x j (t) = e λ jt v j, 1 j n

Σχετικά έγγραφα
Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Section 8.3 Trigonometric Equations

Jordan Form of a Square Matrix

Reminders: linear functions

Homework 3 Solutions

Example Sheet 3 Solutions

EE512: Error Control Coding

Trigonometric Formula Sheet

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Partial Differential Equations in Biology The boundary element method. March 26, 2013

The ε-pseudospectrum of a Matrix

Numerical Analysis FMN011

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

Section 7.6 Double and Half Angle Formulas

( ) 2 and compare to M.

Matrices and Determinants

w o = R 1 p. (1) R = p =. = 1

Second Order RLC Filters

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Inverse trigonometric functions & General Solution of Trigonometric Equations

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Finite Field Problems: Solutions

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

2 Composition. Invertible Mappings

Homework 8 Model Solution Section

Quadratic Expressions

Differentiation exercise show differential equation

The Jordan Form of Complex Tridiagonal Matrices

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Second Order Partial Differential Equations

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Tridiagonal matrices. Gérard MEURANT. October, 2008

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def

Differential equations

Srednicki Chapter 55

Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices

Solutions to Exercise Sheet 5

Areas and Lengths in Polar Coordinates

Approximation of distance between locations on earth given by latitude and longitude

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

PARTIAL NOTES for 6.1 Trigonometric Identities

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Concrete Mathematics Exercises from 30 September 2016

If we restrict the domain of y = sin x to [ π 2, π 2

SOLVING CUBICS AND QUARTICS BY RADICALS

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

LECTURE 2 : MODELS AND METHODS. Time-Series Models: Feedback Form and Transfer-Function Form

Areas and Lengths in Polar Coordinates

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

CRASH COURSE IN PRECALCULUS

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

D Alembert s Solution to the Wave Equation

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Outline Analog Communications. Lecture 05 Angle Modulation. Instantaneous Frequency and Frequency Deviation. Angle Modulation. Pierluigi SALVO ROSSI

Math221: HW# 1 solutions

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Bessel functions. ν + 1 ; 1 = 0 for k = 0, 1, 2,..., n 1. Γ( n + k + 1) = ( 1) n J n (z). Γ(n + k + 1) k!

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

ST5224: Advanced Statistical Theory II

MathCity.org Merging man and maths

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

Testing for Indeterminacy: An Application to U.S. Monetary Policy. Technical Appendix

The Simply Typed Lambda Calculus

Assignment 1 Solutions Complex Sinusoids

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

ECE 308 SIGNALS AND SYSTEMS FALL 2017 Answers to selected problems on prior years examinations

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Lecture 26: Circular domains

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

Solution to Review Problems for Midterm III

MATH1030 Linear Algebra Assignment 5 Solution

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Lecture 10 - Representation Theory III: Theory of Weights

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

UNIT - I LINEAR ALGEBRA. , such that αν V satisfying following condition


6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Chapter 6 BLM Answers

Solution Series 9. i=1 x i and i=1 x i.

F19MC2 Solutions 9 Complex Analysis

Trigonometry 1.TRIGONOMETRIC RATIOS

COMPLEX NUMBERS. 1. A number of the form.

University of Illinois at Urbana-Champaign ECE 310: Digital Signal Processing

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

Lecture 15 - Root System Axiomatics

Math 6 SL Probability Distributions Practice Test Mark Scheme

Spherical Coordinates

Transcript:

