List MF20. List of Formulae and Statistical Tables. Cambridge Pre-U Mathematics (9794) and Further Mathematics (9795)

Σχετικά έγγραφα
Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Review Exercises for Chapter 7

Rectangular Polar Parametric

Solution Series 9. i=1 x i and i=1 x i.

APPENDICES APPENDIX A. STATISTICAL TABLES AND CHARTS 651 APPENDIX B. BIBLIOGRAPHY 677 APPENDIX C. ANSWERS TO SELECTED EXERCISES 679

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Trigonometric Formula Sheet

Areas and Lengths in Polar Coordinates

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Homework 8 Model Solution Section

Inverse trigonometric functions & General Solution of Trigonometric Equations

Section 8.3 Trigonometric Equations

Appendix B: Mathematical Formulae and Statistical Tables

Spherical Coordinates

FORMULAS FOR STATISTICS 1

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

Areas and Lengths in Polar Coordinates

CBC MATHEMATICS DIVISION MATH 2412-PreCalculus Exam Formula Sheets

Matrices and Determinants

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

Probability and Random Processes (Part II)

1. If log x 2 y 2 = a, then dy / dx = x 2 + y 2 1] xy 2] y / x. 3] x / y 4] none of these

Differential equations

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

List MF19. List of formulae and statistical tables. Cambridge International AS & A Level Mathematics (9709) and Further Mathematics (9231)

If we restrict the domain of y = sin x to [ π 2, π 2

Solutions to Exercise Sheet 5

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Trigonometry 1.TRIGONOMETRIC RATIOS

Sixth Term Examination Papers MATHEMATICS LIST OF FORMULAE AND STATISTICAL TABLES

Equations. BSU Math 275 sec 002,003 Fall 2018 (Ultman) Final Exam Notes 1. du dv. FTLI : f (B) f (A) = f dr. F dr = Green s Theorem : y da

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Problem 3.1 Vector A starts at point (1, 1, 3) and ends at point (2, 1,0). Find a unit vector in the direction of A. Solution: A = 1+9 = 3.

Math 6 SL Probability Distributions Practice Test Mark Scheme

Integrals in cylindrical, spherical coordinates (Sect. 15.7)

CORDIC Background (2A)

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Biostatistics for Health Sciences Review Sheet

5.4 The Poisson Distribution.

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)

MathCity.org Merging man and maths

TRIGONOMETRIC FUNCTIONS

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

Lifting Entry (continued)

Numerical Analysis FMN011

Differentiation exercise show differential equation

Reminders: linear functions

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

PARTIAL NOTES for 6.1 Trigonometric Identities

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

CRASH COURSE IN PRECALCULUS

is like multiplying by the conversion factor of. Dividing by 2π gives you the

Parametrized Surfaces

Lecture 26: Circular domains

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

The Normal and Lognormal Distributions

Section 8.2 Graphs of Polar Equations

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

CORDIC Background (4A)

ΣΤΟΧΑΣΤΙΚΑ ΣΥΣΤΗΜΑΤΑ & ΕΠΙΚΟΙΝΩΝΙΕΣ 1o Τμήμα (Α - Κ): Αμφιθέατρο 4, Νέα Κτίρια ΣΗΜΜΥ Θεωρία Πιθανοτήτων & Στοχαστικές Ανελίξεις - 2

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Problem 3.16 Given B = ˆx(z 3y) +ŷ(2x 3z) ẑ(x+y), find a unit vector parallel. Solution: At P = (1,0, 1), ˆb = B

Stationary Stochastic Processes Table of Formulas, 2017

Section 9.2 Polar Equations and Graphs

Geodesic Equations for the Wormhole Metric

Core Mathematics C12

Chapter 5, 6 Multiple Random Variables ENCS Probability and Stochastic Processes

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

Lifting Entry 2. Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion MARYLAND U N I V E R S I T Y O F

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes

Solution to Review Problems for Midterm III

CURVILINEAR COORDINATES

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Second Order Partial Differential Equations

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

LIST OF FORMULAE STATISTICAL TABLES MATHEMATICS. (List MF1) AND

SPECIAL FUNCTIONS and POLYNOMIALS

An Inventory of Continuous Distributions

HOMEWORK#1. t E(x) = 1 λ = (b) Find the median lifetime of a randomly selected light bulb. Answer:

Similarly, we may define hyperbolic functions cosh α and sinh α from the unit hyperbola

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

derivation of the Laplacian from rectangular to spherical coordinates

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Core Mathematics C34

Fundamentals of Probability: A First Course. Anirban DasGupta

Notations. Primary definition. Specific values. General characteristics. Series representations. Traditional name. Traditional notation

Stationary Stochastic Processes Table of Formulas, 2016

Other Test Constructions: Likelihood Ratio & Bayes Tests

Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3

TABLES AND FORMULAS FOR MOORE Basic Practice of Statistics

ON NEGATIVE MOMENTS OF CERTAIN DISCRETE DISTRIBUTIONS

D Alembert s Solution to the Wave Equation

6. MAXIMUM LIKELIHOOD ESTIMATION

physicsandmathstutor.com Paper Reference Core Mathematics C4 Advanced Level Tuesday 23 January 2007 Afternoon Time: 1 hour 30 minutes

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Transcript:

List MF0 List of Formulae and Statistical Tables Cambridge Pre-U Mathematics (979) and Further Mathematics (979) For use from 07 in all aers for the above syllabuses. CST7

Mensuration Surface area of shere = πr Area of curved surface of cone = πr slant height Trigonometry a = b + c bc cos A Arithmetic series u n = a + (n )d S n = n(a + l) = n{a + (n )d} Geometric series u n = ar n n a( r ) S n = r S = a r for r < PURE MATHEMATICS Summations n r= n r= r = nn ( + )(n + ) = ( + ) r n n Binomial series n n n+ + = r r+ r+ n n n n n n n n r r n ( a+ b) = a + a b+ a b +... + a b +... + b, (n N), where r n n( n ) n( n )...( n r+ ) r ( + ) = + n + +... + +... ( <, n R).... r n! = n n Cr = r r!( n r)! Logarithms and eonentials e ln a = a Comle numbers {r(cos θ + i sin θ)} n = r n (cos nθ + i sin nθ) e iθ = cos θ + i sin θ The roots of z n = are given by z = e π ki n, for k = 0,,,..., n

Maclaurin s series r f() = f(0) + f (0) + f (0) +... + f (r) (0) +...! r! e r = e() = + + +... + +... for all! r! ln( + ) = +... + ( ) r + r +... ( < ) r sin = +... + ( ) r r+ +... for all!! (r + )! cos = +! tan = sinh = +!... + ( ) r r +... for all! ( r)! + +!... + ( ) r r+ +... ( ) r + r+ +... + +... for all (r + )! cosh = + + +... + +... for all!! ( r)! tanh = + + Hyerbolic functions cosh sinh = sinh = sinh cosh cosh = cosh + sinh r r+ +... + +... ( < < ) r + cosh = ln { + } ( ) sinh = ln { + + } tanh = ln + ( < ) Coordinate geometry The erendicular distance from (h, k) to a + by + c = 0 is ah + bk + c a + b The acute angle between lines with gradients m and m is tan m m + mm

