WAFER LEVEL ELECTRODEPOSION OF Fe Ni NOVEL UBM FILMS

Σχετικά έγγραφα
ACTA MATHEMATICAE APPLICATAE SINICA Nov., ( µ ) ( (


STUDY ON CYCLIC OXIDATION RESISTANCE OF HIGH NIOBIUM CONTAINING TiAl BASE ALLOY WITH ERBIUM

Z L L L N b d g 5 * " # $ % $ ' $ % % % ) * + *, - %. / / + 3 / / / / + * 4 / / 1 " 5 % / 6, 7 # * $ 8 2. / / % 1 9 ; < ; = ; ; >? 8 3 " #


EFFECT OF HIGH MAGNETIC FIELD ON THE TRANSI- TION BEHAVIOR OF Cu RICH PARTICLES IN Cu 80%Pb HYPERMONOTECTIC ALLOY

P Œ ²μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. μ. ˆ ˆŸ Œˆ ˆŸ ˆ Š Œ ˆŸ Ÿ - ˆ ˆ ŠˆŒˆ Œ Œˆ ˆ œ ˆ Œ ˆ ŒˆŠ Œ -25

P Ò±,. Ï ± ˆ ˆŒˆ Š ƒ ˆŸ. Œ ƒ Œ ˆˆ γ-š Œˆ ƒ ƒˆ 23 ŒÔ. ² μ Ê ². Í μ ²Ó Ò Í É Ö ÒÌ ² μ, É μí±, μ²óï

UDC. An Integral Equation Problem With Shift of Several Complex Variables 厦门大学博硕士论文摘要库

PHOTOCATALYTIC PROPERTIES OF TiO 2 THIN FILMS PREPARED BY MICROARC OXIDATION AND DOPING ELECTROLYTES

RELATIONSHIP BETWEEN MECHANICAL PROPERTIES AND LAMELLAR ORIENTATION OF PST CRYSTALS IN Ti 45Al 8Nb ALLOY

1-6 Ð Ï Te (mass%) 0% 0.3% 0.5% 0.8% 1.0% 2.0% 2 Î 1 6

CORROSION BEHAVIOR OF X70 PIPELINE STEEL IN SIMULATED KU ERLE SOIL SOLUTION WITH CO 2

THE MICRO FABRICATING PROCESS AND ELECTRO- MAGNETIC PROPERTIES OF TWO KINDS OF Fe POWDERS WITH DIFFERENT GRAIN SIZES AND INTERNAL STRAINS

Œ.. ² μ,.. Œ ²μ, ƒ.. μ ±μ,. Ô Ô ², Œ.. ƒê Éμ, Œ.. Œ ² μ *

2011 Đ 3 Ñ ACTA METALLURGICA SINICA Mar pp

Preparation of Hydroxyapatite Coatings on Enamel by Electrochemical Technique

FRICTION AND WEAR PROPERTIES OF SURFACE PLASMA Cr W ALLOYING LAYER OF γ TiAl ALLOY

Θεωρία Συνόλων. Ενότητα: Διατακτικοί αριθμοί. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

Delta Inconel 718 δ» ¼

p din,j = p tot,j p stat = ρ 2 v2 j,

Ηυλοποίησ ητηςπαραπάνωκατηγορίαςβρίσ κεταισ τοναλγόριθμο º¾ºΗγραμμή

NUMERICAL SIMULATION OF KEYHOLE SHAPE AND TRANSFORMATION FROM PARTIAL TO OPEN STATES IN PLASMA ARC WELDING

M 2. T = 1 + κ 1. p = 1 + κ 1 ] κ. ρ = 1 + κ 1 ] 1. 2 κ + 1

MICROSTRUCTURE STABILITY IN A FULLY LAMELLAR HIGH Nb TiAl ALLOY AFTER LONG TERM THERMAL CYCLING

SYNTHESIS OF PLASTIC Zr BASED BULK METALLIC GLASS WITH CRYSTAL PHASE BY DIRECTIONAL SOLIDIFICATION

2 SFI

2 PbO 2. Pb 3 O 4 Sn. Ti/SnO 2 -Sb 2 O 4 -CF/PbO x SnO 2 -Sb PbO 2. Sn-Sb 1:1. 1 h. Sn:Sb=10:1. PbO 2 - CeO 2 PbO 2. [8] SnO 2 +Sb 2 O 4 _

AN RFID INDOOR LOCATION ALGORITHM BASED ON FUZZY NEURAL NETWORK MODEL. J. Sys. Sci. & Math. Scis. 34(12) (2014, 12),

EFFECT OF HAFNIUM CONTENT ON MORPHOLOGY EVOLUTION OF γ PRECIPITATES IN P/M Ni BASED SUPERALLOY

8Q5SAC) 8Q5SAC UV2Vis 8500 ( ) ; PHS23C ) ;721 ( ) :1 4. ;8Q5SAC : molπl ;Britton2Robinson Q5SAC BSA Britton2Robinson,

