Contents X-ray Fluorescence (XRF) and Particle-Induced X-ray Emission (PIXE)

Σχετικά έγγραφα
Table of contents. 1. Introduction... 4

Εργαστήριο Ραδιενέργειας Περιβάλλοντος ΙΠΤΑ ΕΚΕΦΕ Δ. Στοιχειακή ανάλυση ατμοσφαιρικού αερολύματος. Καταμερισμός των πηγών εκπομπής

SUPPLEMENTAL INFORMATION. Fully Automated Total Metals and Chromium Speciation Single Platform Introduction System for ICP-MS

Σεμινάριο Φυσικής. Ενότητα 1. Γεωργακίλας Αλέξανδρος Ζουμπούλης Ηλίας Μακροπούλου Μυρσίνη Πίσσης Πολύκαρπος

ΙΕΥΘΥΝΤΗΣ: Καθηγητής Γ. ΧΡΥΣΟΛΟΥΡΗΣ Ι ΑΚΤΟΡΙΚΗ ΙΑΤΡΙΒΗ

Επιταχυντές Χαμηλών Ενεργειών

ΒΕΛΤΙΣΤΟΠΟΙΗΣΗ ΜΗΧΑΝΙΚΩΝ Ι ΙΟΤΗΤΩΝ ΕΠΙΦΑΝΕΙΩΝ ΜΕ ΣΥΓΧΡΟΝΕΣ ΝΑΝΟΤΕΧΝΟΛΟ- ΓΙΚΕΣ ΠΡΟΣΕΓΓΙΣΕΙΣ

Μέθοδοι και Εφαρµογές Πυρηνικής Επιστήµης και Ακτινοφυσικής

Si + Al Mg Fe + Mn +Ni Ca rim Ca p.f.u

Fe II aq Fe III oxide electron transfer and Fe exchange: effect of organic carbon

ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ

1.6 Other Intramolecular Decarboxylative Coupling Reactions Decarboxylative Coupling Reaction of Allyl Carboxylates

CorV CVAC. CorV TU317. 1

Αξιολόγηση Ημιαγώγιμων Υμενίων Σεληνιούχου Καδμίου Σε Υπόστρωμα Νικελίου Για Φωτοβολταϊκές Εφαρμογές

Reaction of a Platinum Electrode for the Measurement of Redox Potential of Paddy Soil

Σεμινάριο Φυσικής. NRA και PIGE: Πυρηνική φασματοσκοπία για την μελέτη του προφίλ ελαφρών πυρήνων. Πασπαλάκη Γαρυφαλλιά Υπεύθυνος καθ. :Μ.

Διεύθυνση: Ερυθρού Σταυρού 28 & Καρυωτάκη, Τρίπολη Τηλ.: , fax:

Τεχνικές παρασκευής ζεόλιθου ZSM-5 από τέφρα φλοιού ρυζιού με χρήση φούρνου μικροκυμάτων και τεχνικής sol-gel

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Raman spectrometer for insitu measurements on Europa s surface

Dong Liu State Key Laboratory of Particle Detection and Electronics University of Science and Technology of China

Chapter 1 Introduction to Observational Studies Part 2 Cross-Sectional Selection Bias Adjustment

100102; 2. Fe Cu Hg. Rapid multi-elemental analysis on four precious Tibetan medicines based on LIBS technique

Development of Accurate Quantitative Analytical Methods to Determine Trace Amounts of Carbon, Sulfur, and Oxygen in Steel

ˆ ˆŸ ˆ ˆŸ ˆ ˆŒ ˆˆ Ÿ Œˆ 10 B

Διπλωματική Εργασία. Μελέτη των μηχανικών ιδιοτήτων των stents που χρησιμοποιούνται στην Ιατρική. Αντωνίου Φάνης

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. του φοιτητή του Τμήματος Ηλεκτρολόγων Μηχανικών και. Τεχνολογίας Υπολογιστών της Πολυτεχνικής Σχολής του. Πανεπιστημίου Πατρών

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

Electronic supplementary information (ESI) Bodipy functionalized ortho-carborane dyads for low-energy photosensitization

Πυρηνικές Αντιδράσεις

Table of Contents 1 Supplementary Data MCD

A new ent-kaurane diterpene from Euphorbia stracheyi Boiss

Artiste Picasso 9.1. Total Lumen Output: lm. Peak: cd 6862 K CRI: Lumen/Watt. Date: 4/27/2018

