48 10 Vol.48 No.10 12 Õ 10 Ç 1273 1280 ACTA METALLURGICA SINICA Oct. 12 pp.1273 1280 Fe Ni ß UBM ¾ Ç 1) 1) 2) 2) 2) 1) 1) Đ ÛÅ Ü Û (½ ) Ç«, 110016 2) É Ä Ã Ê Û, É 214431 µ Ä Ä, Ñ ÐÀº Fe Ni Á Ð (UBM)» Ý. Ý Fe 2+ Þ Ì ½ÏÕÆ, Đ Å ÄÁ Ì µð Ì; º Ä º Á ÅßÈ, ¼È À UBM Å ; µ XRD TEM Ð Ñ ³ ; µ» Ò (ICP) ±, Ì À ÖÞ ÄÁ«Û Ñ, «Ý Ì Fe 3+ ¾»Ó», Â¾Æ Ô Fe 3+. É Fe Ni,, Á Ð (UBM), ÐÀº ÃÅ Ì TQ153.2 ÜÝ Ô A Ü Ì 0412 1961(12)10 1273 08 WAFER LEVEL ELECTRODEPOSION OF Fe Ni NOVEL UBM FILMS ZHANG Hao 1), WU Di 1), ZHANG Li 2), DUAN Zhenzhen 2), LAI Chi Ming 2), LIU Zhiquan 1) 1) Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 2) Jiangyin Changdian Advanced Packaging Co., Ltd., Jiangyin 214431 Correspondent: LIU Zhiquan, professor, Tel: (024)83970826, E-mail: zqliu@imr.ac.cn Supported by Major National Science and Technology Program of China (No.11ZX02602), National Basic Research Program of China (No.10CB631006) and Shenyang Science and Technology Project (No.F11 264 1 65) Manuscript received 12 04 25, in revised form 12 07 ABSTRACT Using customized wafer electroplating system, the electrodeposition process of Fe Ni under bump metallization (UBM) thin film has been developed by modified Watts bath. The major factors which can affect the Fe content in the final UBM films, including the concentration of Fe 2+, electrodeposition temperature and current density, were investigated systematically. The growth rate of Fe Ni film under different electroplating conditions was measured in order to provide a reference for actual production. The microstructure and morphology of obtained Fe Ni films were characterized by XRD and TEM. Multiple kinds of analytical methods including titration and inductive coupled plasma emission spectrometer(icp) were used to monitor the content change of bath component under working or storage conditions. Regulations were put forward to maintain the bath daily including the keeping of the main salt content