Trigonometric identities sin(a ± B) = sin A cos B ± cos A sin B cos(a ± B) = cos A cos B sin A sin B tan(a ± B) = tan A± tan B (A ± B (k + tan Atan B )π) For t = tan A : sin A = t t, cos A = + t + t A+ B A B sin A + sin B = sin cos A+ B A B sin A sin B = cos sin A+ B A B cos A + cos B = cos cos A+ B A B cos A cos B = sin sin Vectors The resolved art of a in the direction of b is a.b b The oint dividing AB in the ratio λ : μ is µ a+ λ b λ + µ i a b ab ab Vector roduct: a b = a b sin θ ˆ n= j a b = ab ab k a b ab ab If A is the oint with osition vector a = a i + a j + a k and the direction vector b is given by b = b i + b j + b k, then the straight line through A with direction vector b has cartesian equation a y a z a = = (= λ) b b b The lane through A with normal vector n = n i + n j + n k has cartesian equation n + n y + n z + d = 0 where d = a.n The lane through non-collinear oints A, B and C has vector equation r = a + λ(b a) + μ(c a) = ( λ μ)a + λb + μc The lane through the oint with osition vector a and arallel to b and c has equation r = a + sb + tc The erendicular distance of (α, β, γ) from n + n y + n z + d = 0 is nα + n β + n γ + d + + n n n Matri transformations cosθ sinθ Anticlockwise rotation through θ about O: sinθ cosθ cos θ sin θ Reflection in the line y = (tan θ): sin θ cos θ

Differentiation f() f () tan k k sec k sin cos tan + sec sec tan cot cosec cosec cosec cot sinh cosh cosh sinh tanh sech sinh + cosh tanh Integration (+ constant; a > 0 where relevant) f() f( ) d sec k tan k k tan ln sec cot ln sin cosec ln cosec + cot = ln tan( ) sec ln sec + tan = ln tan( + π) sinh cosh cosh sinh tanh ln cosh sin ( < a) a a a + a tan a cosh a a or ln{ + a } ( > a) sinh a + a or ln{ + + a } a+ ln = tanh ( < a) a a a a a a ln a a + a dv du u d = uv v d d d

Area of a sector A = r dθ (olar coordinates) A = dy d y dt (arametric form) dt dt Arc length s = s = s = dy + d (cartesian coordinates) d d dy + dt dt dt (arametric form) dr r + dθ (olar form) dθ Surface area of revolution S = π yds S =π y ds Numerical solution of equations The Newton-Rahson iteration for solving f() = 0: n + = n f( n ) f( ) n

MECHANICS Motion in a circle Transverse velocity: v= rθ Transverse acceleration: v = rθ v Radial acceleration: r θ = r PROBABILITY Probability P(A B) = P(A) + P(B) P(A B) P(A B) = P(A) P(B A) P(A B) = P( B A)P( A) P( B A)P( A) + P( B A )P( A ) Bayes Theorem: P(A j B) = P( A )P( B A ) j ΣP( A)P( B A) i j i Discrete distributions For a discrete random variable X taking values i with robabilities i Eectation (mean): E(X) = μ = Σ i i Variance: Var(X) = σ = Σ( i μ) i = Σ i i μ For a function g(x) : E(g(X)) = Σ g( i ) i The robability generating function (P.G.F.) of X is G X (t) = E(t X ), and E(X) = G X (), Var(X) = G X() + G X() {G X()} For Z = X + Y, where X and Y are indeendent: G Z (t) = G X (t) G Y (t) The moment generating function (M.G.F.) of X is M X (t) = E(e tx ), and E(X) = M X (0), E(X n ) = M ( n) X (0), Var(X) = M X (0) { M X (0)} For Z = X + Y, where X and Y are indeendent: M Z (t) = M X (t) M Y (t) Standard discrete distributions Distribution of X P(X = ) Mean Variance P.G.F. M.G.F. n Binomial B(n, ) ( ) n n n( ) ( + t) n ( + e t ) n Poisson Po(λ) e λ λ! λ λ e λ(t ) t λ(e ) e Geometric Geo() on,, ( ) t ( t ) e ( )e t t 7

Continuous distributions For a continuous random variable X having robability density function (P.D.F.) f Eectation (mean): E(X) = μ = f( )d Variance: Var(X) = σ = ( µ ) f( )d= f( )d µ For a function g(x) : E(g(X)) = g( )f( )d Cumulative distribution function: F() = P(X ) = f( t)dt The moment generating function (M.G.F.) of X is M X (t) = E(e tx ), and E(X) = M X (0), E(X n ) = M ( n) X (0), Var(X) = M X (0) { M X (0)} For Z = X + Y, where X and Y are indeendent: M Z (t) = M X (t) M Y (t) Standard continuous distributions Distribution of X P.D.F Mean Variance M.G.F. Uniform (Rectangular) on [a, b] b a + b a ( a b) bt at ( ) e e ( b at ) Eonential λ e λ λ λ λ λ t Normal N(μ, σ ) e σ π µ σ μ σ e µ t+ σ t Eectation algebra For indeendent random variables X and Y E(XY) = E(X) E(Y), Var (ax ± by) = a Var(X) + b Var (Y) 8

Samling distributions For a random samle X, X,, X n of n indeendent observations from a distribution having mean μ and variance σ σ X is an unbiased estimator of μ, with Var( X ) = n S is an unbiased estimator of σ, where S Σ( Xi X) = n For a random samle of n observations from N(μ, σ ) X µ ~ N(0,) σ / n X µ ~ t n (also valid in matched-airs situations) S / n If X is the observed number of successes in n indeendent Bernoulli trials, in each of which the robability of success is, and Y = X n, then E(Y) = and Var(Y) = ( ) n For a random samle of n observations from N(μ, σ ) and, indeendently, a random samle of n y observations from N(μ y, σ y ) ( X Y) ( µ µ y) ~ N(0,) σ σ y + n n If σ = y ( X Y) ( µ ) σ y = σ µ y (unknown) then tn+ ny, where S + n n y Correlation and Regression For a set of n airs of values ( i, y i ) S = Σ( i ) ( Σ ) = Σ i i n S yy = Σ(y i y ) ( Σy ) = Σ y i i n S y = Σ( i )(y i y ) = Σ i y i ( Σi )( Σyi ) n The roduct-moment correlation coefficient is ( Σi)( Σyi) S Σy ( )( ) i i y Σ i yi y r = = = n S Syy { Σ( i ) }{ Σ( yi y) } ( Σi) ( Σyi) Σi Σyi n n Sy Σ( i )( yi y) The regression coefficient of y on is b = = S Σ( i ) Least squares regression line of y on is y = a + b where a = y b + y y ( n ) S ( n ) S S = n + n y 9