9.5: Fundamental Sets of Eigenvector Solutions Homogenous system: x 8 5 10 = Ax, A : n n Ex.: A = Characteristic Polynomial: (degree n) p(λ) = det(a λi) Def.: The multiplicity of a root λ i of p(λ) is the smallest positive integer m for which dm dλ m p(λ) λ=λi 0. Fundamental Thm. of Algebra: If the roots are counted with multiplicities, then p(λ) has exactly n roots λ 1,..., λ n, and p(λ) = ( 1) n (λ λ 1 ) (λ λ n ) Thm.: If λ 1,..., λ n are n real eigenvalues of A and v 1,...,v n are n linearly independent eigenvectors, then x j (t) = e λ jt v j, 1 j n are a fundamental set of solutions. 2 1 2 4 4 6. Find p(λ) = λ 3 + 3λ 2 + 4λ 12 = (λ + 2)(λ 3)(λ 2) λ 1 = 2, λ 2 = 3, λ 3 = 2. Eigenvectors: 10 5 10 A+2I = 2 3 2 1 0 1 0 1 0 4 4 4 0 0 0 v 1 = [ 1,0,1] T. Analogously: v 2 = [1,1,0] T, v 3 = [0,2,1] T. x 1 (t) = e 2t [ 1,0,1] T x 2 (t) = e 3t [1,1,0] T x 3 (t) = e 2t [0,2,1] T are a fundamental set of solutions. 1 1 Ex.: A = 1 1 p(λ) = (1 λ) 2 +1 = 0 λ 1,2 = 1 ±i Complex Eigenvalues 1

Review: Complex Numbers and Complex Exponential Complex Numbers C: set of complex numbers λ = α + iβ C, i = 1 α, β R; α = Re(λ), β = Im(λ) Complex conjugate: λ = α iβ Addition and multiplication If λ = α + iβ, µ = γ + iδ: λ + µ = (α + γ) + i(β + δ) like vector addition λµ = (α + iβ)(γ + iδ) = αγ βδ + i(αδ + βγ) Re(λ) = (λ + λ)/2 Im(λ) = (λ λ)/(2i) Absolute value: λ = α 2 + β 2 Inversion: 1 λ = λ λλ = λ λ 2 Euler Formula e iθ = cos θ + isin θ point on the unit circle: e iθ 2 = cos 2 θ + sin 2 θ = 1 e iθ = cos θ isin θ = 1/e iθ Complex exponential: e λ e λ = e α+iβ = e α e iβ = e α (cos β + isin β) = e α iβ = e α e iβ = e α (cos β isin β) = (e λ ) Exponential function: e λt = e αt( cos(βt) + isin(βt) ) e λt = e αt( cos(βt) isin(βt) ) = (e λt ) 2

Complex Eigenvalues and Eigenvectors Complex vectors: x,y R n z = x + iy C n Complex matrices: matrices with complex entries nullspace, linear independence, basis, dimension as in the real case (with complex vectors and scalars allowed) Def.: Let A: real n n-matrix. A complex root of det(a λi) = 0 is a complex eigenvalue. Any 0 v C n s.t. Av = λv is an eigenvector, and null(a λi) is the eigenspace for λ. Pairs: Av = λv Av = λv complex conjugate pairs of eigenvalues and eigenvectors Thm.: Let λ be a complex eigenvalue with eigenvector v = u + iw. Then v,v and u,w are linearly independent. { } 1 1 λ1 = 1 + i Ex.: A = 1 1 λ 2 = 1 i i 1 Compute A (1 + i)i = 1 i R3(1,i) 1 i R1(2,1,1) 1 i 1 i 0 0 v = [1, i] T = [1,0] T + i[0,1] T = u+iw is basis of null(a λ 1 I) v is eigenvector for λ 1 = 1 + i v = [1, i] T = u iw is eigenvector for λ 2 = λ 1 = 1 i { } det([v,v]) = 2i 0 Since, det([u,w]) = 1 0 v,v and u,w are linearly independent. 3

