k. Le he angle beween he iniial and final elecrons be θ. The general calculaion is lenghy; here we reric our aenion o he ulrarelaiviic case, where we can rea he elecron and posiron as massless. This means we neglec erms of order m. For GeV or TeV colliders, his erm is of E order 0 8 or 0 4, so we incur no grea error. We may drop m whenever i occurs addiively.. The scaering marix We have wo Feynman diagrams, so he marix elemen is he sum im f i im s f i + im f i where s and refer o he phoon channel. The fir, s-channel, diagram describes he annihilaion-creaion. The marix elemen is he same as we use for he muon problem, excep he paricle masses are all equal, and here we wan o call p,k he incoming momena and p,k he ougoing momena. Therefore, inead of we wrie im s f i v p ieγ α up i q η αβ ξ q αq β q ūk ieγ β v k im f s i vk ieγα up i q η αβ ξ q αq β q ū p ieγ β v k ha is, we ju need o inerchange p k in our previous resul, and we have q p + k p + k. As before, he gauge erms vanish immediaely. We replace q s, leaving The second Feynman diagram has he marix elemen im f i ū p ieγ α up i q im s f i ie s η αβ vkγ α upū p γ β v k η αβ ξ q αq β q vk ieγ β v k where p, p are he incoming and ougoing elecron, respecively; k,k are he incoming and ougoing proon or any oher fermion of charge Q, excep he elecron which would also require he u channel, respecively; q p p k k is he -channel 4-momenum; ξ allows a choice of gauge. The gauge erm does no immediaely drop in his case. We have: ū p ieγ α up i q ξ q αq β q vk ieγ β v k i ξ e ū p iq/up vkiq/v k i ξ e ū p ip/ ip/ up vk ik/ ik/ v k i ξ e ū p mup vkmv k 4im e ξ e ū p up vkv k where we use he Dirac and conjugae Dirac equaions in he middle ep. The marix elemen becomes im f i ie η αβ ū p γ α upū k γ β uk 4im e ξ e ū p up vkv k

where we se q. We should ge he same resul in any gauge, so we could ju se ξ, bu in any case he erm of of order m and we drop i. The resuling marix elemen is im f i im s f i + im f i ie s η αβ vkγ α upū p γ β v k + ie η µν ū p γ µ up vkγ ν v k Squaring he marix elemen leads o four erms, im f i im s f i + M s f i M f i + M f i M f s i + im f i We work hem ou one a a ime.. Marix squared: s channel We already have from he muon case. Averaging over iniial spins and summing over final spins, we found M s f i im s f i 8e4 s k k k p k p + p k m k p + k p k p + m k p + m k p + 8e4 s k k + p k + m k p + m k p + m 4 where some simplificaion occurs because of he equal masses..3 Marix squared: channel For he final erm, we have M f i ie η µν ū p γ µ up vkγ ν v k ie η ρσ v k γ ρ vkūpγ σ u p 4 η µνη ρσ ū p γ µ up vkγ ν v k v k γ ρ vkūpγ σ u p 4 η µνη ρσ ū a p γ µ ab u b p v c kγcd ν v γ ρ e f v f kū g pγgh σ u h p 4 η µνη ρσ γ µ ab u b pū g pγ σ gh u h e4 4 η µνη ρσ γ µ ab p/ + m bg γσ gh p/ + m ha γν c/ m de γρ e f k/ m f c e4 4 η µνη ρσ r γ µ p/ + mγ σ p/ + m r γ ν k/ m γ ρ k/ m p ū a p γcd ν v γ ρ e f v f k v c k where he facor 4 keeps rack of he number of imes we commue fermion fields. The races give r γ µ p/ + mγ σ p/ + m r γ µ p/γ σ p/ + mγ µ γ σ p/ + mγ µ p/γ σ + m γ µ γ σ r γ µ p/γ σ p/ + m r γ µ γ σ p λ p τr γ µ γ λ γ σ γ τ + 4m η µσ 4p λ p τ η µλ η στ η µσ η λτ + η µτ η λσ + 4m η µσ 4p λ p τ η µλ η στ η µσ η λτ + η µτ η λσ + 4m η µσ 4 p µ p σ η µσ + p µ p σ + m η µσ r γ ν k/ m γ ρ k/ m 4 k ν k ρ k k η νρ + k ν k ρ + m η νρ