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

Αξιολόγηση των Φασματικού Διαχωρισμού στην Διάκριση Διαφορετικών Τύπων Εδάφους ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ. Σπίγγος Γεώργιος

Μελέτη Πρότυπων Καταλυτικών Συστηµάτων. µε Επιφανειακά Ευαίσθητες Τεχνικές

상대론적고에너지중이온충돌에서 제트입자와관련된제동복사 박가영 인하대학교 윤진희교수님, 권민정교수님


Dipole-Guided Electron Capture Causes Abnormal Dissociations of Phosphorylated Pentapeptides

Σημειώσεις Εργαστηρίου ΕΦΑΡΜΟΣΜΕΝΗΣ ΓΕΩΧΗΜΕΙΑΣ

DAMPING CROSS-REFERENCE

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

P Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ. ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25

Supplementary Materials for. Kinetic and Computational Studies on Pd(I) Dimer- Mediated Halogen Exchange of Aryl Iodides

TABLE OF CONTENT. Chapter Content Page

Comparison of ENDF/B-VIII.0 and ENDF/B-VII.1 libraries with MCS code

Current Status of PF SAXS beamlines. 07/23/2014 Nobutaka Shimizu

P ² Ì μ Š ˆ Œˆ Š Œ Œˆ. ² μ Ê ² Nuclear Instruments and Methods in Physics Research.

Supplementary Information for

Laboratory Studies on the Irradiation of Solid Ethane Analog Ices and Implications to Titan s Chemistry

ΠΣΤΧΛΑΚΘ ΕΡΓΑΛΑ ΜΕΣΡΘΕΛ ΟΠΣΛΚΟΤ ΒΑΚΟΤ ΑΣΜΟΦΑΛΡΑ ΜΕ ΘΛΛΑΚΟ ΦΩΣΟΜΕΣΡΟ ΕΚΟ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΑΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή διατριβή

ΚΑΤΑΣΚΕΥΑΣΤΙΚΟΣ ΤΟΜΕΑΣ

Quantitative chemical analyses of rocks with X-ray fluorescence analyzer: major and trace elements in ultrabasic rocks

TUNING FORK TUNES. exploring new scanning probe applications

Supporting Information To. Microhydration of caesium compounds: Journal of Molecular Modeling

Supporting Information

Η ΣΗΜΑΣΙΑ ΤΗΣ ΜΗ ΓΡΑΜΜΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ ΓΙΑ ΤΟΝ ΣΧΕ ΙΑΣΜΟ ΜΕΤΑΛΛΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ

SIMULATION DRIVEN PRODUCT DEVELOPMENT

Content. Introduction... 1

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

MALMÖ UNIVERSITY HEALTH AND SOCIETY DISSERTATION 2014:3 ANTON FAGERSTRÖM EFFECTS OF SURFACTANT ADJUVANTS ON PLANT LEAF CUTICLE BARRIER PROPERTIES

ΠΑΝΔΠΗΣΖΜΗΟ ΠΑΣΡΩΝ ΓΗΑΣΜΖΜΑΣΗΚΟ ΠΡΟΓΡΑΜΜΑ ΜΔΣΑΠΣΤΥΗΑΚΩΝ ΠΟΤΓΩΝ «ΤΣΖΜΑΣΑ ΔΠΔΞΔΡΓΑΗΑ ΖΜΑΣΩΝ ΚΑΗ ΔΠΗΚΟΗΝΩΝΗΩΝ» ΣΜΖΜΑ ΜΖΥΑΝΗΚΩΝ Ζ/Τ ΚΑΗ ΠΛΖΡΟΦΟΡΗΚΖ

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

X-Y COUPLING GENERATION WITH AC/PULSED SKEW QUADRUPOLE AND ITS APPLICATION

Figure 1 - Plan of the Location of the Piles and in Situ Tests

Cycloaddition of Homochiral Dihydroimidazoles: A 1,3-Dipolar Cycloaddition Route to Optically Active Pyrrolo[1,2-a]imidazoles

Transient Voltage Suppression Diodes: 1.5KE Series Axial Leaded Type 1500 W

vibrational Supplementary density of the Beyer-

Fundamental Physical Constants Extensive Listing Relative std. Quantity Symbol Value Unit uncert. u r