Solutions of Systems Derived from Complex Conjugate Pairs of Eigenvalues and Eigenvectors A: real n n-matrix System: x = Ax (1) Assume Av = λv with λ = α + iβ C, β 0 v = u + iw C n, v 0 Linearly independent complex solutions of (1): z(t) = e λt v, z(t) = e λt v Real and imaginary parts: z(t) = e (α+iβ)t (u + iw) = e αt (cos βt + isin βt)(u + iw) = e αt (ucos βt wsin βt) +ie αt (usin βt + wcos βt) = Rez(t) + iimz(t) Linearly independent real solutions of (1): x 1 (t) = e αt (ucos βt wsin βt) x 2 (t) = e αt (usin βt + wcos βt) For 2d Systems: (n = 2, Sec. 9.2) { a b T = a + d A = c d D = ad bc p(λ) = λ 2 Tλ + D Assume T 2 4D < 0 complex eigenvalues λ, λ: λ = (T + i α + iβ 4D T 2 )/2 Let v = u + iw 0 be in null(a λi). Then x 1 (t) = e αt (ucos βt wsin βt) x 2 (t) = e αt (usin βt + wcos βt) are already a fundamental set of solutions 4 }

Ex.: A = 1 1 1 1 T = 2, D = 2 T 2 4D = 4 < 0 complex eigenvalues Characteristic polynomial: p(λ) = λ 2 2λ + 2 = (λ 1) 2 + 1 (λ 1) 2 = 1 λ 1 = ±i Thus the eigenvalues are: λ = 1 + i, λ = 1 i (α = 1, β = 1) Find eigenvector for λ = 1 + i: i 1 A (1 + i)i = 1 i A λi is singular rows of A λi are linearly dependent 2nd row is complex multiple of 1st row ( i[ i, 1] = [ 1, i]) need only consider 1st row for finding basis v = [v 1, v 2 ] T of null(a λi) Equation from 1st row: iv 1 +v 2 = 0 Set v 2 = i v 1 = 1 eigenvector: 1 1 0 v = = + i i 0 1 1 0 u =, w = 0 1 Lin. indep. complex solutions: z(t) = e (1+i)t 1, z(t) = e i (1 i)t 1 i Fundamental set of real solutions: ( ) x 1 (t) = e t 1 0 cos t sin t 0 1 = e t cos t sin t ( ) x 2 (t) = e t 1 0 sin t + cos t 0 1 = e t [ sin t cos t Fundamental matrix: [ X(t) = e t cos t sin t sin t cos t ] ] 5

Fundamental Set of Eigenvector Solutions A: real n n-matrix System: x = Ax (1) Thm.: Assume 1. A has k real eigenvalues λ 1,..., λ k with linearly independent eigenvectors v 1,...,v k. 2. A has m complex conjugate pairs λ k+1, λ k+1,..., λ k+m, λ k+m of eigenvalues with eigenvectors v k+1,v k+1,...,v k+m,v k+m. 3. n = k + 2m and the eigenvectors of 2. are linearly independent. Then the n vector functions x i (t) = e λit v i, 1 i k x j (t) = e α jt (u j cos β j t w j sin β j t) x j+m (t) = e α jt (u j sin β j t + w j cos β j t) k + 1 j k + m are a fundamental set of solutions. Ex.: A = 14 8 19 40 25 52 5 4 6 Use Matlab s poly and factor p(λ) = (λ + 1)[(λ + 2) 2 + 9] eigenvalues: λ 1 = 1 λ 2 = 2 + 3i, λ 3 = λ 2 eigenvectors (using Matlab s null): v 1 = [2,1,2] T v 2 = [i,2 2i,1] T = [0,2,1] T + i[1, 2,0] T Fundamental set of solutions: x 1 (t) = e t [2,1,2] T x 2 (t) = e 2t ([0,2,1] T cos3t [1, 2,0] T sin3t) = e 2t p(t) x 3 (t) = e 2t ([0,2,1] T sin3t +[1, 2,0] T cos3t) = e 2t q(t) p(t) = [ sin3t,2cos3t+2sin3t,cos3t] T q(t) = [cos3t,2sin3t 2cos3t,sin3t] T 6