CUMULATIVE BINOMIAL PROBABILITIES n n r r P( Xø ) = Cr ( ) r= 0 n = 0.0 0. 0. / 0. 0. 0. / 0. 0. 0. 0. 0. 0. 0. / 0.7 0.7 0.8 / 0.8 0.9 0.9 = 0 0.778 0.90 0.7 0.09 0.77 0.7 0.8 0.7 0.0 0.0778 0.00 0.0 0.08 0.00 0.00 0.00 0.00 0.000 0.977 0.98 0.8 0.808 0.77 0.8 0.8 0.09 0.8 0.70 0. 0.87 0. 0.0870 0.00 0.0 0.008 0.0 0.007 0.00 0.00 0.000 0.9988 0.99 0.97 0.9 0.9 0.89 0.89 0.790 0.78 0.8 0.9 0.000 0.09 0.7 0. 0.099 0. 0.0 0.079 0.0 0.0 0.008 0.00 0.999 0.9978 0.997 0.99 0.98 0.99 0.97 0.90 0.90 0.888 0.8 0.78 0.0 0.7 0.9 0.78 0.7 0.7 0.9 0.8 0.08 0.0 0.9990 0.997 0.999 0.997 0.9898 0.98 0.988 0.997 0.9 0.880 0.88 0.89 0.77 0.7 0.98 0. 0.09 0. 0 n = 0.0 0. 0. / 0. 0. 0. / 0. 0. 0. 0. 0. 0. 0. / 0.7 0.7 0.8 / 0.8 0.9 0.9 = 0 0.7 0. 0.77 0.9 0. 0.780 0.7 0.0878 0.07 0.07 0.077 0.0 0.008 0.00 0.008 0.00 0.0007 0.000 0.97 0.887 0.77 0.78 0. 0.9 0.0 0. 0.9 0. 0. 0.09 0.09 0.00 0.0 0.078 0.009 0.00 0.00 0.0007 0.9978 0.98 0.97 0.977 0.90 0.80 0.7 0.80 0.7 0. 0. 0.8 0. 0.79 0.7 0.00 0.070 0.07 0.070 0.0087 0.009 0.00 0.9987 0.99 0.99 0.980 0.9 0.99 0.8999 0.88 0.808 0.77 0. 0.8 0.7 0.9 0.9 0.7 0.9 0.0989 0.0 0.07 0.09 0.00 0.999 0.998 0.99 0.989 0.98 0.9777 0.990 0.908 0.890 0.8 0.77 0.809 0.88 0.798 0. 0. 0. 0. 0. 0.08 0.999 0.998 0.998 0.999 0.997 0.98 0.97 0.9 0.9 0.9 0.88 0.80 0.779 0. 0.9 0.8 0.9 n = 7 0.0 0. 0. / 0. 0. 0. / 0. 0. 0. 0. 0. 0. 0. / 0.7 0.7 0.8 / 0.8 0.9 0.9 = 0 0.98 0.78 0.0 0.79 0.097 0. 0.08 0.08 0.090 0.080 0.0 0.0078 0.007 0.00 0.000 0.000 0.000 0.9 0.80 0.7 0.98 0.77 0.9 0.9 0. 0.8 0.8 0.0 0.0 0.07 0.088 0.0090 0.009 0.008 0.00 0.99 0.97 0.9 0.90 0.80 0.7 0.7 0.70 0. 0.99 0. 0. 0.9 0.09 0.0 0.0 0.088 0.09 0.007 0.000 0.00 0.000 0.997 0.9879 0.98 0.97 0.99 0.870 0.87 0.800 0.70 0.08 0.000 0.97 0.898 0.998 0.7 0.0 0.070 0.0 0.07 0.0 0.007 0.000 0.9988 0.9980 0.99 0.987 0.97 0.97 0.9 0.907 0.87 0.77 0.8 0.80 0.77 0.9 0.9 0. 0.80 0.098 0.078 0.07 0.008 0.9987 0.99 0.99 0.990 0.98 0.9 0.97 0.897 0.8 0.7 0.7 0.70 0. 0. 0.0 0.8 0.97 0.0 0.999 0.999 0.998 0.99 0.99 0.988 0.970 0.90 0.9 0.97 0.8 0.790 0.709 0.79 0.7 0.07 7 n = 8 0.0 0. 0. / 0. 0. 0. / 0. 0. 0. 0. 0. 0. 0. / 0.7 0.7 0.8 / 0.8 0.9 0.9 = 0 0. 0.0 0.7 0. 0.78 0.00 0.07 0.090 0.09 0.08 0.008 0.009 0.007 0.0007 0.000 0.000 0.98 0.8 0.7 0.07 0.0 0.7 0. 0.9 0.9 0.0 0.0 0.0 0.08 0.008 0.00 0.00 0.00 0.99 0.99 0.898 0.8 0.799 0.78 0.8 0.8 0.78 0. 0.0 0. 0.088 0.098 0.0 0.097 0.0 0.00 0.00 0.000 0.990 0.978 0.99 0.97 0.88 0.809 0.7 0.70 0.9 0.770 0. 0.0 0.77 0.0 0.0879 0.080 0.07 0.00 0.00 0.009 0.997 0.99 0.989 0.977 0.90 0.9 0.899 0.8 0.79 0.7 0.0 0.09 0.9 0.8 0.9 0.8 0.0 0.007 0.0 0.000 0.9988 0.998 0.9887 0.980 0.977 0.90 0.9 0.8 0.7799 0.8 0.7 0.8 0.8 0. 0.0 0.8 0.0 0.08 0.008 0.9987 0.997 0.99 0.99 0.989 0.98 0.98 0.89 0.809 0.809 0.77 0.9 0.97 0.9 0.8 0.89 0.07 7 0.999 0.998 0.99 0.99 0.98 0.98 0.90 0.9 0.8999 0.8 0.77 0.77 0.9 0. 8