Combining hese resuls, M f i 4e4 η µνη ρσ p µ p σ η µσ + p µ p σ + m η µσ k ν k ρ k k η νρ + k ν k ρ + m η νρ 4e4 p ν p ρ k ν k ρ k k η νρ + k ν k ρ + m η νρ 4e4 η νρ k ν k ρ k k η νρ + k ν k ρ + m η νρ Performing he remaining conracions, M f i + 4e4 p ν p ρ k ν k ρ k k η νρ + k ν k ρ + m η νρ + 4m η νρ k ν k ρ k k η νρ + k ν k ρ + m η νρ 4e4 p k k k + p k + m 4e4 k k 4 k k + k k + 4m + 4e4 p k k k + p k + m + 4m k k 4 k k + k k + 4m 8e4 p k k k + p k + m + m k k + m 8e4 p k + p k m m k k + m 4.4 Marix squared: fir cross erm Now consider he fir of he cross erms. We need o make sure we ve assigned he same momena o he four paricles. Bu for he s channel we ve se p as he iniial posiron momenum inead of he final. ie s η αβ vkγ α upū p γ β v k ie η µν v k γ ν vkūpγ µ u p M f s i M f i e4 4 η αβ η µν 5 4 η αβ η µν v a kγab α u b pū c p γ β cd v γe ν f v f kū g pγ µ gh u h p e4 4 η αβ η µν k/ f a γab α p/ bgγ µ gh p/ hc γβ c/ de γν e f e4 4 η αβ η µν r k/γ α p/γ µ p/ γ β k/ γ ν γab α u b pū g pγ β cd v γe ν f v f k v a kγ µ gh u h p ū c p where we have dropped all mass erms. Noice ha he fermion exchanges have inroduced an overall sign. Now evaluae he race. Fir, we eliminae he free γ-marices, using r η αβ γ α γ β r η αβ { γ α,γ β } 4. To do his, we mu bring he wo relevan gamma marices nex o each oher. Also, noice ha γ α p/ p β γ α γ β p α p/γ α p β η αβ γ β γ α p α p/γ α 3

and for any of p,k, p,k, p/p/ p α p β γ α γ β p α p β { γ α,γ β } p α p β η αβ p 0 The race is M f s i M f i e4 4 η αβ η µν r k/γ α p/γ µ p/ γ β k/ γ ν Using conservaion of momenum, we replace k p + k p, where M f s i M f i e4 4 η αβ η µν r k/γ α p/γ µ p/ γ β p/ + k/ p/ γ ν e4 Tp + T k T 4 p T p η αβ η µν r k/γ α p/γ µ p/ γ β p/γ ν T k η αβ η µν r k/γ α p/γ µ p/ γ β k/γ ν T p η αβ η µν r k/γ α p/γ µ p/ γ β p/ γ ν η αβ η µν r p/ γ ν k/γ α p/γ µ p/ γ β where we used he cyclic propery on T p o check ha i is relaed o T k by he cyclic subiuion, k p p k, and renaming he dummy Lorenz indices. We herefore only need o compue he fir wo. For T p, T p η αβ η µν r k/γ α p/γ µ p/ γ β p/γ ν η αβ η µν r k/γ α p µ γ µ p/ p/ p β p/γ β γ ν 4r k/p/p/ p/ η αβ r k/γ α p/ p/γ β p/ η µν r k/p/γ µ p/p/ γ ν + η αβ η µν r k/γ α γ µ p/p/ p/γ β γ ν 4r k/p/ p/p/ η αβ r k/γ α p/ p β γ β p/ p/ η µν r k/p/p µ p/γ µ p/ γ ν + η αβ η µν r k/γ α γ µ p/ p/ p/γ β γ ν Simplifying, and using p m 0, T p 8 r k/p/ 4r k/p p/ 4r k/p/p/ p/ + η αβ r k/γ α p/ γ β p 4r k/p/p/ p/ + η µν r k/p γ µ p/ γ ν + η αβ η µν r k/γ α γ µ p/γ β γ ν η αβ η µν r k/γ α γ µ p/ p/p/γ β γ ν 3 k p 4r k/p/p/ p/ 4r k/p/p/ p/ 4