Worked Out Examples from Exercises Ex. 9.2.18: Find fundamental set of solutions of y = Ay for A = T = 6, D = 10 T 2 4D = 4 < 0 complex eigenvalues: 1 1 5 5 p(λ) = λ 2 +6λ+10 = (λ+3) 2 +1 = 0 eigenvalues λ = 3+i, λ = 3 i [ 2 i 1 2 + i 2 1 A ( 3+i)I = eigenvector: v = = +i 5 2 i 5 5 0 u = [2, 5] T, v = [1,0] T fundamental set of solutions: ( ) [ y 1 (t) = e 3t 2 1 cos t sin t = e 5 0 3t 2cos t sin t 5cos t ( ) [ y 2 (t) = e 3t 2 1 sin t + cos t = e 5 0 3t 2sin t + cos t 5sin t ] ] ] Ex. 9.2.24: Find solution of system of Ex. 18 for IC y(0) = [1, 5] T 2 1 2 1 c1 1 y(0) = c 1 + c 5 2 = = 0 5 0 c 2 5 c1 = 1 0 1 1 1 = c 2 5 5 2 5 1 ( ) [ y(t) = e 3t 2cos t sin t 2sin t + cos t = e 5cos t 5sin t 3t cos t 3sin t 5sin t 5cos t ] 7

Ex. 9.5.3: Find eigenvalues and eigenvectors of A and verify linear independence of eigenvectors A = 2 0 0 2 λ 0 0 6 1 4, det(a λi) = 6 1 λ 4 3 0 1 3 0 1 λ p(λ) = (2 λ) 1 λ 4 0 1 λ = (λ 2)(λ 1)(λ + 1) eigenvalues: λ 1 = 2, λ 2 = 1, λ 3 = 1. Find eigenvectors: A 2I = 0 0 0 6 1 4 1 0 1 0 1 2 v 1 = 1 2 3 0 3 0 0 0 1 A I = 1 0 0 6 0 4 1 0 0 0 0 1 v2 = 0 1 3 0 2 0 0 0 0 A + I = 3 0 0 6 2 4 3 0 0 det([v 1,v 2,v 3 ]) = 1 0 0 0 1 2 0 0 0 1 0 0 2 1 2 1 0 1 v 1,v 2,v 3 are linearly independent v3 = 0 2 1 = ( 1) 1 2 0 1 = 1 0 8

= 3x Ex. 9.5.9: Find general solution of = 5x + 6y 4z = 5x + 2y A = 3 0 0 3 λ 0 0 5 6 4, det(a λi) = 5 6 λ 4 5 2 0 5 2 λ p(λ) = ( 3 λ) 6 λ 4 2 λ = (λ + 3)[(6 λ)( λ) + 8] λ 1 = 3 A + 3I = v 1 = [1,1,1] T λ 2 = 2 A 2I = λ 3 = 4 A 4I = = (λ + 3)(λ 2 6λ + 8) = (λ + 3)(λ 2)(λ 4) 0 0 0 5 2 3 5 9 4 0 7 7 5 2 3 0 0 0 5 0 0 5 4 4 5 2 2 7 0 0 5 2 4 5 2 4 x y z 1 0 0 0 1 1 0 0 0 1 0 0 0 1 2 0 0 0 5 0 5 0 1 1 0 0 0 v2 = [0,1,1] T v 3 = [0,2,1] T General Solution: x(t) = c 1 e 3t [1,1,1] T + c 2 e 2t [0,1,1] T + c 3 e 4t [0,2,1] T 9

