V. Finite Element Method. 5.1 Introduction to Finite Element Method

Σχετικά έγγραφα
Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem

Classical Theory (3): Thermostatics of Continuous Systems with External Forces

Phasor Diagram of an RC Circuit V R

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).

Noriyasu MASUMOTO, Waseda University, Okubo, Shinjuku, Tokyo , Japan Hiroshi YAMAKAWA, Waseda University

ΗΥ537: Έλεγχος Πόρων και Επίδοση σε Ευρυζωνικά Δίκτυα,

Stochastic Finite Element Analysis for Composite Pressure Vessel

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

Solutions for Mathematical Physics 1 (Dated: April 19, 2015)

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Aerodynamics & Aeroelasticity: Eigenvalue analysis

A domain decomposition method for the Oseen-viscoelastic flow equations

The unified equations to obtain the exact solutions of piezoelectric plane beam subjected to arbitrary loads

1 Complete Set of Grassmann States

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Discretization of Generalized Convection-Diffusion

α & β spatial orbitals in

Homework 8 Model Solution Section

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

8.323 Relativistic Quantum Field Theory I

8.324 Relativistic Quantum Field Theory II

Πεπερασμένες διαφορές για την ελλειπτική εξίσωση στις δύο διαστάσεις

A Lie Symmetry Analysis of the Black-Scholes Merton Finance Model through modified Local one-parameter transformations

Non polynomial spline solutions for special linear tenth-order boundary value problems

Constant Elasticity of Substitution in Applied General Equilibrium

THE SECOND WEIGHTED MOMENT OF ζ. S. Bettin & J.B. Conrey

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

8. ΕΠΕΞΕΡΓΑΣΊΑ ΣΗΜΆΤΩΝ. ICA: συναρτήσεις κόστους & εφαρμογές

Example Sheet 3 Solutions

Spherical Coordinates

Magnetized plasma : About the Braginskii s 1 macroscopic model 2

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Some generalization of Cauchy s and Wilson s functional equations on abelian groups

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Computing the Gradient

Ed Stanek. c08ed01v6.doc A version of the grant proposal to be submitted for review in 2008.

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

LECTURE 4 : ARMA PROCESSES

Αλγοριθμική ασυμπτωτική ανάλυση πεπερασμένης αργής πολλαπλότητας: O ελκυστής Rössler

EE512: Error Control Coding

2 Lagrangian and Green functions in d dimensions

Computing the Macdonald function for complex orders

( ) 2 and compare to M.

Discontinuous Hermite Collocation and Diagonally Implicit RK3 for a Brain Tumour Invasion Model

Generalized Linear Model [GLM]

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

CS348B Lecture 10 Pat Hanrahan, Spring 2002

Theory of the Lattice Boltzmann Method

Other Test Constructions: Likelihood Ratio & Bayes Tests

Chapter 7 Transformations of Stress and Strain

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

Quantum annealing inversion and its implementation

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

Ingenieurbüro Frank Blasek - Beratender Ingenieur Am Kohlhof 10, Osterholz-Scharmbeck Tel: 04791/ Fax: 04791/

Forced vibrations of a two-layered shell in the case of viscous resistance

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

MABUCHI AND AUBIN-YAU FUNCTIONALS OVER COMPLEX THREE-FOLDS arxiv: v1 [math.dg] 27 Mar 2010

Using the Jacobian- free Newton- Krylov method to solve the sea- ice momentum equa<on

Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago

THREE-DIMENSIONAL VISCO-ELASTIC ARTIFICIAL BOUNDARIES IN TIME DOMAIN FOR WAVE MOTION PROBLEMS

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Dr. D. Dinev, Department of Structural Mechanics, UACEG

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Differentiation exercise show differential equation

Proposal of Terminal Self Location Estimation Method to Consider Wireless Sensor Network Environment

arxiv: v1 [math.na] 16 Apr 2017

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

2x 2 y x 4 +y 2 J (x, y) (0, 0) 0 J (x, y) = (0, 0) I ϕ(t) = (t, at), ψ(t) = (t, t 2 ), a ÑL<ÝÉ b, ½-? A? 2t 2 at t 4 +a 2 t 2 = lim