and the inhibition of Fe 3+ concentration. KEY WORDS Fe Ni alloy, electrodeposition, under bump metallization (UBM), wafer level packaging Fe Ni ¼ Ê, ³Ï¼ Ó Á Ni. Ð Ï 60 ܹ ¾ÓÚÖ ¼, Ì Í Fe Ni * Ø ½ Ù 11ZX02602, Ø Ý» 10CB631006 Æ ½ F11 264 1 65 Đ È : 12 04 25, ĐÕÄÈ : 12 07 : º, Ð,, 1985 Ö, ÚÎ DOI: 10.3724/SP.J.1037.12.00229 «ÓԺ͹ Ò Ô ¼ [1,2], ÐºË Fe Ni ÔÓ ¼. Leith Å [3] Ë ĐÙ (Ni(NH 2 SO 3 ) 2 4H 2 O) Å (FeCl 2 4H 2 O) ½ Ð ß Fe ½ 5% 90%( Õ,  ) Fe Ni, Þ» Í Fe Ni ¹ Ñ. Koo Yoo [4] Í ph<0.3 ĐÓ Ð ² Fe Ni, Ú Å Ò¼¼ Fe ß Ä Ç Ê«, Í Fe Ni 60 Ø ³ÚÙ (3 MPa). Esmaili Å [2] Î Â Ö
1274 Ú 48 ÌÐ Cu/Ni 80 Fe À, à Fe Ni «nm, Ó Đ., ³ÔË, ÅεÎÇ Í Ð ÂÑ (under bump metallization, UBM)» Cu Ni Å Û, к ÝÐ ÆÓ¹ [5,6]. Đ È [7], ε UBM, Fe Ni UBM Ð ¼ ¼Å, ÎÏ ¼ É., Fe Ni UBM SnAgCu Ð ¼Ð À, Cu UBM SnAgCu Ð ÐÍ Ð [8].»Ú Ð ² Ð, Fe Ni UBM ½ÂÓÔ Ó, ¹Fe 50Ni( Õ, %,  )UBM SnAgCu Ð Õ ½ÂÍ Cu UBM SnAgCu Ð Õ ½ÂÍ ÎÐ [9]. µ Fe Ni ¾É ÚÆÍ, Đ NaCl ÞĐ Fe Ni Í «Ü Ó ß Fe Í»Ò (27.92% 72.41%) Å«[10]. ÍÉ Á ¼, à ÍÞ ÓÔ ÕÍ É,» Ö ÁÞ ( «Cl ), ÅÍ µ OH ÅÛ Â «Ó, Ó Ni µ Òù [11]. NaCl º¼ Cl, Na + º¼ Ô ÍÑÊÚ Ðºº Ç [12]., Þ NiCl 2 Ü NaCl ½ÁÞ Cl º¼Â, Ø ¹ Ni 2+ Ó µ¹ Ö Ú, ÑÁ ¼. 1 ÓĐÄ 1.1 Fe Ni Ð Å Ð 8 inch ÑÁ, Ò Fe Ni UBM Ð. È Fe 2+ ß ½ Fe ß Þ, Ì Õ µù 5 ², Ð 125 Ë Í. Õ Î, Ê «É Í Ã, ¹µÙ Ö ÝÓß Cu ĐÜ Æ Cu 8 inch ÑÁ, Ö½ 100 mm 65 mm, ¹µ ½ 6.5 10 3 mm 2, à8 inch UBM ÑÁ ± ÎÐ. µ½ ¹ÓÀ µ, È Ni(99.7%) Fe(99.95%) ß Ti, µý. Ð Ni µ ½ 9 10 4 mm 2, Fe µ ½ 0.9 10 4 mm 2, ¹ µ ƽ 6.5 100. 5%( Õ)HCl Ì Đ Ù (NiCO 3 2Ni(OH) 2 4H 2 O) ¹ Ñ ph ÙÜ 3.1 3.2. º 50 L, Ñ ¹ ½ 10 L, ½ 60 L, ÌÆ ̽ Û Ê. ± ²Í½ H 3 BO 3 15 25 g/l, NiSO 4 6H 2 O 100 1 g/l, NiCl 2 6H 2 O 10 15 g/l, C 6 H 8 O 6 1 3 g/l, FeSO 4 7H 2 O 45 g/l, C 7 H 4 NNaO 3 S 1 5 g/l, C 12 H 25 OSO 3 Na 0.1 1 g/l, ÞÐÛÏ ¼ ÔØ Ò. «µ ¼ ÞĐ (C 6 H 8 O 6 ) ¼, Å Í Þ ÐÛÏ ÌÆ, ÔÁ Fe 2+ É. 1.2 Æ Quantum 600 Ù (SEM) Þß Oxford Ô (EDS) Í, Ð É Â 10 mm 10 mm Đ, Ö, µã Ò EDS, Í ÕĐ. 1.3 Æ Í Å ¼ Ó (ICP) Î Ì Ò, ½ «ICP ÇÔ ( ŵ ¹ Þ). ½ Ü ÖÇ, Å ³ Optima 70 DV ICP Ü B Na ß., µ ß