+ η αβ η µν r k/γ α γ µ p/γ β γ ν 3 k p 8r k/ p/ p/ p/ + η αβ η µν r k/γ α γ µ p/γ β γ ν Look a η αβ η µν r k/γ α γ µ p/γ β γ ν η αβ η µν r k α γ α k/γ µ p/ η βν γ ν γ β 4r k/p/ η µν r γ µ p/γ ν k/ η αµ r γ α k/γ µ p/ + 4η µν r k/γ µ p/γ ν 4r k/p/ + 4η µν r γ µ p/γ ν k/ 6k p Therefore, T p 3 k p 6 r k/p/ + 8r k/p/ p/p/ + 3 k p 3 k p 64 + 3 k p 0 Now compue T k, which is easier because he repeaes are closer: T k η αβ η µν r k/γ α p/γ µ p/ γ β k/γ ν η αβ η µν r k/γ α p/γ µ p/ γ β k ν γ ν k/ η αβ r k/γ α p/k/p/ γ β η αβ η µν r k/γ α p/γ µ p/ γ β γ ν k/ η αβ r k α γ α k/ p/k/p/ γ β 4r p/k/p/ k/ η αβ r γ α k/p/k/p/ γ β 4r p/k/p/ k/ 8r k/p/k/p/ 4r p/k/ p k k/p/ 8 p k r p/k/ + 4r p/k/k/p/ 3 p k and cycling k p p k we have T p 3 k p The full form of his cross erm conribuion o he squared marix elemen i herefore, M f s i M f i e4 Tp + T k T 4 p e4 0 3 p k + 3 k p 4 8e4.5 Marix squared: second cross erm The second cross erm, averaged and summed over spins is k p p k 5

M f i M f s i ie η µν ū p γ µ up vkγ ν v k ie s η αβ v k γ β u p ūpγ α vk We need e4 4 η αβ η µν 5 4 η αβ η µν ū a p γ µ ab u b p v c kγcd ν v γ β e f u f p ū g pγgh α v h k γ µ ab u b pū g pγcd ν v γ β e f u f p ū a p γgh α v h k v c k e4 4 η αβ η µν γ µ ab u b pū g pγgh α v h k v c kγcd ν v γ β e f u f p ū a p e4 4 η αβ η µν r γ µ p/γ α k/γ ν k/ γ β p/ Compare his o he fir cross erm, where we calculaed r γ µ p/γ α k/γ ν k/ γ β p/ r p/γ α k/γ ν k/ γ β p/ γ µ 4 η αβ η µν r k/γ α p/γ µ p/ γ β k/ γ ν 8e4 k p p k These differ only by he exchange p k, p k. Therefore,.6 Final marix squared M f i M f s i 8e4 k k k p k p The final marix squared, averaged/summed over spins, is im f i im s f i + M s f i M f i + M f i M f s i + im f i Dropping he mass erms and combining, im f i 8e4 s k k + p k + m k p + m k p + m 4 8e4 k p p k 8e4 k k k p k p 8e4 s 8e4.7 Relaiviic kinemaics + 8e4 p k + p k m m k k + m 4 k k + p k + 8e4 p k + p k k p p k k p k p + k k Consider he collision of an elecron on a posiron in he CM frame. Then he momena are p E, p k E, p p E,p k E, p 6

Then, dropping masses, and seing p E m E, all quaniies may be expressed in erms of E and θ: Subiuing ino he squared marix elemen, im f i E + p E m E p k E + E + p cosθ E + cosθ k k E E cosθ E cosθ E + cosθ p k E + p p E p p m E cosθ s p + k 4E 8e4 s k k + p k + 8e4 p k + p k 8e4 k p p k k p k p + k k 8 E 4E 4E cosθe cosθ + E + cosθe + cosθ 8 + E E cosθe + co cosθ 8e4 E 4E cosθe + cosθ E + cosθe E + cosθe + E cosθe + cosθ Then he differenial cross secion is dσ dω 64π s M ji 64π 4E + cos θ 4 + + cosθ + cosθ + e4 cos 64π 4E θ 4 + cosθ cosθ 64π 4E + cos θ 4 + + cosθ + cosθ + cos θ cosθ + cos 64π E θ + + cos4 θ sin 4 θ + cos θ cos θ sin θ 64π E + cos θ + + cos4 θ sin 4 θ This is he ulrarelaiviic limi of h Bhabha cross secion 936. cos4 θ sin θ 4 + cosθ cosθ 7