CUMULATIVE BINOMIAL PROBABILITIES 0.9 0.000 0.008 0.07 0.98 0.9 0.000 0.0 0.08 0.0 0.9 0.000 0.00 0.09 0.8 0.9 0.9 0.008 0.00 0. 0. 0.9 0.00 0.08 0.070 0.9 0. 0.9 0.000 0.00 0.0 0.09 0.0 0.77 0.8 0.000 0.00 0.09 0.09 0.00 0.78 0.8 0.00 0.0099 0.000 0.798 0.7 0.80 0.8 0.0007 0.00 0.09 0.09 0. 0. 0.878 / 0.00 0.0090 0.080 0.78 0.7 0.80 / 0.00 0.0 0.097 0.8 0. 0.88 / 0.000 0.00 0.0079 0.0 0. 0. 0.87 0.8878 0.8 0.00 0.09 0.08 0.8 0.8 0.88 0.8 0.00 0.08 0.09 0. 0. 0.89 0.8 0.000 0.009 0.09 0.07 0.0 0.7 0.7 0.9 0.7 0.00 0.000 0.089 0.7 0.99 0.997 0.99 0.7 0.00 0.097 0.078 0. 0.7 0.70 0.97 0.7 0.008 0.0 0.0 0.7 0. 0.09 0.8 0.98 0.7 0.00 0.0 0.0988 0.70 0.7 0.800 0.99 0.7 0.00 0.00 0.07 0.0 0.0 0.7 0.807 0.978 0.7 0.000 0.007 0.009 0.08 0.78 0.7 0.07 0.77 0.90 0.98 / 0.000 0.008 0.0 0.8 0.97 0.8 0.89 0.970 / 0.00 0.097 0.07 0. 0.07 0.7009 0.890 0.987 / 0.000 0.009 0.088 0.0 0.777 0.8 0.09 0.889 0.90 0.99 0. 0.00 0.0 0.0 0.77 0.9 0.7 0.8789 0.979 0. 0.000 0.008 0.00 0.099 0.8 0.8 0.78 0.90 0.98 0. 0.0008 0.00 0.0 0.08 0.7 0.7 0. 0.887 0.97 0.99 0. 0.008 0.00 0.099 0. 0.7 0.78 0.99 0.9899 0. 0.007 0.0 0.08 0. 0.9 0.77 0.87 0.9 0.990 0. 0.008 0.0 0.07 0.8 0.8 0.8 0.777 0.9 0.980 0.9978 0. 0.0008 0.009 0.098 0.8 0.78 0.8 0.80 0.9 0.99 0. 0.00 0.07 0.00 0. 0.9 0.70 0.900 0.977 0.997 0. 0.00 0.0079 0.0 0.7 0.07 0.7 0.9 0.8 0.979 0.997 0.999 0. 0.000 0.09 0.0898 0.9 0.000 0.7 0.90 0.980 0.9980 0. 0.000 0.007 0.07 0.79 0.770 0.0 0.88 0.9 0.989 0.9990 0. 0.000 0.00 0.09 0.070 0.98 0.87 0.8 0.80 0.970 0.9807 0.998 0. 0.00 0.08 0.9 0. 0. 0.8 0.90 0.9909 0.999 0. 0.00 0.0 0.099 0.0 0.0 0.78 0.8980 0.97 0.99 0. 0.0008 0.008 0.0 0. 0.0 0.9 0.79 0.888 0.9 0.99 0.9989 0. 0.00 0.070 0.8 0.8 0.7 0.900 0.970 0.99 0. 0.000 0.0 0.7 0.8 0. 0.88 0.9 0.9877 0.998 0. 0.00 0.09 0.08 0. 0.8 0. 0.88 0.97 0.987 0.997 0. 0.007 0. 0.7 0.089 0.88 0.9 0.9888 0.998 0. 0.0 0.080 0. 0.8 0.7 0.90 0.970 0.99 0.999 0. 0.007 0.0 0. 0.7 0.8 0.787 0.9 0.97 0.99 0.999 / 0.00 0. 0.77 0.0 0.8 0.97 0.997 0.9990 / 0.07 0.00 0.99 0.9 0.789 0.9 0.980 0.99 / 0.0077 0.00 0.8 0.9 0. 0.8 0.9 0.98 0.99 0.999 0. 0.00 0.90 0.8 0.797 0.90 0.977 0.997 0. 0.08 0.9 0.88 0.9 0.897 0.97 0.989 0.998 0. 0.08 0.080 0.8 0.9 0.77 0.88 0.9 0.990 0.998 0. 0.07 0.00 0.007 0.8 0.9 0.9900 0.9987 0. 0.0 0.0 0. 0.779 0.99 0.980 0.99 0. 0.07 0.8 0.907 0.88 0.8 0.9 0.987 0.997 0. 0. 0. 0.78 0.9 0.980 0.999 0. 0.07 0.78 0.778 0.879 0.97 0.99 0.999 0. 0.087 0.79 0.8 0.79 0.97 0.980 0.99 0.999 / 0.98 0.7 0.87 0.90 0.990 0.9989 / 0. 0.8 0.77 0.90 0.98 0.997 / 0. 0.8 0.77 0.878 0.9 0.99 0.9987 0. 0. 0.99 0.89 0.9 0.99 0.999 0. 0.99 0. 0.80 0.900 0.990 0.998 0. 0. 0. 0.78 0.9078 0.97 0.99 0.999 0. 0.87 0.778 0.970 0.997 0.999 0. 0.87 0.7 0.998 0.987 0.998 0. 0.8 0.90 0.889 0.97 0.997 0.999 0.0 0.0 0.988 0.99 0.999 0.0 0.987 0.99 0.988 0.9990 0.0 0.0 0.88 0.980 0.9978 n = 9 = 0 7 8 9 n = 0 = 0 7 8 9 0 n = = 0 7 8 9 0

CUMULATIVE BINOMIAL PROBABILITIES 0.9 0.00 0.00 0.0 0. 0.9 0.0070 0.09 0.89 0.99 0.9 0.000 0.00 0.009 0.0 0.8 0. 0.77 0.9 0.000 0.00 0.070 0.08 0.08 0.8 0.87 0.8 0.00 0.0 0.07 0. 0. 0. 0.897 0.8 0.000 0.00 0.00 0.0 0.079 0.0 0.8 0.7 0.97 / 0.0007 0.00 0.09 0.090 0.97 0.0 0.700 0.9 / 0.00 0.00 0.078 0. 0.709 0. 0.778 0.99 0.8 0.00 0.0 0.09 0.98 0.08 0.9 0.80 0.90 0.8 0.000 0.00 0.0070 0.07 0.087 0.08 0.09 0.8 0.89 0.979 0.7 0.00 0.00 0.08 0.7 0.8 0.787 0.789 0.8990 0.98 0.7 0.00 0.007 0.07 0.079 0.897 0.98 0.90 0.809 0.9 0.9900 0.7 0.000 0.007 0.008 0.0 0.09 0.9 0.8 0.8 0.89 0.9 0.99 0.7 0.00 0.007 0.07 0.07 0.7 0.0 0.0 0.7 0.900 0.979 0.997 / 0.0007 0.000 0.07 0.07 0.9 0.0 0. 0.788 0.897 0.97 0.99 / 0.0008 0.000 0.09 0.000 0. 0. 0. 0.09 0.8 0.90 0.98 0.998 0. 0.00 0.000 0.0 0.07 0.8 0.9 0.77 0.779 0.9 0.979 0.997 0. 0.000 0.00 0.00 0.09 0.07 0.9 0.9 0.00 0.708 0.8 0.99 0.990 0.9990 0. 0.000 0.009 0.07 0.08 0.0 0.07 0. 0.707 0.877 0.90 0.999 0.999 0. 0.009 0.09 0.08 0. 0.89 0.78 0.7 0.8 0.99 0.987 0.997 0. 0.00 0.0 0.0 0.89 0.8 0.9 0.7 0.88 0.98 0.980 0.997 0. 0.000 0.00 0.09 0.08 0. 0.9 0.7 0.0 0.80 0.97 0.979 0.99 0.9990 0. 0.00 0.087 0.0898 0.0 0.9 0.07 0.7880 0.90 0.97 0.99 0.999 0. 0.00 0.00 0.08 0.0 0.7 0.08 0.98 0.778 0.899 0.9 0.989 0.9979 0. 0.000 0.009 0.070 0.0 0.7 0.7 0. 0.7 0.88 0.97 0.988 0.9978 0. 0.000 0.00 0.08 0.08 0.97 0.0 0.9 0.7 0.879 0.9 0.98 0.99 0.999 0. 0.0008 0.008 0.098 0. 0.79 0.89 0.9 0.899 0.97 0.98 0.99 0.999 0. 0.00 0.08 0.0 0. 0.88 0.7 0.7 0.877 0.97 0.9809 0.99 0.999 0. 0.00 0.00 0.089 0.0 0.7 0.0 0.8 0.97 0.977 0.990 0.9989 0. 0.000 0.0098 0.0 0.9 0.89 0.900 0.88 0.80 0.99 0.977 0.998 0.9987 / 0.00 0.07 0.0 0. 0.7 0.898 0.80 0.9 0.98 0.990 0.999 / 0.00 0.07 0.09 0.9 0.9 0.9 0.77 0.87 0.900 0.98 0.990 0.999 0. 0.008 0.07 0.08 0. 0.8 0.780 0.907 0.98 0.997 0.998 0. 0.00 0.0 0.099 0.9 0.99 0.98 0.87 0.9 0.97 0.999 0.998 0. 0.078 0.00 0.8 0. 0.7 0.888 0.97 0.9897 0.9978 0. 0.000 0.0 0.97 0.00 0.0 0.80 0.90 0.979 0.99 0.998 0. 0.00 0.979 0.8 0.98 0.870 0.9 0.988 0.997 0. 0.08 0.07 0.8 0.98 0.798 0.98 0.97 0.990 0.998 / 0.0779 0.90 0.79 0.80 0.90 0.9809 0.999 0.999 / 0.0 0.7 0.88 0.79 0.88 0.9 0.9899 0.9979 0. 0.08 0.7 0.79 0.8 0.9 0.988 0.9978 0. 0.07 0.89 0. 0.7899 0.909 0.97 0.99 0.9989 0. 0.88 0.8 0.8 0.99 0.9908 0.998 0. 0.8 0.7 0.789 0.9 0.980 0.997 0.999 0.0 0.877 0.870 0.999 0.998 0.0 0.0 0.808 0.97 0.990 0.999 n = = 0 7 8 9 0 n = = 0 7 8 9 0