Å Fe 3+ Ü ÖÇ Ò. µ Ni 2+ EDTA ² ¹ ØÏ ½,»Đ¼ ½ÚÍ [13,14]. Fe 3+ I Õ Æ ¼, ĺ¼ I Fe 3+ Ò ¼, Íß I 2. Ë Ü Đ (Na 2 S 2 O 3 ) ² ¹ I 2, ½ÚÍ, ¼ ²»ÂÌ Í: 2Fe 3+ +2I = 2Fe 2+ +I 2 (1) I 2 +2Na 2 S 2 O 3 = Na 2 S 4 O 6 +2NaI (2) Í Fe 2+ Å, Ä Û Đ¼ ((NH 4 ) 2 S 2 O 8 ) È Å ½ Fe 3+ ( ¼ Ì ½ (NH 4 ) 2 S 2 O 8 +2Fe 2+ = 2Fe 3+ + (NH 4 ) 2 SO 4 +SO 2 4 ), Ë Na 2S 2 O 3 ² ¹ Ò. Å ² ¹ Ö Ä Ò². 1.4 ÎÀ Æ ½ Fe Ni UBM Æ É, É µþß Í ÔÎ, ¹µ½Æ Cu 8 inch ÑÁ. SYJ 0 CNC ÑÁÔ É³ÈŠɽ mm mm ÐÐ Đ, Æ Ã 10 mm Ð ËÛ 10 mm mm Û, à һÊ. 50, ph Ù 3.2, ÛÊ. Í, ËÛ, ± Õ ÐÍ. «Alpha Step IQ Ë, ½±. ½ MicroXAM ÓÆ Ë, ̽ ÏÌ. Ù 3 ²» Z ½» Ò S a, Z ½ Ù S a Ù. 1.5 Ö È ÙÊÐ Rigaku D/MAX 20 X Í (XRD) µ» Í Fe Ni Ò, ±
10 ¹ : Fe Ni UBM Ü 1275 Cu, Å Õ. É CuK α, ÑÐ 50 kv, ½ 100 ma, Í» 60. È «Fe ß Fe 75Ni Ç Fe ß Fe Ni Ð Ù (TEM) Ð, JEOL 2100 TEM ҹв. 2 ÓĐ Ë 2.1 ÛÀ ÀÍ Fe 2+ ÑÀÁ Æ Þ 1 ½» FeSO 4 7H 2 O Ü Â Í. Ð 1a c Å, Ç µ Fe ß ±Ð,» FeSO 4 7H 2 O Ü Â, Ç Ç Fe ß ÂÊ ÖÇ. Ç FeOH ad, º Ç Â ¹ Ò µ ²É Á Å ÂÔ ¼, Ë Ni 2+ Ê Îµº², ÅÎÇ Ç Ni 2+ Ê ¼ [15]. Ù, Í«Ü «Ç ÅÂ, Fe ß º ÖÇ, Fe ß Ç Ç Ê«,» 1a µ 45. ««Ü  ¾Åͽ¹µ µûï оÅ. Í ÅÂ, Fe 2+ εÎ, Ô¼, ¾Åµ µ ¼ Ò Ð ¼ Æ, ¹µ ¼ (a) 50 (b) 18 16 14 12 10 8 6 4 o C 45 o C 50 o C 55 o C 60 o C 45 35 25 15 o C 45 o C 50 o C 55 o C 60 o C 70 60 50 (c) o C 45 o C 50 o C 55 o C 60 o C 90 80 70 60 50 10 (d) 9 g/l 18 g/l 27 g/l 36 g/l 45 g/l 80 70 60 50 10 (e) 9 g/l 18 g/l 27 g/l 36 g/l 45 g/l Ø 1 º FeSO 4 7H 2 O Û Á Ì 45 35 25 15 10 5 (f) 9 g/l 18 g/l 27 g/l 36 g/l 45 g/l Fig.1 Changes of composition of Fe Ni film with current density at FeSO 4 7H 2 O concentrations of 9 g/l (a), 27 g/l (b), 45 g/l (c) and temperatures of (d), 50 (e), 60 (f)
1276 Ú 48 Fe 2+»Ô Å Û ±Ú Ò¹,, È Ý««Ü Å Fe ß ÂÊ. µ Í ¾ ÖÇεÀÊ. Þ [15 17], Í» Fe Ni Õ ÅÂ, Ô Ë Fe ß Ä Ê ÇµÙ, Ô Ý Fe ß ØÊ«ß Ç. Í, Ç Ç,» 1 Í. Ð 1d f Å, ÍΫÂ, Fe ß Í 3 10 4 A/mm 2 ÒÕͳÚÙ,» ÅÂÌ Í Í ÎÇÄ Ê. Ç, Í 3 10 4 A/mm 2 Ò, Fe ß Ç ß Ú ( 1f)., Fe 2+ Ü»³, Ç Å Í Í ß. ÇÜ Â, ¹µ  Fe 2+, Ç Å Fe 2+ Ô¼Ú, Å ¾Åµ ¹µÛÏ ÐÚ ÚÁ,,, Fe 2+ ß Î Ç Ú. Ð Ú Ï