ˆ Œ ˆŸ Š ˆˆ ƒ Šˆ ƒ ƒ ˆ Šˆ ˆ ˆ Œ ˆ

P Ë ³μ,.. μ μ³μ²μ,.. ŠμÎ μ,.. μ μ,.. Š μ. ˆ œ ˆ Š Œˆ ŠˆŒ ƒ Œ Ÿ ˆŸ Š ˆ ˆ -ˆ ˆŠ

MICROSTRUCTURE AND MECHANICAL PROPERTIES OF 1500 MPa GRADE ULTRA HIGH STRENGTH LOW ALLOY STEEL

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

P É Ô Ô² 1,2,.. Ò± 1,.. ±μ 1,. ƒ. ±μ μ 1,.Š. ±μ μ 1, ˆ.. Ê Ò 1,.. Ê Ò 1 Œˆ ˆŸ. ² μ Ê ² μ Ì μ ÉÓ. É μ ±, Ì μé μ Ò É μ Ò ² μ Ö

Ó³ Ÿ , º 5(147).. 777Ä786. Œ ˆŠ ˆ ˆ Š ƒ Š ˆŒ. ˆ.. Š Öαμ,. ˆ. ÕÉÕ ±μ,.. ²Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

P Œ ²μ, ƒ.. μ ±μ,. ˆ. ˆ μ, Œ.. ƒê Éμ,. ƒ. ²μ,.. ³ É. ˆŒ ˆ Š ƒ Œ ˆ Ÿ ˆŸ 238 Uˆ 237 U, Œ ƒ Ÿ Š ˆˆ 238 U(γ,n) 237 U.

.. ƒ²μ É, Œ. Œ Ï,. Š. μé ±μ,..,.. ³ μ μ, ƒ.. ÒÌ

EFFECT OF WELDING PROCESSING PARAMETERS ON POROSITY FORMATION OF MILD STEEL TREATED BY CO 2 LASER DEEP PENETRATION WELDING

STRUCTURE AND MAGNETIC BEHAVIOR OF Zn 1 x Co x O CRYSTAL POWDERS PREPARED BY SOL GEL TECHNIQUE

v w = v = pr w v = v cos(v,w) = v w

Quantum dot sensitized solar cells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte

P ƒ.. Š ³ÒÏ,.. Š ³ÒÏ,.. ± ˆ ŒˆŠˆ Š ˆŠ

ØÖÓÒÓÑ ÈÖ Ø ÙÑ Ù Ò Ö Ò Ë Ð ØÛ ØØ Ö¹ ØÖÓÒÓÑ Íº Ù ÍÒ Ú Ö ØØ Ù ÙÖ ¹ Ò Ö ËÓÒÒ ÒÐ Ù Ñ Î ÖÐ Ù Ò Â Ö Ð ÙÒ ½ Û ÙÒ Ö ËÓÒÒ Ö Ò À ÑÑ Ð ÞÙ Ï ÒØ Ö Ò Ò Ö Ð Ò Ò Ò ÙÒ

Supporting information. An unusual bifunctional Tb-MOF for highly sensing of Ba 2+ ions and remarkable selectivities of CO 2 /N 2 and CO 2 /CH 4

ˆŒ œ ƒ ƒ ˆ ˆŸ ˆ Š ˆ 137 Cs Š ˆ Œ.

P μ,. Œμ α 1,. ²μ ± 1,.. ϱ Î, Ÿ. Ê Í± 2 Œˆ ˆ Œ Š Ÿ Š Ÿ ˆ ˆŒ ˆˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É

2011 Ð 5 ACTA MATHEMATICAE APPLICATAE SINICA May, ( MR(2000) ß Â 49J20; 47H10; 91A10

High order interpolation function for surface contact problem

P ƒ. μ μ², Œ.. ˆ μ,.. μ ± Î Š Ÿ ˆ Œ ˆŸ ˆ Ÿ Š ˆ. ² μ Ê ² μ Ò É Ì ± Ô± ³ É.

Ανώτερα Μαθηματικά ΙI

Θεωρία Συνόλων. Ενότητα: Επιλογής επόμενα. Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

MICROSTRUCTURE EVOLUTION OF HYPEREUTEC- TOID STEELS DURING WARM DEFORMATION II. Cementite Spheroidization and Effects of Al

Ó³ Ÿ , º 2(131).. 105Ä ƒ. ± Ï,.. ÊÉ ±μ,.. Šμ ² ±μ,.. Œ Ì ²μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

Blowup of regular solutions for radial relativistic Euler equations with damping

P ˆ.. ƒê ²μ 1,.. Œ ² ±μ 1,..Šμ Í,.. ʳ,.. μ μ 2. ˆ ˆŸ Š Š ˆ ƒ ˆŒ œ ƒ Œ ƒ ƒ Š-Š ˆ 10- Œ ˆ. ( ), Œμ ± Œμ ± 1 μ Ò É Ì μ²μ ±μ³ μ ÉÒ ±Êʳ ÒÌ μ μ

ØSrÚCa Mg 12Zn 4Al 0.3MnÜ

Αξιολόγηση Ημιαγώγιμων Υμενίων Σεληνιούχου Καδμίου Σε Υπόστρωμα Νικελίου Για Φωτοβολταϊκές Εφαρμογές