CUMULATIVE BINOMIAL PROBABILITIES 0.9 0.000 0.00 0.009 0.08 0. 0.08 0.9 0.00 0.09 0.07 0. 0. 0.9 0.000 0.00 0.00 0.08 0.098 0. 0.97 0.899 0.9 0.00 0.0 0.0 0.0 0. 0.08 0.878 0.8 0.000 0.007 0.08 0.09 0.0 0.798 0.0 0.779 0.9 0.8 0.000 0.00 0.009 0.09 0.07 0.70 0. 0.9 0.8 0.9 / 0.000 0.00 0.00 0.00 0.0 0.8 0. 0.97 0.87 0.9 / 0.000 0.008 0.0 0.07 0.08 0. 0. 0.7 0.89 0.979 0.8 0.000 0.00 0.0 0.0 0.9 0.8 0.990 0.787 0.9009 0.980 0.8 0.000 0.00 0.000 0.0 0.087 0.98 0.70 0.88 0.799 0.908 0.988 0.7 0.000 0.00 0.00 0.09 0.09 0.90 0.8 0.8 0.9 0.87 0.90 0.99 0.7 0.000 0.009 0.09 0.009 0.08 0. 0.88 0.8 0.778 0.9087 0.977 0.998 0.7 0.00 0.00 0.00 0.09 0.07 0.78 0. 0.7 0.8 0.900 0.988 0.998 0.7 0.00 0.00 0.07 0.080 0. 0.77 0.90 0.8 0.7 0.899 0.9 0.99 0.999 / 0.009 0.0 0.0 0.07 0. 0.9 0.878 0.789 0.898 0.97 0.99 0.999 / 0.000 0.007 0.00 0.07 0.099 0.90 0.8 0.07 0.708 0.88 0.99 0.98 0.997 0. 0.00 0.00 0.0 0.097 0.9 0.77 0.09 0.0 0.8 0.97 0.97 0.99 0. 0.00 0.000 0.09 0.0 0.8 0.7 0.990 0.8 0.7 0.888 0.9 0.9879 0.9979 0. 0.000 0.00 0.008 0.00 0.07 0.7 0. 0. 0.7 0.79 0.908 0.97 0.998 0.9987 0. 0.00 0.00 0.00 0.0 0.7 0.7 0.0 0.8 0.700 0.87 0.990 0.980 0.99 0.999 0. 0.000 0.009 0.08 0.07 0.80 0.7 0. 0.08 0.77 0.89 0.989 0.9880 0.997 0. 0.00 0.00 0.0 0.080 0.08 0.9 0.08 0.87 0.780 0.870 0.97 0.98 0.99 0.999 0. 0.0007 0.008 0.0 0.08 0.89 0.0 0.07 0.97 0.797 0.88 0.99 0.98 0.99 0.999 0. 0.000 0.00 0.009 0.007 0.077 0. 0.7 0.9 0.88 0.78 0.88 0.9 0.979 0.99 0.9987 0. 0.00 0.00 0.0 0.077 0.8 0.9 0.778 0.77 0.870 0.9 0.987 0.99 0.9990 0. 0.009 0.089 0.0 0.99 0.0 0. 0.9 0.707 0.89 0.90 0.978 0.99 0.998 0. 0.00 0.008 0.08 0.09 0.088 0.7 0. 0.78 0.8 0.9 0.9797 0.99 0.9987 0. 0.000 0.00 0.00 0.00 0. 0.00 0.9 0.9 0.7 0.87 0.9 0.9790 0.99 0.998 0. 0.00 0.0 0.078 0.88 0.0 0.9 0.78 0.809 0.90 0.9788 0.998 0.998 0. 0.000 0.00 0.0 0.0 0.8 0. 0. 0.00 0.7 0.878 0.98 0.980 0.990 0.998 / 0.0007 0.008 0.0 0.07 0. 0. 0.08 0.777 0.89 0.97 0.98 0.99 0.999 / 0.00 0.07 0.00 0. 0.97 0.79 0. 0.809 0.908 0.9 0.9870 0.99 0.999 0. 0.00 0.0 0.000 0. 0.7 0. 0.77 0.89 0.90 0.9790 0.999 0.998 0. 0.0008 0.007 0.0 0.07 0.7 0. 0.080 0.77 0.887 0.90 0.989 0.999 0.9987 0. 0.00 0.09 0. 0.07 0.87 0.77 0.80 0.9 0.9807 0.99 0.9988 0. 0.00 0.0 0.09 0. 0.8 0.7 0.788 0.898 0.99 0.98 0.99 0.999 0. 0.080 0.099 0.7 0.00 0.7 0.87 0.987 0.987 0.997 0.999 0. 0.0 0.09 0.0 0. 0.9 0.80 0.9 0.979 0.9900 0.997 0.999 / 0.07 0.78 0.07 0.79 0.88 0.97 0.979 0.997 0.9989 / 0.0 0.0 0.87 0. 0.787 0.898 0.99 0.9887 0.997 0.999 0. 0.0 0. 0.797 0.70 0.879 0.98 0.988 0.997 0.999 0. 0.088 0.7 0.09 0.77 0.898 0.97 0.978 0.99 0.9987 0. 0.0 0.0 0.78 0.908 0.978 0.99 0.9988 0. 0. 0.97 0.79 0.870 0.98 0.9887 0.997 0.0 0.97 0.77 0.99 0.989 0.998 0.0 0.8 0.78 0.9 0.98 0.997 n = 8 = 0 7 8 9 0 7 8 n = 0 = 0 7 8 9 0 7 8 9 0