Å, ¾Å Ô Í½¹µÛÏ Ð¾Å, Ý Fe ß Ä Ê,» 1c 50 µ¼ Í. ÅÐ 1 Å,, µ Í ¾ Ï, 60  Р1 10 4 A/mm 2 Ü 3 10 4 A/mm 2 Å, Fe ß Ç 10% Ü %. º Å, µ Í ¾»Æ. ÍΫÂ, Fe Ê ¾Å Ð, Å Ni Ê Í Ï «±Ð, «Â µ Fe ß ¾ Ë., µ Fe ß ¾ ³² Fe 2+ Ô¼ Î, ¹µ µûï ¾Å Ð Fe ß Ã. Å, Ô Å¾ ¹µµ Fe 2+ Ni 2+ Í Ü ¹µ É,, Ö Ã µ µûï ¾, Ô µ Å µ Fe ß Ç«¾ à ÅÂ Ã Ê Ç Æ µ Ò. Û É Í, Í 3 10 4 A/mm 2  60 Fe 2+ Ü Í 1.8 9 g/l»ò Í ÖÇ. É ÚÎ [18 22], Í»Ô Ú ÕĐ ½Ï ²Å«, µá É Ú. 2.2 Ò Õ «ÙÊ 2 ƫŠÖÇ. Å, Í» Å ÅÂ, Æ Ç ÎÇÍÓÖÇ. ½ µ ¼ Ò [11],, ½ µ¹µ É Í Æ¾, ¹µ ¼ Ê Æ½,»Ã Æ. Õ È [23] Fe Ni ÍpH Ù (3 3.5) ÅÂ, ¹µ É ÍÎÇ (90% ). ÎĐ 2 ÌØÍ É Ô, Æ É½ (0.16 0.21) 10 4 µm min 1 (A/mm 2 ) 1. 1 ½ Z ½» S a Ú. Ú Ô, S a Ù½ 1.87 nm, Ç ½ 181.8 nm, Å» ÑÁ± Î. 3 Í «½ ( 2 10 4 A/mm 2, Å 5 min, Ü ½ g/l). 3» Ü» εÇ, «Í ÕÍ, Ú» Õ Ç Í»µ. Å Å, ÕÍ Ç «,» Ú, ¹ ÕÍ É, ¼» µ ;, ½¹Ë Ò³Ç ³«Õ, Í 0 nm ÕÒ., ÍÑÁ Ð Fe Ni Ñ, Ó Ø ÈÓ Đ. ÉÙ, «½ 4 ½ Ñ Fe ß. Â, Í Fe ß ½ 9% 56%»Ò, ½ fcc γ ¹, Ç 111 0. Å 0 Fe ß Á, 111 0 Thickness of deposit, m 5 1 min 3 min 5 min 4 7 min 9 min Fitted line 3 2 1 0 0.0 0.5 Ø 2 ÅßÈ Ì Fig.2 Growth rate of Fe Ni film as a function of electrodeposition time and current density 1 Å Ì Z ¼ ³ Ñ S a Ù Table 1 Z range and surface roughness S a of the deposit Area Z range, nm S a, nm 1 7.0 2.14 2 223.8 1.94 3 114.6 1.53 Average 181.8 1.87
10 ¹ : Fe Ni UBM Ü 1277 Intensity, a.u. Ø 3 Å ¼ Fig.3 Thickness distribution of typical deposit Mass fraction of Fe, % 69.67 67.66 60.82 55.98 51.66 49.82 44.08.78.25.18 9.25 110 111 0 Cu substrate 35 45 50 55 2, deg Ø 4 Ð Fe Þ ÕÆ Fig.4 Relationships between Fe concentrations and structure of Fe Ni films Fe ß Í Á, ¼ ¹ 111 0 Ñ. Ð Fe ß Ú 68% Å, ½ bcc α ¹, Ç 110. Ã, Æ, Ã α ¹ Ô µà»ñº Í, ³³ Ò TEM Ð ĐÆÓÉ. Í Fe ß ½ 56% 68%» Ò, ½ fcc/bcc ¹, XRD Í Åß 2 ¹ Ð «, Ç 111, 110 0 3 ². Ú Õ È [3,10,24] Fe Ni ¹ Í» ÖÇÎÜ. TEM Ð, Fe 75Ni Fe Ni Cu ± ÐÍ ÑºÎÀ, ½», Ç Î ½ Æ Æ Ñ, Æ ÑºØÚƽ nm. º ± 0 500 nm Fe 75Ni ± ν Æ Æ Ñ, Fe Ni Æ Ñ» Æ, ºÜÕ ÑºÀ Å Ñ, µ» 5a b Í, ½µ¼ Ñ. Å, Fe 75Ni ¹ Å Í, Í Å Æ Æ, Ù Ò É Ñ ¼ ½Æ Ñ ; Fe