Επιδέξια Ρομποτικά Χέρια / Στατική Ανάλυση και Έλεγχος

Εργασία 6: Συνδυασμός Μαθηματικών με γραφικές παραστάσεις. Ομάδα Β: Επεξεργασία πειραματικών δεδομένων

A research on the influence of dummy activity on float in an AOA network and its amendments

A Class of Orthohomological Triangles

Local Approximation with Kernels

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Finite difference method for 2-D heat equation

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Matrices and Determinants

FEM Method 2/5/13. FEM Method. We will explore: 1 D linear & higher order elements 2 D triangular & rectangular elements

Stabilization of stock price prediction by cross entropy optimization

Reminders: linear functions

Exercises to Statistics of Material Fatigue No. 5

Calculating the propagation delay of coaxial cable

Math221: HW# 1 solutions

Lecture 34 Bootstrap confidence intervals

ΓΡΑΜΜΙΚΗ ΑΝΑΛΥΣΗ ΕΥΣΤΑΘΕΙΑΣ ΓΙΑ ΤΗΝ ΕΚΒΟΛΗ ΕΝΟΣ ΙΞΩΔΟΕΛΑΣΤΙΚΟΥ ΡΕΥΣΤΟΥ ΑΠΟ ΕΠΙΠΕΔΟ ΑΓΩΓΟ

Radiation Stress Concerned with the force (or momentum flux) exerted on the right hand side of a plane by water on the left hand side of the plane.

Differential equations

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Mechanics of Materials Lab

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Asymptotically Confirmed Hypotheses Method for the Construction of Micropolar and Classical Theories of Elastic Thin Shells

Transcript:

V. Fnte Element Method 5. Introducton to Fnte Element Method

5. Introducton to FEM

Rtz method to dfferental equaton Problem defnton k Boundary value problem Prob. Eact : d d, 0 0 0, 0 ( ) ( ) 4 C C * 4 ( ) Varatonal prncple Prob. d Etremze F( ( ) d 0 d subject to (0) 0, () 0 0 0, 0 * F F * 4

Rtz method to dfferental equaton Etremzaton of a functon and ts related algebrac equaton y ( )( ) 0 Etremze y ( ) Etremzaton of a functonal and ts related dfferentaton equaton dt, 0, T (0) 0, T () 0 d dt ( ) ( ) 0 Etremze F T T d d T(0) 0, T() 0 ( Prob. A) ( Prob. B) Tral functon: n T ( ) C f ( ), T (0) 0, T () 0

Rtz method to dfferental equaton Appromaton ( ) C C Transformaton: Functon space Fnte dmensonal vector space 3 4 F( ) C C 3 C C d 0 d C 3 d C 0 0 Necessary condton for F( C, C ) to be etreme : 3 4 3 d C C d C d C 0 0 0 F( C, C ) F( ) C C C C C C 6 5 6 0 30 Lnear equaton: Appromate soluton: Tral functon F C F 0, 0 C 0 5 C 3 C, C 30 5 4 C 60 5 6 ( ) 3-5 30 3 d Etremze F( ( ) d 0 d subject to (0) 0, () 0 Eact soluton * 4 ( )

Weghted resdual approach to dfferental equaton d d 0 0, 0 0, 0 Prob. Prob. b a ( ) ( ) ( ) ( ) ( ) d 0 0 0 (0) () 0 Assume (0) () 0 ( ) s arbtrary. b a u v uv uv b a d 0 d 0 0 ( ) d 0 cos tan 0 0, 0 Set of functons e 4 log sn Weak form [ ( ) ( ) ( )] d 0 0 (0) 0, () 0 where ( ) s s arbtrary ecept eptthat that (0) 0 and () 0 cos tan 0 0, 0 * e 4 log sn

Galerkn approach Lnear equatons Appro. soluton : ( ) C C ; C and C are unknown Tral functon ( ) W W ; W and W are arbtrary 3 4 0 C ( ) C ( 3 ) W ( ) W ( 3 ) d W ( ) W ( ) d 0 3 W ( )( ) d C 0 ( )( 3 ) d C 0 ( ) d d 0 4 W ( 3 )( ) d C 0 ( 3 )( 3 ) d C 0 ( ) d 0 0 W W 0 0 0 W are W are arbtrary Appromate weghtng functon 0 5 C 3 C, C 30 5 4 C 60 5 6 ( ) 3 5 30 3 Basc functon ( ) ( ) ( ) ( ), d, etc. 6 5 5 4 0 0 0 0, 0 Set of appromate weghtng functons 4 e log sn