Š Ÿ Š Ÿ Ÿ ˆ Œ ˆŠ -280

EXPERIMENTAL RESEARCH ON MELTING SURFACE BEHAVIOR IN MOLD UNDER COMPOUND MAGNETIC FIELD

INFLUENCES OF PHASE PRECIPITATIONS OF TERNARY β Ti Mo Zr(Sn) ALLOYS ON YOUNG S MODULUS AND MECHANICAL PROPERTIES

Conductivity Logging for Thermal Spring Well

P Î,.. Š ²³Ò±μ, Œ.. Œ ϱ,.. ʳ ˆ ˆ ˆ ˆŸ ˆŠ Š Š ˆ Ÿ -200

Ó³ Ÿ , º 7(163).. 798Ä802 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. Ëμ μ. Î ± É ÉÊÉ ³..., Œμ ±

Protective Effect of Surface Coatings on Concrete

Rapid determination of soluble reactive silicate in seawater by flow injection analysis with spectrophotometric detection and its application

ˆ ˆ ˆ ˆˆ γ-ˆ ˆŸ ˆ Š Œ ˆ Œ œ Š ˆˆ

Ó³ Ÿ , º 7(163).. 737Ä741 ˆ ˆŠ ˆ ˆŠ Š ˆ. .. ² Ì μ,.. Œ ± μ,.. Œ ÉÕÏ ±,.. Œμ μ μ,. Œ. Ò, Œ.. ±μ. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

P ² ± μ. œ Š ƒ Š Ÿƒ ˆŸ Œ œ Œ ƒˆ. μ²μ μ Œ Ê μ μ ±μ Ë Í μ É Í ±μ ³μ²μ (RUSGRAV-13), Œμ ±, Õ Ó 2008.

Accumulation of Soil Arsenic by Panax notoginseng and Its Associated Health Risk

P ƒ Ê Î 1, 2,.. ƒê μ 1, 3,. ÉÓ±μ 2, O.M.ˆ μ 1,.. Œ É μë μ 1,.. μ μ 1,. ƒ. Ê±μ ± 1,.. ³ 1,.. ±Ê Éμ 1. ˆ ˆ ˆ ˆ Š ˆ Si- ˆ SiC- Š Š ˆ

Supporting Information

CONVECTION EFFECTS AND BANDING STRUCTURE FORMATION MECHANISM DURING DIRECTIONAL SOLIDIFICATION OF PERITECTIC ALLOYS I. Experimental Result

EFFECTS OF B ON THE MICROSTRUCTURE AND HYDROGEN RESISTANCE PERFORMANCE OF Fe Ni BASE ALLOY

Ó³ Ÿ , º 6(155).. 805Ä813 ˆ ˆŠ ˆ ˆŠ Š ˆ. ˆ.. ³ Ì μ, ƒ.. Š ³ÒÏ, ˆ.. Š Ö. Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê. Ÿ. ʲ ±μ ±

Σπανό Ιωάννη Α.Μ. 148

ΑΡΧΕΙΑ ΚΑΙ ΒΑΣΕΙΣ ΔΕΔΟΜΕΝΩΝ

, Litrrow. Maxwell. Helmholtz Fredholm, . 40 Maystre [4 ], Goray [5 ], Kleemann [6 ] PACC: 4210, 4110H

P ² Ì μ Š ˆ Œˆ Š Œ Œˆ. ² μ Ê ² Nuclear Instruments and Methods in Physics Research.

1 h, , CaCl 2. pelamis) 58.1%, (Headspace solid -phase microextraction and gas chromatography -mass spectrometry,hs -SPME - Vol. 15 No.

ˆ ˆŠ Œ ˆ ˆ Œ ƒ Ÿ Ä616 Š ˆŒ CMS LHC

Ó³ Ÿ , º 2(214).. 171Ä176. Š Œ œ ƒˆˆ ˆ ˆŠ

P ˆ.. Œμ ±μ ±μ,. ˆ. ˆ Ó±μ,.. Š ²μ

½ Τετραγωνίζω=κατασκευάζωκάτιίσουεμβαδούμεδοθέντετράγωνο. Δείτεκαιτην υποσημείωσηστηνπρότασηβ 14. ¾

Ó³ Ÿ º 3[120] Particles and Nuclei, Letters No. 3[120]

Š ˆ œ Ÿ ˆ œ Œ Œ ƒ ˆ Œ Œ LEPTA

Recent advances in coal to chemicals technology developed by SINOPEC

Table S1. Summary of data collections and structure refinements for crystals 1Rb-1h, 1Rb-2h, and 1Rb-4h.