Ni Ø Å Í, ÐÍ Ñ, Í Å Ð, Ù Ò É Ñ ¼ ÖÎ Æ Ñº À ŠѺ Í. 5c d ½ 2 HRTEM, Cu/Fe Ni ÎÄ ². Ð Fe 75Ni HRTEM ( 5c), Ð Æ Æ Ñ, ѺØÚƽ nm; ºÍ Fe Ni HRTEM ( 5d), Ð ÖÍ nm Â Ø 5 Fe Ni Ñ ±Ö Fig.5 TEM bright field images of Fe 75Ni (a) and Fe Ni (b), as well as the HRTEM images of Fe 75Ni (c) and Fe Ni (d) (Insets in Figs.5a and b are the corresponding diffraction patterns)
1278 Ú 48 À ŠѺ. HRTEM Ð Ú Ó XRD Í. 2.3 Æ 6a ½ Í Ú, Å ÕĐ ICP. Â,, Ni Fe ß, ÎÇ ÜÍÓÖÇ. Â, µ Fe Ni ¹ Í. Â, ß, Ð µ Fe, Ni µ ε ½. ˵ÕĐ ØÍÎÄ, Ð. Ð É Û Ð Þ, ¼ À, Õ. 6a Fe Í ÕĐ ICP, Å Ú Đ., B Na Õ ICP Ò, ÚÆÍ, ÍÉ ÅÂ, B Na ß, µ½ 4.6 0.3 g/l, Â. Ò, Fe 3+ Ôͽ¾ Í Þ, Fe 3+ µ Fe Ni ¾ ÇÍ, Ð Fe 3+ Ü ÎÇ ¹ ph ÙÊ«2.5 Å, È Í Fe(OH) 3 Ê, ÃÊ Ê, º ² Í Ð Ò¼¼ Ç [25]. Ð 6b Å, Fe 3+ Ü ÎÇÄ Content of element in the bath, g/l Fe 3+ content in the plating tank, g/l 60 0 0. 0.25 0. 0.15 0.10 0.05 0.00 (a) Ni Fe salt (FeSO 4 7H 2 O) Fe B (ICP) Na (ICP) Fe (ICP) 0 5 10 15 25 35 Quantity of electricity, A h (b) 0 5 10 15 25 35 Quantity of electricity, A h Ø 6 Ì Ù Fe 3+ Þ Fig.6 Monitoring results of solution in the plating tank (a) and relationship between quantity of electricity and Fe 3+ content in the plating tank (b) Ê, Ø Ï, Fe 3+ Ü Ê«½. Á Ò, ÛÊ ² ÍFe 3+ Ü Ç., Ð Ø Ï Å, Fe µ¹, Ð Fe µ ÆÏ Å. ÎĐ ¼ ÏÌ Fe+2Fe 3+ =3Fe 2+ Ô, Ë Fe 2 Ë Fe 3+ ¼ ¼, º¹ Fe 3+ Ü»Ç, Ë Fe 3+»³ Fe ¼ ¼ º À, ³ Fe 3+ Ü Ê½µ«. ½, ²Þß Fe µ µ Ñ Ni, Fe µ ε, Ô Đ Ð Fe 3+ Ü, Å Fe., ÞĐ ½ Fe 2+, Å ³²½ Å Ó Fe 3+ ¹ Ò ¼, ÞĐÍ ¼ Í ÞĐ, à Á ͹µ к ÞĐ [25]., ÞĐ Ôµ Fe 3+ ß ±Ð, Á Ò, ÞĐ È Ï, ½ Åß, Öµ ÞĐ Ò¹. 8 A h 1 L, Õ, Fe 3+ Ü ½ 0.26 g/l. Fe 3+ content in the plating tank, g/l Fe 3+ content in the holding bath, g/l 0.3 0.2 0.1 (a) 0.0 0.00 0.01 0.02 0.03 0.04 0.05 Adition amount of ascorbic acid in 1 L plating bath, g 0.8 0.6 0.4 0.2 0.0 (b) 0 5 10 15 25 Holding time, d Ø 7 «Ý Fe 3+ Þ ÖÞ Fe 3+ Ä Fig.7 Relationship between addition amount of ascorbic acid and Fe 3+ content in the plating tank (a) and relationship between holding time and Fe 3+ content in the holding bath (b)