Ex. 9.5.15: Find solution to IC x(0) = [ 2,0,2] T for system of Ex. 9 Write general solution as x(t) = X(t)c, c = [c 1, c 2, c 3 ] T, with F.M. X(t) = e 3t 0 0 e 3t e 2t 2e 4t ; IC X(0)c = 1 0 0 1 1 2 c 1 c 2 = 2 0 e 3t e 2t e 4t 1 1 1 c 3 2 [X(0),x(0)] = 1 0 0 2 1 1 2 0 1 0 0 2 0 1 2 2 1 1 1 2 0 1 1 4 1 0 0 2 0 1 2 2 1 0 0 2 0 1 0 6 c = 2 6 0 0 1 2 0 0 1 2 2 x(t) = 2e 3t [1,1,1] T + 6e 2t [0,1,1] T 2e 4t [0,2,1] T = [ 2e 3t, 2e 3t + 6e 2t 4e 4t, 2e 3t + 6e 2t 2e 4t ] T Ex. 9.5.19: Find real and imaginary parts for y(t) = e 2it [1,1 + 2i, 3i] T Write y(t) = e 2it v, v = [1,1+2i, 3i] T = u+iw, u = [1,1,0] T, w = [0,2, 3] T y(t) = (cos2t + isin2t)(u + iw) = ucos2t + iusin2t + iwcos2t + i 2 wsin2t = (ucos2t wsin2t) + i(usin2t + wcos2t) Rey(t) = ucos2t wsin2t = [1,1,0] T cos2t [0,2, 3] T sin2t = [cos2t,cos2t 2sin2t,3sin2t] T Imy(t) = usin2t + wcos2t = [1,1,0] T sin2t + [0,2, 3] T cos2t = [sin2t,sin2t + 2cos2t, 3sin2t] T 10

= 4x + 8y + 8z Ex. 9.5.21: Find general solution of = 4x + 4y + 2z = 2z A = 4 8 8 4 λ 8 8 4 4 2, det(a λi) = 4 4 λ 2 0 0 2 0 0 2 λ p(λ) = (2 λ) 4 λ 8 4 4 λ = (2 λ)[( 4 λ)(4 λ) + 32] x y z = (2 λ)(λ 2 + 16) λ 1 = 2, λ 2 = 4i, λ 3 = λ 2 A 2I = 6 8 8 1 1/2 1/2 4 2 2 3 4 4 0 0 0 0 0 0 A 4iI = 1 1/2 1/2 0 1 1 0 0 0 1 0 0 0 1 1 0 0 0 4 4i 8 8 4 4 4i 2 0 0 2 4i R1(2,1,1+i),R2(2,3) 1 1 + i 0 0 0 1 0 0 0 v 1 = v2 = 0 1 1 1 1 + i 0 1 i 2 0 0 0 1 1 i 1 0 Set v 2 = u 2 + iw 2, u 2 = [1,1,0] T, w 2 = [ 1,0,0] T 11

General solution: x(t) = c 1 x 1 (t) + c 2 x 2 (t) + c 3 x 3 (t), where x 1 (t) = e 2t v 1 = e 2t [0, 1,1] T x 2 (t) = u 2 cos4t w 2 sin4t = [1,1,0] T cos4t [ 1,0,0] T sin4t = [cos4t + sin4t,cos4t,0] T x 3 (t) = u 2 sin4t + w 2 cos4t = [1,1,0] T sin4t + [ 1,0,0] T cos4t = [sin4t cos4t,sin4t,0] T Ex. 9.5.27: Find solution to IC x(0) = [1,0,0] T for system of Ex. 21 0 cos4t + sin4t sin4t cos4t F.M.: X(t) = e 2t cos4t sin4t, X(0) = 0 1 1 1 1 0 e 2t 0 0 1 0 0 Solve X(0)c = x(0) for c: [X(0),x(0)] = 0 1 1 1 1 1 0 0 1 0 0 0 0 0 1 1 0 1 0 0 1 0 0 0 c = 0 0 1 Solution x(t) = x 3 (t) = [cos4t sin4t, sin4t,0] T 12