.8 Traces of gamma marices Now compue he races using he fundamenal relaion { γ α,γ β } η αβ, and he cyclic propery of he race, r A...BC r CA...B. Fir, we can show ha he race of he produc of any odd number of γ-marices vanishes by using γ 5 and {γ 5,γ a } 0, r γ α...γ β r γ α...γ β }{{} n+ r γ 5 γ 5 γ α...γ β r γ 5 γ α γ 5...γ β n+ r γ 5 γ α...γ β γ 5 n+ r γ 5 γ 5 γ α...γ β r γ α...γ β 0 For even producs, we will need races of producs of,4,6 and 8 gamma marices. r γ α γ β r γ β γ α + η αβ r γ β γ α + η αβ r r γ α γ β + 8η αβ r γ α γ β 4η αβ and r γ α γ β γ µ γ ν r γ β γ α + η αβ γ µ γ ν r γ β γ α γ µ γ ν + η αβ r γ µ γ ν r γ β γ µ γ α + η µα γ ν + η αβ r γ µ γ ν r γ β γ µ γ α γ ν η µα r γ β γ ν + η αβ r γ µ γ ν r r r γ β γ µ γ ν γ α + η να η µα r γ β γ ν + η αβ r γ µ γ ν r γ β γ µ γ ν γ α + η να r γ β γ µ η µα r γ β γ µ η µα r γ β γ ν + η αβ r γ µ γ ν γ α γ β γ µ γ ν η να r γ α γ β γ µ γ ν 4η να η β µ 4η µα η βν + 4η αβ η µν γ β γ ν + η αβ r γ µ γ ν For six, we use he simple paern o more quickly find r γ α γ β γ µ γ ν γ ρ γ σ r γ β γ α + η αβ γ µ γ ν γ ρ γ σ r γ β η αµ γ µ γ α γ ν γ ρ γ σ + η αβ γ µ γ ν γ ρ γ σ r γ β γ µ γ ν γ ρ γ σ γ α + η ασ γ β γ µ γ ν γ ρ η αρ γ β γ µ γ ν γ σ + η αν γ β γ µ γ ρ γ σ η αµ γ β γ ν γ ρ γ σ + η αβ γ µ γ ν 8

and from here we can use he resul for he race of four, r γ α γ β γ µ γ ν γ ρ γ σ r η ασ γ β γ µ γ ν γ ρ η αρ γ β γ µ γ ν γ σ + η αν γ β γ µ γ ρ γ σ η αµ γ β γ ν γ ρ γ σ + η αβ γ µ γ ν γ ρ γ σ 4η ασ η β µ η νρ η βν η µρ + η ρβ η µν 4η αρ η β µ η νσ η βν η µσ + η σβ η µν +4η αν η β µ η ρσ η βρ η µσ + η βσ η µρ 4η αµ η βν η ρσ η βρ η νσ + η βσ η νρ +4η αβ η µν η ρσ η µρ η νσ + η µσ η νρ or, perhaps more mnemonically, r γ α γ β γ µ γ ν γ ρ γ σ 4η αβ η µν η ρσ η µρ η νσ + η µσ η νρ 4η αµ η βν η ρσ η βρ η νσ + η βσ η νρ +4η αν η β µ η ρσ η βρ η µσ + η βσ η µρ 4η αρ η β µ η νσ η βν η µσ + η σβ η µν +4η ασ η β µ η νρ η βν η µρ + η ρβ η µν From his, if we don run ou of Greek leers, we can immediaely wrie he resul for eigh gammas: r γ α γ β γ µ γ ν γ ρ γ σ γ λ γ τ 4η αβ η µν η ρσ η µρ η νσ + η µσ η νρ 4η αµ η βν η ρσ η βρ η νσ + η βσ η νρ +4η αν η β µ η ρσ η βρ η µσ + η βσ η µρ 4η αρ η β µ η νσ η βν η µσ + η σβ η µν +4η ασ η β µ η νρ η βν η µρ + η ρβ η µν 9