1 Properties and Applications of Recycled Polymers: An Introduction Introduction... 1

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

2R2. 2 (L W H) [mm] Wire Wound SMD Power Inductor. Nominal Inductance Packing Tape & Reel. Design Code M ±20%

Supporting Information. Experimental section

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

Calculating the propagation delay of coaxial cable

[1] P Q. Fig. 3.1

ΦΩΤΟΓΡΑΜΜΕΤΡΙΚΕΣ ΚΑΙ ΤΗΛΕΠΙΣΚΟΠΙΚΕΣ ΜΕΘΟΔΟΙ ΣΤΗ ΜΕΛΕΤΗ ΘΕΜΑΤΩΝ ΔΑΣΙΚΟΥ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΕΘΝΙΚΗ ΣΧΟΛΗ ΔΗΜΟΣΙΑΣ ΔΙΟΙΚΗΣΗΣ ΙΓ' ΕΚΠΑΙΔΕΥΤΙΚΗ ΣΕΙΡΑ

ΜΕΛΕΤΗ ΜΟΡΦΟΛΟΓΙΑΣ ΣΤΕΡΕΩΝ ΥΜΕΝΙΩΝ ΓΙΑ ΦΩΤΟΝΙΟΕΝΕΡΓΕΙΑΚΗ ΑΝΑΒΑΘΜΙΣΗ

Fundamental Physical Constants Extensive Listing Relative std. Quantity Symbol Value Unit uncert. u r

Optimizing Microwave-assisted Extraction Process for Paprika Red Pigments Using Response Surface Methodology

Nuclear Physics 5. Name: Date: 8 (1)

TABLE OF CONTENTS CHAPTER 1- INTRODUCTION: 1. Motivation of the study The crystalline lens and the accommodative system.

Electronic Supplementary Information (ESI)

Microwave Sintering of Electronic Ceramics

Energy Level Analysis of Nano and Organic Semiconductor by Photoelectron Spectroscopy

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ ΣΧΟΛΗ ΜΗΧΑΝΙΚΩΝ ΠΕΡΙΒΑΛΛΟΝΤΟΣ

ΧΑΡΑΚΤΗΡΙΣΜΟΣ ΦΑΣΕΩΝ ΣΙΔΗΡΟΥ ΣΕ ΔΕΙΓΜΑΤΑ ΟΡΥΚΤΩΝ ΑΠΟ ΤΟ ΥΠΟΘΑΛΑΣΣΙΟ ΗΦΑΙΣΤΕΙΟ ΚΟΛΟΥΜΠΟ (ΣΑΝΤΟΡΙΝΗ) ΜΕ ΧΡΗΣΗ ΑΚΤΙΝΟΒΟΛΙΑΣ ΣΥΓΧΡΟΤΡΟΥ

Μειέηε, θαηαζθεπή θαη πξνζνκνίσζε ηεο ιεηηνπξγίαο κηθξήο αλεκνγελλήηξηαο αμνληθήο ξνήο ΓΗΠΛΩΜΑΣΗΚΖ ΔΡΓΑΗΑ

P Œ ²μ, ƒ.. μ ±μ,. ˆ. ˆ μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. ³ É. ˆŒ ˆ Š ƒ Œ ˆ Ÿ ˆŸ 238 Uˆ 237 U, Œ ƒ Ÿ Š ˆˆ 238 U(γ,n) 237 U.

Nuclear Reaction Analysis (NRA) Ανάλυση Υλικών με Πυρηνικές Αντιδράσεις

ΠΕΡΙΛΗΨΗ. Λέξεις κλειδιά: Υγεία και συμπεριφορές υγείας, χρήση, ψυχότροπες ουσίες, κοινωνικό κεφάλαιο.