A NEW ONE PARAMETER KINETICS MODEL OF DYNAMIC RECRYSTALLIZATION AND GRAIN SIZE PREDICATION

BEHAVIOUR AND MECHANISM OF STRAIN HARDEN- ING FOR DUAL PHASE STEEL DP1180 UNDER HIGH STRAIN RATE DEFORMATION

( ) , ) , ; kg 1) 80 % kg. Vol. 28,No. 1 Jan.,2006 RESOURCES SCIENCE : (2006) ,2 ,,,, ; ;

ƒ Š ˆ ˆ ˆˆ. ƒ. Ê ÖÏμ a,.. Š Ê,.. Šμ²μ ÊÉμ a, ƒ..œ ÍÒ a,. ƒ. Œμ²μ± μ a,.. ± a a Ñ Ò É ÉÊÉ Ö ÒÌ ² μ, Ê

ƒê,.. ± É,.. Ëμ μ. ˆŸ Œ ƒ ˆ ƒ Ÿ ˆ ˆˆ ˆ ˆ ˆ Šˆ- ˆŒŒ ˆ ƒ Œ ƒ ˆ. ² μ Ê ² ² ±É Î É μ

P ˆŸ ˆ Œ Œ ˆ Šˆ. Š ˆ œ ˆ -2Œ

Θεωρία Συνόλων. Ενότητα: Τα πάντα σύνολα; Γιάννης Μοσχοβάκης. Τμήμα Μαθηματικών

EFFECTS OF TEMPERATURE GRADIENT ON LAMEL- LAR ORIENTATIONS OF DIRECTIONAL SOLIDIFIED TiAl BASED ALLOY

EFFECTS OF Al Al 4 C 3 REFINER AND ULTRASONIC FIELD ON MICROSTRUCTURES OF PURE Mg

ˆ Œ ˆ Ÿ ˆ ˆŸ Ÿ - ˆ ˆ Šˆ Š ˆŸˆ

Preparation and Application of Amorphous Alloy Catalyst

Transcript:

48 10 Vol.48 No.10 12 Õ 10 Ç 1273 1280 ACTA METALLURGICA SINICA Oct. 12 pp.1273 1280 Fe Ni ß UBM ¾ Ç 1) 1) 2) 2) 2) 1) 1) Đ ÛÅ Ü Û (½ ) Ç«, 110016 2) É Ä Ã Ê Û, É 214431 µ Ä Ä, Ñ ÐÀº Fe Ni Á Ð (UBM)» Ý. Ý Fe 2+ Þ Ì ½ÏÕÆ, Đ Å ÄÁ Ì µð Ì; º Ä º Á ÅßÈ, ¼È À UBM Å ; µ XRD TEM Ð Ñ ³ ; µ» Ò (ICP) ±, Ì À ÖÞ ÄÁ«Û Ñ, «Ý Ì Fe 3+ ¾»Ó», Â¾Æ Ô Fe 3+. É Fe Ni,, Á Ð (UBM), ÐÀº ÃÅ Ì TQ153.2 ÜÝ Ô A Ü Ì 0412 1961(12)10 1273 08 WAFER LEVEL ELECTRODEPOSION OF Fe Ni NOVEL UBM FILMS ZHANG Hao 1), WU Di 1), ZHANG Li 2), DUAN Zhenzhen 2), LAI Chi Ming 2), LIU Zhiquan 1) 1) Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 2) Jiangyin Changdian Advanced Packaging Co., Ltd., Jiangyin 214431 Correspondent: LIU Zhiquan, professor, Tel: (024)83970826, E-mail: zqliu@imr.ac.cn Supported by Major National Science and Technology Program of China (No.11ZX02602), National Basic Research Program of China (No.10CB631006) and Shenyang Science and Technology Project (No.F11 264 1 65) Manuscript received 12 04 25, in revised form 12 07 ABSTRACT Using customized wafer electroplating system, the electrodeposition process of Fe Ni under bump metallization (UBM) thin film has been developed by modified Watts bath. The major factors which can affect the Fe content in the final UBM films, including the concentration of Fe 2+, electrodeposition temperature and current density, were investigated systematically. The growth rate of Fe Ni film under different electroplating conditions was measured in order to provide a reference for actual production. The microstructure and morphology of obtained Fe Ni films were characterized by XRD and TEM. Multiple kinds of analytical methods including titration and inductive coupled plasma emission spectrometer(icp) were used to monitor the content change of bath component under working or storage conditions. Regulations were put forward to maintain the bath daily including the keeping of the main salt content and the inhibition of Fe 3+ concentration. KEY WORDS Fe Ni alloy, electrodeposition, under bump metallization (UBM), wafer level packaging Fe Ni ¼ Ê, ³Ï¼ Ó Á Ni. Ð Ï 60 ܹ ¾ÓÚÖ ¼, Ì Í Fe Ni * Ø ½ Ù 11ZX02602, Ø Ý» 10CB631006 Æ ½ F11 264 1 65 Đ È : 12 04 25, ĐÕÄÈ : 12 07 : º, Ð,, 1985 Ö, ÚÎ DOI: 10.3724/SP.J.1037.12.00229 «ÓԺ͹ Ò Ô ¼ [1,2], ÐºË Fe Ni ÔÓ ¼. Leith Å [3] Ë ĐÙ (Ni(NH 2 SO 3 ) 2 4H 2 O) Å (FeCl 2 4H 2 O) ½ Ð ß Fe ½ 5% 90%( Õ,  ) Fe Ni, Þ» Í Fe Ni ¹ Ñ. Koo Yoo [4] Í ph<0.3 ĐÓ Ð ² Fe Ni, Ú Å Ò¼¼ Fe ß Ä Ç Ê«, Í Fe Ni 60 Ø ³ÚÙ (3 MPa). Esmaili Å [2] Î Â Ö