CUMULATIVE BINOMIAL PROBABILITIES 0.9 0.000 0.00 0.007 0.0 0.7 0.7 0.7 0.9 0.000 0.00 0.009 0.0 0.0980 0. 0.9 0.788 0.98 0.8 0.000 0.00 0.0080 0.0 0.09 0. 0.79 0.89 0.7 0.909 0.988 / 0.00 0.007 0.07 0.07 0.09 0.80 0.0 0.8 0.8 0.97 0.989 0.8 0.00 0.00 0.07 0.08 0.09 0.00 0.8 0.79 0.70 0.908 0.97 0.99 0.7 0.000 0.00 0.007 0.097 0.07 0.9 0.7 0.89 0.7 0.78 0.908 0.979 0.990 0.999 0.7 0.000 0.008 0.000 0.07 0.0 0.0978 0.89 0. 0.88 0.9 0.80 0.909 0.98 0.990 0.998 / 0.00 0.00 0.0 0.0 0.098 0.780 0.0 0. 0.97 0.778 0.8880 0.98 0.98 0.99 0.999 0. 0.000 0.0008 0.009 0.009 0.0 0.00 0. 0.88 0.97 0. 0.99 0.8 0.97 0.980 0.990 0.9979 0. 0.00 0.00 0.0 0.0 0.0778 0.8 0.77 0. 0.7 0.7 0.8 0.9 0.970 0.990 0.997 0. 0.00 0.008 0.07 0.00 0.090 0.87 0.0 0.7 0.7 0.77 0.80 0.9 0.97 0.99 0.9977 0.999 0. 0.000 0.000 0.007 0.0 0.09 0.8 0. 0.0 0.000 0.0 0.7878 0.88 0.9 0.978 0.997 0.9980 0.999 0. 0.000 0.00 0.008 0.08 0.09 0.0 0. 0.8 0. 0.97 0.87 0.900 0.90 0.98 0.99 0.998 0. 0.00 0.009 0.09 0.07 0. 0.7 0. 0.88 0.7 0.8 0.9 0.9 0.988 0.997 0.9988 0. 0.00 0.0097 0.00 0.08 0.7 0.0 0.8 0.0 0.77 0.87 0.99 0.97 0.9907 0.997 0.999 / 0.000 0.00 0.09 0.0 0.0 0. 0.70 0.7 0.9 0.80 0.908 0.98 0.98 0.99 0.998 0. 0.00 0.0090 0.0 0.090 0.9 0.07 0.8 0.79 0.80 0.90 0.98 0.98 0.990 0.998 0.999 0. 0.0008 0.0070 0.0 0.09 0.7 0.78 0. 0.7 0.80 0.987 0.970 0.989 0.99 0.999 0. 0.008 0.07 0.098 0.0 0.07 0.7 0.7800 0.8909 0.9 0.987 0.99 0.998 / 0.00 0.09 0.887 0.8 0.97 0.770 0.8908 0.9 0.98 0.99 0.9988 0. 0.07 0.09 0.7 0.7 0.8 0.88 0.90 0.97 0.990 0.9979 0.999 0. 0.078 0.7 0.7 0.7 0.900 0.9 0.990 0.9977 0.999 0.0 0.77 0. 0.879 0.99 0.998 0.9988 n = = 0 7 8 9 0 7 8 9 0

CUMULATIVE BINOMIAL PROBABILITIES 0.9 0.000 0.00 0.0 0.008 0.878 0. 0.78 0.9 0.000 0.000 0.0078 0.08 0.07 0.7 0. 0.88 0.8 0.97 0.8 0.000 0.0008 0.009 0.0097 0.078 0.098 0. 0.89 0.7 0.78 0.88 0.90 0.99 / 0.000 0.000 0.007 0.097 0.00 0.7 0. 0.8 0.77 0.70 0.897 0.970 0.998 0.8 0.000 0.00 0.009 0.0 0.0 0.87 0.9 0.90 0.7 0.78 0.877 0.98 0.989 0.9988 0.7 0.000 0.0008 0.007 0.008 0.0 0.007 0.07 0.9 0. 0.87 0.9 0.797 0.90 0.9 0.989 0.9980 0.7 0.000 0.000 0.00 0.00 0.09 0.00 0.08 0.9 0.9 0. 0.8 0.78 0.80 0.9 0.998 0.9907 0.9979 / 0.000 0.0007 0.00 0.007 0.088 0.0 0.0898 0.0 0.7 0. 0.8 0.70 0.8 0.9 0.9 0.9878 0.997 0.999 0. 0.00 0.00 0.0 0.00 0.0 0. 0.98 0. 0.9 0. 0.77 0.87 0.9 0.977 0.99 0.998 0. 0.000 0.009 0.008 0.0 0.08 0.097 0.7 0.8 0. 0.89 0.708 0.87 0.900 0.9 0.988 0.99 0.998 0. 0.00 0.000 0.08 0.0 0.07 0. 0.09 0. 0.97 0.08 0.77 0.80 0.90 0.988 0.9879 0.990 0.9989 0. 0.000 0.0007 0.00 0.008 0.0 0.09 0.00 0.808 0.9 0.78 0.7 0.7077 0.89 0.8998 0.90 0.978 0.999 0.997 0.999 0. 0.000 0.00 0.000 0.0 0.0 0.09 0.0 0.7 0.9 0.0 0.8 0.79 0.8 0.98 0.9 0.98 0.990 0.998 0. 0.00 0.007 0.07 0.0 0.090 0.7 0.9 0. 0.78 0.7 0.8 0.909 0.99 0.9788 0.997 0.997 0.999 0. 0.009 0.007 0.0 0.08 0.8 0.7 0.7 0.078 0.8 0.780 0.877 0.98 0.999 0.987 0.99 0.998 / 0.0007 0.00 0.0 0.0 0.088 0.8 0.80 0.7 0.88 0.79 0.80 0.90 0.9 0.98 0.998 0.997 0.999 0. 0.00 0.009 0.00 0.07 0.9 0.8 0. 0.888 0.70 0.807 0.9 0.999 0.98 0.99 0.9979 0.999 0. 0.000 0.000 0.00 0.07 0.0979 0.0 0.8 0. 0.7 0.80 0.89 0.99 0.978 0.998 0.997 0.999 0. 0.00 0.00 0.0 0.7 0. 0.7 0.070 0.708 0.87 0.989 0.97 0.990 0.999 0.999 / 0.00 0.09 0.08 0.9 0. 0. 0.77 0.88 0.99 0.980 0.99 0.9980 0.999 0. 0.007 0.080 0. 0.7 0. 0.70 0.87 0.90 0.97 0.990 0.997 0.999 0. 0.0 0.87 0. 0.7 0.8 0.98 0.97 0.99 0.9980 0.999 0.0 0. 0. 0.8 0.99 0.98 0.997 0.999 n = 0 = 0 7 8 9 0 7 8 9 0 7 8 9 0