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΠΟΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΒΙΟΤΕΧΝΟΛΟΓΙΑΣ ΚΑΙ ΕΠΙΣΤΗΜΗΣ ΤΡΟΦΙΜΩΝ. Πτυχιακή εργασία

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

1 Decay Scheme. 2 Nuclear Data. 2.1 α Transitions

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Βίαιοι θάνατοι, εκρηκτικές γεννήσεις και πυρηνικές αντιδράσεις στα άστρα. Ανοιχτά ερωτήματα για την προέλευση των βαρέων στοιχείων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Transcript:

Contents 1 X-ray Fluorescence (XRF) and Particle-Induced X-ray Emission (PIXE)... 1 1.1 Introduction............................................ 1 1.2 PrincipleofXRFandPIXETechniques... 2 1.3 Theory and Concept..................................... 5 1.3.1 Spectral Series, The Moseley Law................... 7 1.3.2 Line Intensities and Fluorescence Yield............... 8 1.3.3 Critical Excitation Energies of the Exciting Radiation/Particles................................ 9 1.4 Instrumentation/Experimentation......................... 12 1.4.1 Modes of Excitation for XRF Analysis............... 12 1.4.2 X-ray Detection and Analysis in XRF................ 19 1.4.3 Source of Excitation and X-ray Detection in PIXE Analysis... 31 1.4.4 Some Other Aspects Connected with PIXE Analysis... 39 1.5 Qualitative and Quantitative Analysis...................... 48 1.6 Thickvs.ThinSamples... 50 1.6.1 Formalism for Thin-Target XRF.................... 52 1.6.2 Formalism for Thick-Target XRF.................... 54 1.6.3 Formalism for Thin-Target PIXE.................... 56 1.6.4 Formalism for Thick-Target PIXE................... 58 1.7 Counting Statistics and Minimum Detection Limit........... 62 1.8 SourcesofBackground... 64 1.8.1 Contribution of Exciter Source to Signal Background.. 66 1.8.2 Contribution of Scattering Geometry to Signal Background... 67 1.8.3 Contribution of Detection System to Signal Background... 67 1.9 Methods for Improving Detection Limits................... 68 1.10 Computer Analysis of X-Ray Spectra...................... 70

X Contents 1.11 Some Other Topics Related to PIXE Analysis............... 71 1.11.1 Depth Profiling of Materials by PIXE................ 71 1.11.2 Proton Microprobes............................... 72 1.11.3 Theories of X-Ray Emission by Charged Particles..... 73 1.12 Applications of XRF and PIXE Techniques................. 76 1.12.1 In Biological Sciences.............................. 76 1.12.2 In Criminology.................................... 78 1.12.3 In Material Science................................ 78 1.12.4 Pollution Analysis................................. 80 1.12.5 For Archaeological Samples......................... 82 1.12.6 For Chemical Analysis of Samples................... 85 1.12.7 For Analysis of Mineral Samples.................... 85 1.13 Comparison Between EDXRF and WDXRF Techniques...... 86 1.13.1 Resolution........................................ 86 1.13.2 Simultaneity...................................... 86 1.13.3 Spectral Overlaps................................. 86 1.13.4 Background...................................... 86 1.13.5 Excitation Efficiency............................... 87 1.14 Comparison Between XRF and PIXE Techniques............ 87 1.15 Conclusion............................................. 90 2 Rutherford Backscattering Spectroscopy... 91 2.1 Introduction............................................ 91 2.2 Scattering Fundamentals................................. 92 2.2.1 Impact Parameter, Scattering Angle, and Distance of Closest Approach............................... 92 2.2.2 Kinematic Factor.................................. 93 2.2.3 Stopping Power, Energy Loss, Range, and Straggling... 95 2.2.4 Energy of Particles Backscattered from Thin and ThickTargets... 97 2.2.5 Stopping Cross-Section............................. 99 2.2.6 Rutherford Scattering Cross-Section................. 99 2.3 Principle of Rutherford Backscattering Spectroscopy......... 104 2.4 Fundamentals of the RBS Technique anditscharacteristics...107 2.5 Deviations from Rutherford Formula....................... 110 2.5.1 Non-Rutherford Cross-Sections...................... 111 2.5.2 Shielded Rutherford Cross-Sections.................. 112 2.6 Instrumentation/Experimental............................ 113 2.6.1 Accelerator, Beam Transport System, and Scattering Chamber...113 2.6.2 Particle Detectors................................. 114 2.7 RBSSpectrafromThinandThickLayers...119 2.7.1 RBS Spectrum from a Thin Layers.................. 119 2.7.2 RBS Spectrum from Thick Layers................... 121