1274 Ú 48 ÌÐ Cu/Ni 80 Fe À, à Fe Ni «nm, Ó Đ., ³ÔË, ÅεÎÇ Í Ð ÂÑ (under bump metallization, UBM)» Cu Ni Å Û, к ÝÐ ÆÓ¹ [5,6]. Đ È [7], ε UBM, Fe Ni UBM Ð ¼ ¼Å, ÎÏ ¼ É., Fe Ni UBM SnAgCu Ð ¼Ð À, Cu UBM SnAgCu Ð ÐÍ Ð [8].»Ú Ð ² Ð, Fe Ni UBM ½ÂÓÔ Ó, ¹Fe 50Ni( Õ, %,  )UBM SnAgCu Ð Õ ½ÂÍ Cu UBM SnAgCu Ð Õ ½ÂÍ ÎÐ [9]. µ Fe Ni ¾É ÚÆÍ, Đ NaCl ÞĐ Fe Ni Í «Ü Ó ß Fe Í»Ò (27.92% 72.41%) Å«[10]. ÍÉ Á ¼, à ÍÞ ÓÔ ÕÍ É,» Ö ÁÞ ( «Cl ), ÅÍ µ OH ÅÛ Â «Ó, Ó Ni µ Òù [11]. NaCl º¼ Cl, Na + º¼ Ô ÍÑÊÚ Ðºº Ç [12]., Þ NiCl 2 Ü NaCl ½ÁÞ Cl º¼Â, Ø ¹ Ni 2+ Ó µ¹ Ö Ú, ÑÁ ¼. 1 ÓĐÄ 1.1 Fe Ni Ð Å Ð 8 inch ÑÁ, Ò Fe Ni UBM Ð. È Fe 2+ ß ½ Fe ß Þ, Ì Õ µù 5 ², Ð 125 Ë Í. Õ Î, Ê «É Í Ã, ¹µÙ Ö ÝÓß Cu ĐÜ Æ Cu 8 inch ÑÁ, Ö½ 100 mm 65 mm, ¹µ ½ 6.5 10 3 mm 2, à8 inch UBM ÑÁ ± ÎÐ. µ½ ¹ÓÀ µ, È Ni(99.7%) Fe(99.95%) ß Ti, µý. Ð Ni µ ½ 9 10 4 mm 2, Fe µ ½ 0.9 10 4 mm 2, ¹ µ ƽ 6.5 100. 5%( Õ)HCl Ì Đ Ù (NiCO 3 2Ni(OH) 2 4H 2 O) ¹ Ñ ph ÙÜ 3.1 3.2. º 50 L, Ñ ¹ ½ 10 L, ½ 60 L, ÌÆ ̽ Û Ê. ± ²Í½ H 3 BO 3 15 25 g/l, NiSO 4 6H 2 O 100 1 g/l, NiCl 2 6H 2 O 10 15 g/l, C 6 H 8 O 6 1 3 g/l, FeSO 4 7H 2 O 45 g/l, C 7 H 4 NNaO 3 S 1 5 g/l, C 12 H 25 OSO 3 Na 0.1 1 g/l, ÞÐÛÏ ¼ ÔØ Ò. «µ ¼ ÞĐ (C 6 H 8 O 6 ) ¼, Å Í Þ ÐÛÏ ÌÆ, ÔÁ Fe 2+ É. 1.2 Æ Quantum 600 Ù (SEM) Þß Oxford Ô (EDS) Í, Ð É Â 10 mm 10 mm Đ, Ö, µã Ò EDS, Í ÕĐ. 1.3 Æ Í Å ¼ Ó (ICP) Î Ì Ò, ½ «ICP ÇÔ ( ŵ ¹ Þ). ½ Ü ÖÇ, Å ³ Optima 70 DV ICP Ü B Na ß., µ ß Å Fe 3+ Ü ÖÇ Ò. µ Ni 2+ EDTA ² ¹ ØÏ ½,»Đ¼ ½ÚÍ [13,14]. Fe 3+ I Õ Æ ¼, ĺ¼ I Fe 3+ Ò ¼, Íß I 2. Ë Ü Đ (Na 2 S 2 O 3 ) ² ¹ I 2, ½ÚÍ, ¼ ²»ÂÌ Í: 2Fe 3+ +2I = 2Fe 2+ +I 2 (1) I 2 +2Na 2 S 2 O 3 = Na 2 S 4 O 6 +2NaI (2) Í Fe 2+ Å, Ä Û Đ¼ ((NH 4 ) 2 S 2 O 8 ) È Å ½ Fe 3+ ( ¼ Ì ½ (NH 4 ) 2 S 2 O 8 +2Fe 2+ = 2Fe 3+ + (NH 4 ) 2 SO 4 +SO 2 4 ), Ë Na 2S 2 O 3 ² ¹ Ò. Å ² ¹ Ö Ä Ò². 1.4 ÎÀ Æ ½ Fe Ni UBM Æ É, É µþß Í ÔÎ, ¹µ½Æ Cu 8 inch ÑÁ. SYJ 0 CNC ÑÁÔ É³ÈŠɽ mm mm ÐÐ Đ, Æ Ã 10 mm Ð ËÛ 10 mm mm Û, à һÊ. 50, ph Ù 3.2, ÛÊ. Í, ËÛ, ± Õ ÐÍ. «Alpha Step IQ Ë, ½±. ½ MicroXAM ÓÆ Ë, ̽ ÏÌ. Ù 3 ²» Z ½» Ò S a, Z ½ Ù S a Ù. 1.5 Ö È ÙÊÐ Rigaku D/MAX 20 X Í (XRD) µ» Í Fe Ni Ò, ±