10 ¹ : Fe Ni UBM Ü 1279 ¹ 0.01 g ÞĐ, ÞĐ Fe 3+ ¼ÖÇ» 7a Í. Å, ¹ Ø 0.05 g/l Å, Fe 3+ ß ¹Ê½»Ô. à ½ ß²Ò, ÖÎ ÁÛÏ, ÖÍ Û Fe 3+ ß, É Þ Đ Fe 2+ ¼Ô¼ ͹ Fe 2+. Ö Ú, à ½ Ô Í ÞĐÜ ³ Á Í Á., Fe µ Ò, ¹ÛÊ ² Fe 3+. É, 1 L ¼ 5 g Fe µ Ò, ÛÊ Fe 3+ Ü ¹ Ê«½, Ê Fe ÍÆ. ÍÉ Á»ÔÈ Fe Ø Ï ¼,, É Ã ½Ö ³ ÒÛÊ ², à ̻¾ Ì Í, ³ Å Õ. Ð 6b Å, Fe 3+ Ü ³ÇÅÆ ½ 0.3 g/l, Fe ß Æ 3%, º «Ô Ó Fe Ni Fe 3+ ß Í 15% ÕÒ Òà Á, Í Ó Fe Ni, ÃÙ Ü ÇØ 50%. 7b ½ ß Fe 3+ Å. Â, ß Fe 3+ Ü ßŠƺ»³ Ç, Å ÆÖÇÏ ÍÓ, Fe 3+ Ü 0.032 g/l. Â, ( ÞĐ), ß ÆÅ, Fe 3+ Ü Ô Ú ¾ Á.,»ÖÆÅ Õ, Ö Â¼Ë Æ: Ä,»ß Ç º,»», Fe µ»¼ ; Å, Å, Ä Fe 3+ Ü ; ³,»Ú Fe 3+ Ü ÎÇ, ÞĐ Ë Fe Ò ²., ßĐ¹ Í Â½ 4.87 g/100 g H 2 O, ºÍ 50 ½ 11.39 g/ 100 g H 2 O,, Í ± ß Å Õż, ßĐ¹ È Í ph Ù Ô¼ ÂÊ. 2.4 ÚÏ ÎĐ Fe Ni Æ É Í, Ð UBM «ÐÍ 2 µm Å, ¾ UBM ÑÁ %, ÑÁ½ 8 inch Đ, º 50 L, 2 10 4 A/mm 2 ½, ßĐÑÁ ÛÏ Ö Æ½ 0. A h, ¹ A h ͵ 100 Đ 8 inch ÑÁ ; Å Ó¹»µ Í Òµ ½, Ü» Í 3% Â, ph Ù Í 3.2 3.3 Õ. ¾ÎĐ Ü Í Í ÖÇ, Û Ð Fe Ni µîµ µ Ñ Ü, Ø Á Ö. Ö Ú, ÍÆ Â, Ó Ï Å, Ô ¾ (» Ë ): ³ Í, Í ph Ù, µ¹ Í Ê Ñ Å. ¹ Ò «Í ε «É, ǵ Ï Ð Òß Æ ¹, Ï Ö Û É., Î Ü Â ß Ô Ë ÓÔ ¹Ð Á À¹ ; à ¹ Ò µ» Ð Á Ó Ê, Þ ÛÏ É ² (»Ç ± SEM, TEM XPS Å) Ð. 3 (1) Å Đ Å Fe Ni Í»Ô Í «Å«, ÑÁ» BGA Fe Ni UBM Ð. Fe 2+ Ü Ð Ñ Í Þ. ß Fe Í 5.38% 70.59% Ú»Ò Ò, Æ É½ (0.16 0.21) 10 4 µm min 1 (A/mm 2 ) 1. Ò Ù½ 1.87 nm, Ç ½ 181.8 nm, Ø ÉÙ. (2) Ñ Fe ß γ ¹ α ¹, Fe ß «56% Å, ½ßÎ γ ¹, Ð Fe ß Ú 68% Å, ½ßÎ α ¹. Ð Fe ß Í 56% 68% Õ Å, ½ fcc/bcc. Fe 75Ni Fe Ni Í Cu ± Î, ÐÍØÚÆ½ nm Æ Ñº. Fe Ni Í Ã Æ 0 500 nm, Æ Ñ» Æ, ºÜÕ Ñº Ö½ nm  À ŠѺ. (3) Ø A h» µ Á ÅÂ, ÓÔ Æ, Í ½ Ni 2+ 10%, Fe 2+ 12%. Å, ¾ÎĐÉ ÞĐ Fe 3+ ¼Ô¼ ͵ ÒÉŹ, Fe 3+ Ü ³ Đ Ð. Ø 16 A h Å, Fe 3+ Ü ³Ú, ƽ 0.3 g/l, īԾ Òà Á Ü. ÉÅ Í, Û Ñ µ µ ε, Ø Ô Ð Í. ÜÝ [1] O Donnell T, Wang N N, Kulkarni S, Meere R, Rhen F M F, Roy S, O Mathuna S C. J Magn Magn Mater, 10; 322: 1690 [2] Esmaili S, Bahrololoom M E, Kavanagh K L. Mater Charact, 11; 62: 4