Error.% * * 0, 7 0,, Error 0% 5 4 30 Requrements on basc functon Lnearly ndependent * p H Accuracy of the appromate soluton Comparson between appromate and eact solutons ma 0.0965, 0.09799 Characterstcs of soluton convergence or C ma p ( ) ( ) ( ) 3 5 30 * 4 ( ) 3 Accuracy Accuracy n n ( C ( )) ( C ( )) Eact Appromate n * lm C ( ) ( ) n ma <Comparson of appromate and eact solutons>

Basc dea of Fnte Element Method (FEM) C Tral functon : C C for 0 ( ) for Appromate soluton : 7 7 ( ) 9 96 Superconvergence Eact FE soluton <Basc functon = Interpolaton functon> <Comparson of FE soluton wth eact soluton>

FE solutons wth dfferent FEA models FEM = Rtz or Galerkn method + FE dscretzaton and nterpolaton (appromaton) FE dscretzaton and nterpolaton functon: N ( ) Technque of makng basc functons N ( ) N ( ) N ( ) N ( ) 3 N ( ) 0 0 Node Element 3 3 4 ( ) N ( ) N ( ) n Fnte Element Method 3 3 Fnte element solutons ( ) C ( ) C ( ) n Rtz or Galerkn method Eact FE solutons

Rtz method to a beam deflecton Defnton of a beam deflecton problem EIv( ) M ( ), v(0) 0, v( L) 0 b BVP based on beam theory: d d v(0) 0, v() 0, 0 V( ) Varatonal prncple: dv Etremze F( v) ( ) v( ) d 0 d subject to v() 0 Rtz method It should satsfy essental boundary condton, ()=0 [E..] [E..] EI, w, L 0 v( ) = C (-) v( ) = C (- ) C (-) v( ) = C (- ) C (- ) [E. -3] v V M ( ) b Soluton: 0 0 M ( ) b 4 * 5 v ( )

Rtz method to a beam deflecton [E..3] : v( ) C ( ) C ( ) 3 F( v) { 0 C ( 3 ) C( )} ( ){ C ( ) C( )} d 5 C 4 C C 6 C C C F( C, C ) 3 3 0 5 4 C 5 3 0 8 6 C 3 3 5 4 3 53 3 v 7 70 70 Eact: 4 * 5 v ( )

5. FEM of Partal Dfferental Equatons

Posson s equaton Posson s equaton D d, 0 d k k f (, y) 0 y 0 0, 0 T T on S T D = 3D d Etremze F( ( ) d 0 d subject to (0) 0, () 0 Etremze F( ) (, ) (, ) k k f y y ddy y subject to T T on S (, ) (, ) (, ) T y N y N y N?,? J J J N J J Nodal value

Mesh system Mesh Interpolaton functon N (, y) J J η - ξ -

Intellgent remeshng of quadrlaterals

Intellgent remeshng of tetrahedrals Accurate descrpton wth mnmum elements! As number of elements ncreases, that of remeshngs does so much, whch deterorates soluton accuracy.

D mesh systems wth hgher qualty Intal Fnal

KSTP Fall 06. 3D mesh systems wth hgher qualty

4.5 Fnte element formulaton Equaton of equlbrum q j, g j j j,,t Equaton of heat conducton T

Coordnate as Frst and second order Permutaton symbol ε jk j y e u = u or u σ j = σ j = σ σ σ 3 σ σ σ 3 = σ 3 σ 3 σ 33 σ σ y σ z σ y σ yy σ yz σ z σ zy σ zz ε jk 0 f f f = j or j = k or k =, j, k =,,3 or,3, = 3,,, j, k =,3, or,,3 = 3,, e 3 e k 3 z, y, z as,, 3 as Partal dfferentaton φ, = φ, φ,j = φ j, v,j = v, σ j,j = σ j j Eamples W = a b W = a b c = a b c = ε jk a j b k Mechancal quanttes u, u y u, u σ y or τ y σ Unt vector 3 j= Summaton σ j,j + f = 0 σ j,j + f = 0 Free nde: once n a term (cannot be change) Dummy nde: twce n a term grad φ φ, dv v curl v φ v. ε jk v k,j φ,, j, k e, e, e 3 Dvergence theorem Kronecker delta δ j δ j 0 f j f = j Q jk,m..m, dv = Q jk,m..m n ds V S n : Outwardly drected unt normal vector