10 ¹ : Fe Ni UBM Ü 1275 Cu, Å Õ. É CuK α, ÑÐ 50 kv, ½ 100 ma, Í» 60. È «Fe ß Fe 75Ni Ç Fe ß Fe Ni Ð Ù (TEM) Ð, JEOL 2100 TEM ҹв. 2 ÓĐ Ë 2.1 ÛÀ ÀÍ Fe 2+ ÑÀÁ Æ Þ 1 ½» FeSO 4 7H 2 O Ü Â Í. Ð 1a c Å, Ç µ Fe ß ±Ð,» FeSO 4 7H 2 O Ü Â, Ç Ç Fe ß ÂÊ ÖÇ. Ç FeOH ad, º Ç Â ¹ Ò µ ²É Á Å ÂÔ ¼, Ë Ni 2+ Ê Îµº², ÅÎÇ Ç Ni 2+ Ê ¼ [15]. Ù, Í«Ü «Ç ÅÂ, Fe ß º ÖÇ, Fe ß Ç Ç Ê«,» 1a µ 45. ««Ü  ¾Åͽ¹µ µûï оÅ. Í ÅÂ, Fe 2+ εÎ, Ô¼, ¾Åµ µ ¼ Ò Ð ¼ Æ, ¹µ ¼ (a) 50 (b) 18 16 14 12 10 8 6 4 o C 45 o C 50 o C 55 o C 60 o C 45 35 25 15 o C 45 o C 50 o C 55 o C 60 o C 70 60 50 (c) o C 45 o C 50 o C 55 o C 60 o C 90 80 70 60 50 10 (d) 9 g/l 18 g/l 27 g/l 36 g/l 45 g/l 80 70 60 50 10 (e) 9 g/l 18 g/l 27 g/l 36 g/l 45 g/l Ø 1 º FeSO 4 7H 2 O Û Á Ì 45 35 25 15 10 5 (f) 9 g/l 18 g/l 27 g/l 36 g/l 45 g/l Fig.1 Changes of composition of Fe Ni film with current density at FeSO 4 7H 2 O concentrations of 9 g/l (a), 27 g/l (b), 45 g/l (c) and temperatures of (d), 50 (e), 60 (f)

1276 Ú 48 Fe 2+»Ô Å Û ±Ú Ò¹,, È Ý««Ü Å Fe ß ÂÊ. µ Í ¾ ÖÇεÀÊ. Þ [15 17], Í» Fe Ni Õ ÅÂ, Ô Ë Fe ß Ä Ê ÇµÙ, Ô Ý Fe ß ØÊ«ß Ç. Í, Ç Ç,» 1 Í. Ð 1d f Å, ÍΫÂ, Fe ß Í 3 10 4 A/mm 2 ÒÕͳÚÙ,» ÅÂÌ Í Í ÎÇÄ Ê. Ç, Í 3 10 4 A/mm 2 Ò, Fe ß Ç ß Ú ( 1f)., Fe 2+ Ü»³, Ç Å Í Í ß. ÇÜ Â, ¹µ  Fe 2+, Ç Å Fe 2+ Ô¼Ú, Å ¾Åµ ¹µÛÏ ÐÚ ÚÁ,,, Fe 2+ ß Î Ç Ú. Ð Ú Ï Å, ¾Å Ô Í½¹µÛÏ Ð¾Å, Ý Fe ß Ä Ê,» 1c 50 µ¼ Í. ÅÐ 1 Å,, µ Í ¾ Ï, 60  Р1 10 4 A/mm 2 Ü 3 10 4 A/mm 2 Å, Fe ß Ç 10% Ü %. º Å, µ Í ¾»Æ. ÍΫÂ, Fe Ê ¾Å Ð, Å Ni Ê Í Ï «±Ð, «Â µ Fe ß ¾ Ë., µ Fe ß ¾ ³² Fe 2+ Ô¼ Î, ¹µ µûï ¾Å Ð Fe ß Ã. Å, Ô Å¾ ¹µµ Fe 2+ Ni 2+ Í Ü ¹µ É,, Ö Ã µ µûï ¾, Ô µ Å µ Fe ß Ç«¾ à ÅÂ Ã Ê Ç Æ µ Ò. Û É Í, Í 3 10 4 A/mm 2  60 Fe 2+ Ü Í 1.8 9 g/l»ò Í ÖÇ. É ÚÎ [18 22], Í»Ô Ú ÕĐ ½Ï ²Å«, µá É Ú. 2.2 Ò Õ «ÙÊ 2 ƫŠÖÇ. Å, Í» Å ÅÂ, Æ Ç ÎÇÍÓÖÇ. ½ µ ¼ Ò [11],, ½ µ¹µ É Í Æ¾, ¹µ ¼ Ê Æ½,»Ã Æ. Õ È [23] Fe Ni ÍpH Ù (3 3.5) ÅÂ, ¹µ É ÍÎÇ (90% ). ÎĐ 2 ÌØÍ É Ô, Æ É½ (0.16 0.21) 10 4 µm min 1 (A/mm 2 ) 1. 1 ½ Z ½» S a Ú. Ú Ô, S a Ù½ 1.87 nm, Ç ½ 181.8 nm, Å» ÑÁ± Î. 3 Í «½ ( 2 10 4 A/mm 2, Å 5 min, Ü ½ g/l). 3» Ü» εÇ, «Í ÕÍ, Ú» Õ Ç Í»µ. Å Å, ÕÍ Ç «,» Ú, ¹ ÕÍ É, ¼» µ ;, ½¹Ë Ò³Ç ³«Õ, Í 0 nm ÕÒ., ÍÑÁ Ð Fe Ni Ñ, Ó Ø ÈÓ Đ. ÉÙ, «½ 4 ½ Ñ Fe ß. Â, Í Fe ß ½ 9% 56%»Ò, ½ fcc γ ¹, Ç 111 0. Å 0 Fe ß Á, 111 0 Thickness of deposit, m 5 1 min 3 min 5 min 4 7 min 9 min Fitted line 3 2 1 0 0.0 0.5 Ø 2 ÅßÈ Ì Fig.2 Growth rate of Fe Ni film as a function of electrodeposition time and current density 1 Å Ì Z ¼ ³ Ñ S a Ù Table 1 Z range and surface roughness S a of the deposit Area Z range, nm S a, nm 1 7.0 2.14 2 223.8 1.94 3 114.6 1.53 Average 181.8 1.87