1280 Ú 48 [3] Leith S D, Ramli S, Schwartz D T. J Electrochem Soc, 1999; 146: 1431 [4] Koo B, Yoo B. Surf Coat Technol, 10; 5: 7 [5] Zeng K, Tu K N. Mater Sci Eng, 02; R38: 55 [6] Yan Y F, Wang W L, Chen G F. Pb free Solders in SMT. Beijing: Publishing House of Electronics Industry, 10: 102 ( Đ, µ, Ë. ¾. Ò:, 10: 102) [7] Dariavach N, Callahan P, Liang J, Fournelle R. J Electron Mater, 06; 35: 1581 [8] Zhu Q S, Guo J J, Shang P J, Wang Z G, Shang J K. Adv Eng Mater, 10; 12: 497 [9] Guo J J, Zhang L, Xian A P, Shang J K. J Mater Sci Technol, 07; 23: 811 [10] Zhang H, Zhang L, Duan Z Z, Liu Z Q. Sci J Microelectron, 12; 2: 13 ( º,, ±, Û., 12; 2: 13) [11] Huang Z X, Wu C S. Theory of Electroplating. Beijing: China Machine Press, 1982: 5 ( ß, Ý. ±Ì. Ò: ², 1982: 5) [12] Chen T Y. Electroplating of Nickel Alloy. Beijing: Chemical Industry Press, 07: 18 (Ë. Ø. Ò: Ü, 07: 18) [13] Han P X. Environ Sci Technol, 06; 29: 42 (Ý Ü. Ø Ü½Ò, 06; 29: 42) [14] Chen T Y. Trouble Settlement and Actual Samples of Nickel Plating. Beijing: Chemical Industry Press, 10: 19 (Ë. Ø ± È. Ò: Ü, 10: 19) [15] Li P, Lu L, Liu T C, Sun K, Lu Z C, Lu Y P. J Funct Mater, 01; 38: 32 (³, À, Ì,, ÀÛÈ, ÀÅ. Ó, 01; 38: 32) [16] Liu T C, Lu Z C, Li D R, Lu Y P, Sun K, Zhou S X. J Univ Sci Technol Beijing, 06; 28: 298 ( Ì, ÀÛÈ, ³ ³, ÀÅ,, Ô. Ò ½Ù ÜÜ, 06; 28: 298) [17] Han Y, Wang P, Wang B Y, Qin Q X. Plat Finish, 1997; 19: 8 (Ý,,, ½«Å. Ó, 1997; 19: 8) [18] Tabakovic I, Inturi V, Thurn J, Kief M. Electrochim Acta, 10; 55: 6749 [19] Su X H, Qiang C W. Bull Mater Sci, 12; 35: 183 [] Rousse C, Fricoteaux P. J Mater Sci, 11; 46: 6046 [21] Grimmett D L, Schwartz M, Nobe K. J Electrochem Soc, 1993; 1: 973 [22] Kieling V C. Surf Coat Technol, 1997; 96: 135 [23] Li P, Liu T C, Sun K, Lu Y P, Lu Z C. Electroplat Finish, 05; 24: 6 (³, Ì,, ÀÅ, ÀÛÈ. ², 05; 24: 6) [24] Tabakovic I, Inturi V, Thurn J, Kief M. Electrochim Acta, 11; 56: 2616 [25] Chen T Y. Technological Foundation of Nickel Plating. Beijing: Chemical Industry Press, 11: 37 (Ë. Ø. Ò: Ü, 11: 37) ( Æ : )