Ex. 9.5.37: Find F.S.S. for y = Ay, A = 6 2 3 1 1 1 4 2 1, using a computer Use Matlab s poly, roots, null commands with rational format: >> A=[-6 2-3;-1-1 -1;4-2 1]; >> format rat,cpol=poly(a); >> eigvals=roots(cpol) eigvals = -3-2 -1 >> v1=null(a+3*eye(3), r ); >> v2=null(a+2*eye(3), r ); >> v3=null(a+eye(3), r ); >> [v1 ;v2 ;v3 ] ans = -1 0 1-1/2 1/2 1-1 -1 1 eigenvalues and eigenvectors (multiply second eigenvector by 2): λ 1 = 3 λ 2 = 2 λ 3 = 1 fundamental set of solutions: v 1 = [ 1,0,1] T v 2 = [ 1,1,2] T v 3 = [ 1, 1,1] T y 1 (t) = e 3t [ 1,0,1] T y 2 (t) = e 2t [ 1,1,2] T y 3 (t) = e t [ 1, 1,1] T 13

Ex. 9.5.41: Find F.S.S. for y = Ay, A = 18 18 10 18 17 10 10 10 7 This time use Matlab s symbolic toolbox: >> A=[-18-18 10;18 17-10;10 10-7]; >> poly(sym(a));eigvals=solve(ans) eigvals = [ -2] [ -3+2*i] [ -3-2*i], using a computer >> v1=null(sym(a)+2*eye(3)); >> v2=null(sym(a)-eigvals(2)*eye(3)); >> [v1 ;transpose(v2)] ans = [1, -2, -2] [1, -5/4-1/4*i, -3/4-1/4*i] eigenvalues and eigenvectors (multiply v 1 by 1, v 2 by 4): λ 1 = 2 λ 2 = 3 + 2i fundamental set of solutions: v 1 = [ 1,2,2] T v 2 = [ 4,5 + i,3 + i] T u 2 = [ 4,5,3] T, w 2 = [0,1,1] T y 1 (t) = e 2t [ 1,2,2] T y 2 (t) = e 3t (u 2 cos2t w 2 sin2t) = e 3t ([ 4,5,3] T cos2t [0,1,1] T sin2t) = e 3t [ 4cos2t,5cos2t sin2t,3cos2t sin2t] T y 3 (t) = e 3t (u 2 sin2t + w 2 cos2t) = e 3t ([ 4,5,3] T sin2t + [0,1,1] T cos2t) = e 3t [ 4sin2t,5sin2t + cos2t,3sin2t + cos2t] T Note: [5/( 3 i)]v 2 = [ 6 + 2i,8 i,5] T answer given in text. 14

Ex. 9.5.45: Solve system of Ex. 37 for IC y(0) = [ 6,2,9] T via computer 1 1 1 Let Y (0) = [y 1 (0),y 2 (0),y 3 (0)] = 0 1 1. Solve Y (0)c = y(0): 1 2 1 >> M=[-1-1 -1-6;0 1-1 2;1 2 1 9]; >> rref(m) ans = 1 0 0 2 0 1 0 3 0 0 1 1 c 1 = 2, c 2 = 3, c 3 = 1 y(t) = 2e 3t [ 1,0,1] T +3e 2t [ 1,1,2] T +e t [ 1, 1,1] T or y(t) = [ 2e 3t 3e 2t e t,3e 2t e t,2e 3t + 6e 2t + e t ] T Ex. 9.5.49: Solve system of Ex. 41 for IC y(0) = [ 1,7,3] T via computer 1 4 0 y(t) = 7e 2t [ 1,2,2] T Y (0) = 2 5 1,Y (0)c = y(0) 2 3 1 >> M=[-1-4 0-1;2 5 1 7;2 3 1 3]; >> rref(m) ans = 1 0 0-7 0 1 0 2 0 0 1 11 +2e 3t [ 4cos2t,5cos2t sin2t,3cos2t sin2t] T +11e 3t [ 4sin2t,5sin2t + cos2t,3sin2t + cos2t] T y 1 (t) = 7e 2t 4e 3t (2cos2t + 11sin2t) y 2 (t) = 14e 2t + e 3t (21cos2t + 53sin2t) y 3 (t) = 14e 2t + e 3t (17cos2t + 31sin2t) 15