10 ¹ : Fe Ni UBM Ü 1277 Intensity, a.u. Ø 3 Å ¼ Fig.3 Thickness distribution of typical deposit Mass fraction of Fe, % 69.67 67.66 60.82 55.98 51.66 49.82 44.08.78.25.18 9.25 110 111 0 Cu substrate 35 45 50 55 2, deg Ø 4 Ð Fe Þ ÕÆ Fig.4 Relationships between Fe concentrations and structure of Fe Ni films Fe ß Í Á, ¼ ¹ 111 0 Ñ. Ð Fe ß Ú 68% Å, ½ bcc α ¹, Ç 110. Ã, Æ, Ã α ¹ Ô µà»ñº Í, ³³ Ò TEM Ð ĐÆÓÉ. Í Fe ß ½ 56% 68%» Ò, ½ fcc/bcc ¹, XRD Í Åß 2 ¹ Ð «, Ç 111, 110 0 3 ². Ú Õ È [3,10,24] Fe Ni ¹ Í» ÖÇÎÜ. TEM Ð, Fe 75Ni Fe Ni Cu ± ÐÍ ÑºÎÀ, ½», Ç Î ½ Æ Æ Ñ, Æ ÑºØÚƽ nm. º ± 0 500 nm Fe 75Ni ± ν Æ Æ Ñ, Fe Ni Æ Ñ» Æ, ºÜÕ ÑºÀ Å Ñ, µ» 5a b Í, ½µ¼ Ñ. Å, Fe 75Ni ¹ Å Í, Í Å Æ Æ, Ù Ò É Ñ ¼ ½Æ Ñ ; Fe Ni Ø Å Í, ÐÍ Ñ, Í Å Ð, Ù Ò É Ñ ¼ ÖÎ Æ Ñº À ŠѺ Í. 5c d ½ 2 HRTEM, Cu/Fe Ni ÎÄ ². Ð Fe 75Ni HRTEM ( 5c), Ð Æ Æ Ñ, ѺØÚƽ nm; ºÍ Fe Ni HRTEM ( 5d), Ð ÖÍ nm Â Ø 5 Fe Ni Ñ ±Ö Fig.5 TEM bright field images of Fe 75Ni (a) and Fe Ni (b), as well as the HRTEM images of Fe 75Ni (c) and Fe Ni (d) (Insets in Figs.5a and b are the corresponding diffraction patterns)