CUMULATIVE POISSON PROBABILITIES P( Xø ) = e r= 0 r λ λ λ 0.0 0.0 0.0 0.0 0.0 0.0 0.07 0.08 0.09 = 0 0.9900 0.980 0.970 0.908 0.9 0.98 0.9 0.9 0.99 0.999 0.9988 0.998 0.9977 0.9970 0.99 λ 0.0 0.0 0.0 0.0 0.0 0.0 0.70 0.80 0.90 = 0 0.908 0.887 0.708 0.70 0.0 0.88 0.9 0.9 0.0 0.99 0.98 0.9 0.98 0.9098 0.878 0.8 0.8088 0.77 0.9989 0.99 0.99 0.98 0.979 0.99 0.9 0.97 0.999 0.998 0.99 0.99 0.9909 0.98 0.999 0.998 0.9977 λ.00.0.0.0.0.0.0.70.80.90 = 0 0.79 0.9 0.0 0.7 0. 0. 0.09 0.87 0. 0.9 0.78 0.990 0. 0.8 0.98 0.78 0.9 0.9 0.8 0.7 0.997 0.900 0.879 0.87 0.8 0.8088 0.78 0.77 0.70 0.707 0.980 0.97 0.9 0.99 0.9 0.9 0.9 0.908 0.89 0.877 0.99 0.99 0.99 0.989 0.987 0.98 0.97 0.970 0.9 0.99 0.999 0.9990 0.998 0.9978 0.998 0.99 0.990 0.990 0.989 0.988 0.999 0.999 0.9987 0.998 0.997 0.99 7 0.999 0.999 8 9 λ.00.0.0.0.0.0.0.70.80.90 = 0 0. 0. 0.08 0.00 0.0907 0.08 0.07 0.07 0.008 0.00 0.00 0.79 0. 0.09 0.08 0.87 0.7 0.87 0. 0. 0.77 0.9 0.7 0.90 0.97 0.8 0.8 0.9 0.9 0.0 0.87 0.88 0.89 0.799 0.7787 0.77 0.70 0.7 0.99 0.9 0.97 0.979 0.97 0.9 0.90 0.89 0.877 0.89 0.877 0.88 0.98 0.979 0.97 0.9700 0.9 0.980 0.90 0.9 0.99 0.98 0.99 0.99 0.99 0.990 0.988 0.988 0.988 0.979 0.97 0.97 7 0.9989 0.998 0.9980 0.997 0.997 0.998 0.997 0.99 0.999 0.990 8 0.999 0.999 0.999 0.9989 0.998 0.998 0.997 0.999 9 0.999 0.999 0.999 0 λ.00.0.0.0.0.0.0.70.80.90 = 0 0.098 0.00 0.008 0.09 0.0 0.00 0.07 0.07 0.0 0.00 0.99 0.87 0.7 0.8 0.8 0.9 0.7 0. 0.07 0.099 0. 0.0 0.799 0.9 0.97 0.08 0.07 0.8 0.89 0. 0.7 0.8 0.0 0.80 0.8 0. 0. 0.9 0.7 0. 0.8 0.798 0.780 0.7 0.7 0.7 0.70 0.87 0.78 0.8 0.9 0.907 0.89 0.889 0.870 0.87 0.8 0.80 0.8 0.800 0.9 0.9 0.9 0.990 0.9 0.97 0.97 0.98 0.909 0.899 7 0.988 0.988 0.98 0.980 0.979 0.97 0.99 0.98 0.999 0.9 8 0.99 0.99 0.99 0.99 0.997 0.990 0.988 0.98 0.980 0.98 9 0.9989 0.998 0.998 0.9978 0.997 0.997 0.990 0.99 0.99 0.99 0 0.999 0.999 0.999 0.9990 0.9987 0.998 0.998 0.9977 0.999 0.999 0.999 r!

CUMULATIVE POISSON PROBABILITIES λ.00.0.0.0.0.0.0.70.80.90 = 0 0.08 0.0 0.00 0.0 0.0 0.0 0.00 0.009 0.008 0.007 0.09 0.08 0.0780 0.079 0.0 0.0 0.0 0.08 0.077 0.09 0.8 0.8 0.0 0.97 0.8 0.7 0. 0. 0. 0. 0. 0. 0.9 0.77 0.9 0. 0.7 0.097 0.9 0.79 0.88 0.09 0.898 0.70 0. 0. 0. 0.9 0.7 0.8 0.78 0.79 0.7 0.77 0.799 0.709 0.88 0.8 0.0 0. 0.889 0.878 0.87 0.88 0.8 0.8 0.880 0.80 0.7908 0.777 7 0.989 0.97 0.9 0.990 0.9 0.9 0.909 0.890 0.887 0.879 8 0.978 0.97 0.97 0.98 0.9 0.997 0.99 0.997 0.9 0.98 9 0.999 0.990 0.9889 0.987 0.98 0.989 0.980 0.9778 0.979 0.977 0 0.997 0.99 0.999 0.99 0.99 0.99 0.99 0.990 0.989 0.9880 0.999 0.9989 0.998 0.998 0.9980 0.997 0.997 0.99 0.990 0.99 0.999 0.999 0.999 0.9990 0.9988 0.998 0.998 0.999 0.999 λ.00.0.00.0 7.00 7.0 8.00 8.0 9.00 9.0 = 0 0.007 0.00 0.00 0.00 0.000 0.000 0.00 0.0 0.07 0.0 0.007 0.007 0.000 0.009 0.00 0.0008 0.7 0.088 0.00 0.00 0.09 0.00 0.08 0.009 0.00 0.00 0.0 0.07 0. 0.8 0.088 0.09 0.0 0.00 0.0 0.09 0.0 0.7 0.8 0.7 0.70 0. 0.099 0.07 0.00 0.00 0.0 0.89 0.7 0.90 0.007 0. 0.9 0.9 0.7 0.088 0.7 0.80 0.0 0. 0.97 0.78 0. 0. 0.08 0.9 7 0.8 0.809 0.70 0.78 0.987 0. 0.0 0.8 0.9 0.87 8 0.99 0.89 0.87 0.79 0.79 0.0 0.9 0. 0.7 0.98 9 0.98 0.9 0.9 0.877 0.80 0.77 0.7 0.0 0.87 0.8 0 0.98 0.977 0.97 0.9 0.90 0.8 0.89 0.7 0.700 0. 0.99 0.9890 0.9799 0.9 0.97 0.908 0.888 0.887 0.800 0.70 0.9980 0.99 0.99 0.980 0.970 0.97 0.9 0.909 0.878 0.8 0.999 0.998 0.99 0.999 0.987 0.978 0.98 0.98 0.9 0.898 0.999 0.998 0.9970 0.99 0.9897 0.987 0.97 0.98 0.900 0.999 0.9988 0.997 0.99 0.998 0.98 0.9780 0.9 0.9990 0.9980 0.99 0.99 0.9889 0.98 7 0.999 0.998 0.9970 0.997 0.99 8 0.999 0.9987 0.997 0.997 9 0.999 0.9989 0.9980 0 0.999 7