S Fnte element analyss of 3D elastc problems of sotropc materals VV P Fnte element equatons u S Weak form dv t ds f dv 0 V j j S V t u u, 0 on S u j j yy yy zz zz y y yz yz z z, yy, zz, y, yz, z, D yy, j j 3N N U I I I D B U j jj J j j ( D B U )( B W ) j jj J I I W B D B U I ji j jj J T T W B D B U Galerkn appromaton Stffness matr NW I I Shape functon matr B U I I Nodal dsplacement zz 3, 3 y,, yz, 3 3, z 3,, 3 N N N I, I, 3 I, 3 WI BIWI N I, N I, N N K U F K IJ J I B D B dv IJ V I j jj Weghted resdual method N I, 3 3 I, N 3 I, I, 3 Force vector t T j (, j j, ) u, u yy, u zz 3, 3 u y, u, u yz, 3 u 3, u z 3, u, 3 I Stran-dsplacement matr Elastc matr 0 0 0 0 0 0 E( ) 0 0 0 D ( )( ) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 /( ), ( ) / ( ) W I BI Dj B jj dv U J t NI ds f NI dv 0 V St V F t N ds f N dv I S I V I N, 0 0 N, 0 0 N N, 0 0 0 N, 0 0 N, 0 0 N N, 0 0 0 N 0 0 N 0 0 N N, N, 0 N, N, 0 N N, N N, 0 0 N N 0 N N 0 N N N 0 N N 0 N N 0 N, 3, 3 N, 3, 3,, 3, N, 3 N,, 3,, 3, N, 3 N,

Rgd-plastc fnte element method Weak form Penalty method Penalty constant dv K dv t ds ds V j j V jj S S t t t c 0 Weak form Lagrange multpler method Lagrange multpler Med formulaton: knowns of velocty and pressure dv p dv f dv v qdv t ds ds j j, t t 0 V V V V S S t c j j ( DB U )( B W ) j jj J I I W B DB U I I j jj J T T W B D B U j j j 3 3 klkl 3 Non-lnear Numercal problem occurs n the elastc regon. Mnmum allowable effectve stran rate s needed. W I BI D jbjj dv U J N V V I, HM dv PM t S NIdS f NIdV t V Q N H dv U M J, M J 0 V Fnte element equatons K j CIQ U J FI CMJ 0 MQ P Q G M Over-constraned problem -Reduced ntegraton -MINI-element K IJ B V I D jbjj dv CIM NI, HM dv V

Fnte element equatons of heat conducton Weak form V T ( c kt Q ) dv q h ( T T ) ds h ( T T ) ds S e t 4 4 ( T T ) h ( ) 0 e e T Te ds,, f c c q w S S c q Q C g j j Fnte element equatons T N T N W I I I I T NI TI t TI TI TI TI TI t t t t t T T T t I I I [,, W cn T N kn N T QN dv q h N T T N ds I J J I J I J I f c J J c I V Sc 4 4 h N T T N ds ( N T ) T h N T T N ds 0 Sq q J J w I J J e e J J e I Sc C T ( K K K K K ) T Q Q Q Q 0 3 4 3 4 IJ J IJ IJ IJ IJ IJ J I I I I 0,,, 3, 4, ( CIJ /( t) KIJ KIJ KIJ KIJ KIJ ) TJ Q Q Q Q C T /( t),, 3, 4, I I I I IJ J C cn N dv IJ V I J K k N N dv K 0 IJ V I, J, IJ S c I J c h N N ds K K ( N N ) N N dv 4 3 IJ S I J I J e K 3 IJ S e I J e IJ S q I J q h N N ds h N N ds Q I V Q N dv I Q ( T h T ) N ds 4 4 I Se e e e I Q ( q h T ) N ds ] I Sc f c c I Q h T N ds 3 I Sq q w I

- 5 - Coupled analyss Equaton of equlbrum q j, g j j j,,t Equaton of heat conducton T