Contents XI 2.8 Spectrum Analysis/Simulation............................ 126 2.9 Heavy Ion Backscattering Spectrometry.................... 129 2.10 High-Resolution RBS.................................... 131 2.11 Medium Energy Ion Scattering............................ 133 2.12 Channeling............................................. 135 2.13 Rutherford Scattering Using Forward Angles................ 137 2.14 Applications of RBS..................................... 139 2.15 Limitation of the RBS Technique.......................... 140 3 Elastic Recoil Detection...143 3.1 Introduction............................................ 143 3.2 Fundamentals of the ERDA Technique..................... 145 3.2.1 Kinematic Factor.................................. 145 3.2.2 Scattering Cross-Sections and Depth Resolution inerd...147 3.2.3 Stopping Power and Straggling...................... 149 3.3 PrincipleandCharacteristicsofERDA...149 3.4 Experimental...150 3.4.1 ERDA Using E-Detection (Conventional Set-Up)...... 151 3.4.2 ERDA with Particle Identification and Depth Resolution.............................. 155 3.5 HeavyIonERDA...170 3.6 DataAnalysis...173 3.7 Advantages and Limitations of ERDA...................... 175 4 Mössbauer Spectroscopy (MS)...177 4.1 Introduction............................................ 177 4.2 Concept and Theory..................................... 178 4.2.1 Nuclear Resonance Fluorescence..................... 178 4.2.2 Nuclear Physics of 57 Fe...182 4.2.3 Lamb Mössbauer Factor (Recoil-Free Fraction)....... 184 4.2.4 Some Other Mössbauer Isotopes and their γ-transitions............................. 186 4.2.5 Characteristic Parameters Obtainable Through MössbauerSpectroscopy...187 4.3 ExperimentalSet-Up...192 4.3.1 A Basic Mössbauer Spectrometer Set-Up............. 193 4.3.2 Advances in Experimental Set-Up/Method ofanalysis...199 4.4 Evaluation of MössbauerSpectra...200 4.5 Conversion Electron MössbauerSpectroscopy...201 4.6 Applications............................................ 205 4.6.1 Chemical Analysis................................. 205 4.6.2 Nondestructive Testing and Surface Studies........... 206 4.6.3 Investigation of New Materials for Industrial Applications...................................... 207

XII Contents 4.6.4 Characterization of Nanostructured Materials......... 209 4.6.5 Testing of Reactor Steel............................ 209 4.6.6 In Mars Exploration............................... 210 4.6.7 Study of Actinides................................. 210 4.6.8 Study of Biological Materials....................... 211 4.6.9 Investigation of Lattice Dynamics Using the Rayleigh Scattering of Mössbauer γ-rays...212 5 X-Ray Photoelectron Spectroscopy...213 5.1 Introduction............................................ 213 5.2 PrincipleandCharacteristicsofXPS...214 5.3 Instrumentation/Experimental............................ 219 5.3.1 Commonly Used X-ray Sources for XPS Analysis...... 220 5.3.2 Photoelectron Analyzers/Detectors.................. 224 5.3.3 Experimental Workstation.......................... 229 5.3.4 Data Acquisition and Analysis...................... 230 5.4 Principle Photoelectron Lines for a Few Elements............ 232 5.5 Salient Features of XPS and a Few Practical Examples....... 232 5.6 Applications of XPS..................................... 237 5.6.1 Microanalysis of the Surfaces of Metals and Alloys..... 237 5.6.2 Study of Mineral Surfaces.......................... 238 5.6.3 Study of Polymers................................. 238 5.6.4 Study of Material Used for Medical Purpose.......... 239 5.6.5 For Surface Characterization of Coal Ash............. 240 5.6.6 Surface Study of Cements and Concretes............. 240 5.6.7 Study of High Energy Resolution Soft X-rays Core Level Photoemission in the Study of Basic Atomic Physics...240 5.7 Advantages and Limitations of XPS....................... 241 6 Neutron Activation Analysis...243 6.1 Introduction............................................ 243 6.2 Principle...244 6.2.1 Prompt vs. Delayed NAA.......................... 246 6.2.2 Epithermal and Fast Neutron Activation Analysis..... 247 6.3 Experimental...247 6.3.1 Neutron Sources.................................. 249 6.3.2 A Few Radioisotopes Formed Through (n, γ) Reaction (Used for Elemental Identification) andtheirhalf-lives...253 6.3.3 Scintillation and Semiconductor γ-ray Detectors...... 253 6.3.4 γ-rayspectrometer...256 6.4 Quantitative Analysis Using NAA......................... 258 6.4.1 Absolute Method for a Single Element............... 259 6.4.2 Comparison Method............................... 260 6.4.3 Simulation: MCNP Code........................... 260