CUMULATIVE POISSON PROBABILITIES λ 0.00.00.00.00.00.00.00 7.00 8.00 9.00 = 0 0.000 0.000 0.008 0.00 0.000 0.000 0.00 0.009 0.00 0.00 0.000 0.000 0.09 0.0 0.007 0.007 0.008 0.000 0.07 0.07 0.00 0.007 0.00 0.008 0.00 0.0007 0.000 0.0 0.078 0.08 0.09 0.0 0.007 0.000 0.00 0.000 0.000 7 0.0 0. 0.089 0.00 0.0 0.080 0.000 0.00 0.009 0.00 8 0.8 0.0 0.0 0.0998 0.0 0.07 0.00 0.0 0.007 0.009 9 0.79 0.0 0. 0.8 0.09 0.099 0.0 0.0 0.0 0.0089 0 0.80 0.99 0.7 0.7 0.77 0.8 0.077 0.09 0.00 0.08 0.98 0.79 0. 0. 0.00 0.88 0.70 0.087 0.09 0.07 0.79 0.887 0.70 0. 0.8 0.7 0.9 0.0 0.097 0.00 0.8 0.78 0.8 0.70 0. 0. 0.7 0.009 0. 0.098 0.9 0.80 0.770 0.7 0.70 0.7 0.7 0.808 0.08 0.97 0.9 0.907 0.8 0.7 0.9 0.8 0.7 0.7 0.87 0.8 0.970 0.9 0.8987 0.8 0.79 0. 0.0 0.77 0.7 0.90 7 0.987 0.978 0.970 0.890 0.87 0.789 0.9 0.0 0.8 0.78 8 0.998 0.98 0.9 0.90 0.88 0.89 0.7 0.0 0. 0.9 9 0.99 0.9907 0.9787 0.97 0.9 0.87 0.8 0.7 0.09 0.0 0 0.998 0.99 0.988 0.970 0.9 0.970 0.88 0.80 0.707 0.7 0.999 0.9977 0.999 0.989 0.97 0.99 0.908 0.8 0.799 0.7 0.9990 0.9970 0.99 0.98 0.97 0.98 0.907 0.8 0.79 0.999 0.998 0.990 0.9907 0.980 0.9 0.97 0.8989 0.890 0.999 0.9980 0.990 0.9888 0.9777 0.99 0.97 0.89 0.9990 0.997 0.998 0.989 0.978 0.9 0.99 0.999 0.9987 0.997 0.99 0.988 0.978 0.9 7 0.999 0.998 0.999 0.99 0.987 0.987 8 0.999 0.9978 0.990 0.9897 0.980 9 0.9989 0.997 0.99 0.988 0 0.999 0.998 0.997 0.990 0.999 0.998 0.990 0.9990 0.9978 0.999 0.9988 0.999 7 8 8

If Z has a normal distribution with mean 0 and variance, then, for each value of z, the table gives the value of Φ(z), where Φ(z) = P(Z z). For negative values of z, use Φ( z) = Φ(z). THE NORMAL DISTRIBUTION FUNCTION z 0 7 8 9 7 8 9 ADD 0.0 0.000 0.00 0.080 0.0 0.0 0.99 0.9 0.79 0.9 0.9 8 0 8 0. 0.98 0.8 0.78 0.7 0.7 0.9 0. 0.7 0.7 0.7 8 0 8 0. 0.79 0.8 0.87 0.90 0.98 0.987 0.0 0.0 0.0 0. 8 9 7 0. 0.79 0.7 0. 0.9 0. 0.8 0.0 0. 0.80 0.7 7 9 0 0. 0. 0.9 0.8 0. 0.700 0.7 0.77 0.808 0.8 0.879 7 8 9 0. 0.9 0.90 0.98 0.709 0.70 0.7088 0.7 0.77 0.790 0.7 7 0 7 0 7 0. 0.77 0.79 0.7 0.77 0.789 0.7 0.7 0.78 0.77 0.79 7 0 9 9 0.7 0.780 0.7 0.7 0.77 0.770 0.77 0.77 0.779 0.78 0.78 9 8 7 0.8 0.788 0.790 0.799 0.797 0.799 0.80 0.80 0.8078 0.80 0.8 8 9 0.9 0.89 0.88 0.8 0.88 0.8 0.889 0.8 0.80 0.8 0.889 8 0 8 0.0 0.8 0.88 0.8 0.88 0.808 0.8 0.8 0.877 0.899 0.8 7 9 9. 0.8 0.8 0.88 0.8708 0.879 0.879 0.8770 0.8790 0.880 0.880 8 0 8. 0.889 0.889 0.8888 0.8907 0.89 0.89 0.89 0.8980 0.8997 0.90 7 9 7. 0.90 0.909 0.90 0.908 0.9099 0.9 0.9 0.97 0.9 0.977 8 0. 0.99 0.907 0.9 0.9 0.9 0.9 0.979 0.99 0.90 0.99 7 8 0. 0.9 0.9 0.97 0.970 0.98 0.99 0.90 0.98 0.99 0.9 7 8 0. 0.9 0.9 0.97 0.98 0.99 0.90 0.9 0.9 0.9 0.9 7 8 9.7 0.9 0.9 0.97 0.98 0.99 0.999 0.908 0.9 0.9 0.9 7 8.8 0.9 0.99 0.9 0.9 0.97 0.978 0.98 0.99 0.999 0.970.9 0.97 0.979 0.97 0.97 0.978 0.97 0.970 0.97 0.97 0.977.0 0.977 0.9778 0.978 0.9788 0.979 0.9798 0.980 0.9808 0.98 0.987 0. 0.98 0.98 0.980 0.98 0.988 0.98 0.98 0.980 0.98 0.987 0. 0.98 0.98 0.988 0.987 0.987 0.9878 0.988 0.988 0.9887 0.9890 0. 0.989 0.989 0.9898 0.990 0.990 0.990 0.9909 0.99 0.99 0.99 0. 0.998 0.990 0.99 0.99 0.997 0.999 0.99 0.99 0.99 0.99 0 0. 0.998 0.990 0.99 0.99 0.99 0.99 0.998 0.999 0.99 0.99 0 0 0. 0.99 0.99 0.99 0.997 0.999 0.990 0.99 0.99 0.99 0.99 0 0 0 0.7 0.99 0.99 0.997 0.998 0.999 0.9970 0.997 0.997 0.997 0.997 0 0 0 0 0.8 0.997 0.997 0.997 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.998 0 0 0 0 0 0 0.9 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0.998 0 0 0 0 0 0 0 0 0 If Z has a normal distribution with mean 0 and variance, then, for each value of, the table gives the value of z such that P(Z z) =. Critical values for the normal distribution 0.7 0.90 0.9 0.97 0.99 0.99 0.997 0.999 0.999 z 0.7.8..90..7.807.090.9 9

CRITICAL VALUES FOR THE t-distribution If T has a t-distribution with ν degrees of freedom, then, for each air of values of and ν, the table gives the value of t such that: P(T t) =. 0.7 0.90 0.9 0.97 0.99 0.99 0.997 0.999 0.999 ν =.000.078..7.8. 7. 8.. 0.8.88.90.0.9 9.9.09..0 0.7.8..8..8 7. 0..9 0.7...77.77.0.98 7.7 8.0 0.77.7.0.7..0.77.89.89 0.78.0.9.7..707.7.08.99 7 0.7..89..998.99.09.78.08 8 0.70.97.80.0.89..8.0.0 9 0.70.8.8..8.0.90.97.78 0 0.700.7.8.8.7.9.8..87 0.97..79.0.78.0.97.0.7 0.9..78.79.8.0.8.90.8 0.9.0.77.0.0.0.7.8. 0.9..7...977..787.0 0.9..7..0.97.8.7.07 0.90.7.7.0.8.9..8.0 7 0.89..70.0.7.898...9 8 0.88.0.7.0..878.97.0.9 9 0.88.8.79.09.9.8.7.79.88 0 0.87..7.08.8.8...80 0.8..7.080.8.8..7.89 0.8..77.07.08.89.9.0.79 0.8.9.7.09.00.807.0.8.78 0.8.8.7.0.9.797.09.7.7 0.8..708.00.8.787.078.0.7 0.8..70.0.79.779.07..707 7 0.8..70.0.7.77.07..89 8 0.8..70.08.7.7.07.08.7 9 0.8..99.0..7.08.9.0 0 0.8.0.97.0.7.70.00.8. 0 0.8.0.8.0..70.97.07. 0 0.79.9.7.000.90.0.9..0 0 0.77.89.8.980.8.7.80.0.7 0.7.8..90..7.807.090.9 0