Contents XIII 6.5 Sensitivities Available by NAA............................ 261 6.6 Applications of NAA..................................... 262 6.6.1 In Archaeology.................................... 262 6.6.2 In Biochemistry................................... 262 6.6.3 In Ecological Monitoring of Environment............. 263 6.6.4 In Microanalysis of Biological Materials.............. 263 6.6.5 In Forensic Investigations........................... 264 6.6.6 In Geological Science.............................. 264 6.6.7 In Material Science (Detection of Components of Metals, Semiconductors, and Alloys)............... 265 6.6.8 In Soil Science, Agriculture, and Building Materials.... 266 6.6.9 For Analysis of Food Items and Ayurvedic Medicinal Materials......................................... 266 6.6.10 Detection of Explosives, Fissile Materials, and Drugs... 266 6.7 Advantages and Limitations of NAA....................... 267 6.7.1 Advantages of NAA............................... 267 6.7.2 Limitations of NAA............................... 268 7 Nuclear Reaction Analysis and Particle-Induced Gamma-Ray Emission...269 7.1 Introduction............................................ 269 7.2 PrincipleofNRA...271 7.2.1 Reaction Kinematics for NRA....................... 272 7.2.2 Examples of Some Important Reactions.............. 274 7.3 Particle-Induced γ-emissionanalysis...277 7.4 ExperimentalMethods...278 7.5 Detection Limit/Sensitivity............................... 282 7.6 Applications of NRA..................................... 284 7.6.1 For Material Analysis.............................. 284 7.6.2 For Depth Profiling Studies......................... 286 7.6.3 For Tracer Studies and for the Study of Medical Samples...286 7.6.4 For the Study of Archaeological Samples............. 287 7.7 Applications of PIGE.................................... 287 7.7.1 For Material Analysis.............................. 287 7.7.2 For the Study of Medical Samples................... 287 7.7.3 For the Study of Archaeological Sample.............. 288 7.7.4 For the Study of Aerosol Samples................... 289 7.7.5 For the Study of Soil, Concrete, Rocks, and GeochemicalSamples...290 7.8 Common Particle Particle Nuclear Reactions............... 291 7.8.1 Proton-Induced Reactions.......................... 291 7.8.2 Deuteron-Induced Reactions........................ 292 7.8.3 3 He-, 4 He-Induced Reactions........................ 292 7.8.4 Some Important Reactions Used for NRA Analysis.... 293 7.9 Some Important Reactions Used for PIGE Analysis.......... 293

XIV Contents 8 Accelerator Mass Spectrometry (AMS)...295 8.1 Introduction............................................ 295 8.2 Principle...297 8.3 Experimental...298 8.4 AMS Using Low-Energy Accelerators...................... 303 8.5 Sample Preparation for AMS............................. 305 8.6 Time-of-Flight Mass Spectrometry (TOF-MS)............... 306 8.7 Detection Limits of Particles Analyzed by AMS............. 308 8.8 Applications of AMS..................................... 309 8.8.1 In the Field of Archeology.......................... 309 8.8.2 In the Field of Earth Science........................ 309 8.8.3 For Study of Pollution............................. 310 8.8.4 In the Field of Biomedicine......................... 311 8.8.5 In the Field of Hydrology........................... 313 8.8.6 In Material Analysis............................... 313 8.8.7 In the Field of Food Chemistry..................... 314 8.8.8 For Study of Nutrients............................. 314 8.8.9 In the Field of Geological Science.................... 315 8.8.10 For Study of Ice-Cores............................. 316 8.9 Use of Various Isotopes for Important AMS Studies.......... 316 8.9.1 Use of 10 Be...316 8.9.2 Use of 14 C...317 8.9.3 Use of 26 Al...317 8.9.4 Use of 36 Cl...317 8.9.5 Use of 41 Ca...318 8.9.6 Use of 59 Ni...318 8.10 AMS of Molecular Ions................................... 318 8.11 Advantages and Limitations of AMS....................... 319 A Appendix...323 A.1 SomeUsefulDataTables...323 B Appendix...333 B.1 Relation of Energies, Scattering Angles, and Rutherford Scattering Cross-Sections in the Center-of-Mass System and Laboratory System.................................. 333 C Appendix...339 References...341 Index...365