1278 Ú 48 À ŠѺ. HRTEM Ð Ú Ó XRD Í. 2.3 Æ 6a ½ Í Ú, Å ÕĐ ICP. Â,, Ni Fe ß, ÎÇ ÜÍÓÖÇ. Â, µ Fe Ni ¹ Í. Â, ß, Ð µ Fe, Ni µ ε ½. ˵ÕĐ ØÍÎÄ, Ð. Ð É Û Ð Þ, ¼ À, Õ. 6a Fe Í ÕĐ ICP, Å Ú Đ., B Na Õ ICP Ò, ÚÆÍ, ÍÉ ÅÂ, B Na ß, µ½ 4.6 0.3 g/l, Â. Ò, Fe 3+ Ôͽ¾ Í Þ, Fe 3+ µ Fe Ni ¾ ÇÍ, Ð Fe 3+ Ü ÎÇ ¹ ph ÙÊ«2.5 Å, È Í Fe(OH) 3 Ê, ÃÊ Ê, º ² Í Ð Ò¼¼ Ç [25]. Ð 6b Å, Fe 3+ Ü ÎÇÄ Content of element in the bath, g/l Fe 3+ content in the plating tank, g/l 60 0 0. 0.25 0. 0.15 0.10 0.05 0.00 (a) Ni Fe salt (FeSO 4 7H 2 O) Fe B (ICP) Na (ICP) Fe (ICP) 0 5 10 15 25 35 Quantity of electricity, A h (b) 0 5 10 15 25 35 Quantity of electricity, A h Ø 6 Ì Ù Fe 3+ Þ Fig.6 Monitoring results of solution in the plating tank (a) and relationship between quantity of electricity and Fe 3+ content in the plating tank (b) Ê, Ø Ï, Fe 3+ Ü Ê«½. Á Ò, ÛÊ ² ÍFe 3+ Ü Ç., Ð Ø Ï Å, Fe µ¹, Ð Fe µ ÆÏ Å. ÎĐ ¼ ÏÌ Fe+2Fe 3+ =3Fe 2+ Ô, Ë Fe 2 Ë Fe 3+ ¼ ¼, º¹ Fe 3+ Ü»Ç, Ë Fe 3+»³ Fe ¼ ¼ º À, ³ Fe 3+ Ü Ê½µ«. ½, ²Þß Fe µ µ Ñ Ni, Fe µ ε, Ô Đ Ð Fe 3+ Ü, Å Fe., ÞĐ ½ Fe 2+, Å ³²½ Å Ó Fe 3+ ¹ Ò ¼, ÞĐÍ ¼ Í ÞĐ, à Á ͹µ к ÞĐ [25]., ÞĐ Ôµ Fe 3+ ß ±Ð, Á Ò, ÞĐ È Ï, ½ Åß, Öµ ÞĐ Ò¹. 8 A h 1 L, Õ, Fe 3+ Ü ½ 0.26 g/l. Fe 3+ content in the plating tank, g/l Fe 3+ content in the holding bath, g/l 0.3 0.2 0.1 (a) 0.0 0.00 0.01 0.02 0.03 0.04 0.05 Adition amount of ascorbic acid in 1 L plating bath, g 0.8 0.6 0.4 0.2 0.0 (b) 0 5 10 15 25 Holding time, d Ø 7 «Ý Fe 3+ Þ ÖÞ Fe 3+ Ä Fig.7 Relationship between addition amount of ascorbic acid and Fe 3+ content in the plating tank (a) and relationship between holding time and Fe 3+ content in the holding bath (b)

10 ¹ : Fe Ni UBM Ü 1279 ¹ 0.01 g ÞĐ, ÞĐ Fe 3+ ¼ÖÇ» 7a Í. Å, ¹ Ø 0.05 g/l Å, Fe 3+ ß ¹Ê½»Ô. à ½ ß²Ò, ÖÎ ÁÛÏ, ÖÍ Û Fe 3+ ß, É Þ Đ Fe 2+ ¼Ô¼ ͹ Fe 2+. Ö Ú, à ½ Ô Í ÞĐÜ ³ Á Í Á., Fe µ Ò, ¹ÛÊ ² Fe 3+. É, 1 L ¼ 5 g Fe µ Ò, ÛÊ Fe 3+ Ü ¹ Ê«½, Ê Fe ÍÆ. ÍÉ Á»ÔÈ Fe Ø Ï ¼,, É Ã ½Ö ³ ÒÛÊ ², à ̻¾ Ì Í, ³ Å Õ. Ð 6b Å, Fe 3+ Ü ³ÇÅÆ ½ 0.3 g/l, Fe ß Æ 3%, º «Ô Ó Fe Ni Fe 3+ ß Í 15% ÕÒ Òà Á, Í Ó Fe Ni, ÃÙ Ü ÇØ 50%. 7b ½ ß Fe 3+ Å. Â, ß Fe 3+ Ü ßŠƺ»³ Ç, Å ÆÖÇÏ ÍÓ, Fe 3+ Ü 0.032 g/l. Â, ( ÞĐ), ß ÆÅ, Fe 3+ Ü Ô Ú ¾ Á.,»ÖÆÅ Õ, Ö Â¼Ë Æ: Ä,»ß Ç º,»», Fe µ»¼ ; Å, Å, Ä Fe 3+ Ü ; ³,»Ú Fe 3+ Ü ÎÇ, ÞĐ Ë Fe Ò ²., ßĐ¹ Í Â½ 4.87 g/100 g H 2 O, ºÍ 50 ½ 11.39 g/ 100 g H 2 O,, Í ± ß Å Õż, ßĐ¹ È Í ph Ù Ô¼ ÂÊ. 2.4 ÚÏ ÎĐ Fe Ni Æ É Í, Ð UBM «ÐÍ 2 µm Å, ¾ UBM ÑÁ %, ÑÁ½ 8 inch Đ, º 50 L, 2 10 4 A/mm 2 ½, ßĐÑÁ ÛÏ Ö Æ½ 0. A h, ¹ A h ͵ 100 Đ 8 inch ÑÁ ; Å Ó¹»µ Í Òµ ½, Ü» Í 3% Â, ph Ù Í 3.2 3.3 Õ. ¾ÎĐ Ü Í Í ÖÇ, Û Ð Fe Ni µîµ µ Ñ Ü, Ø Á Ö. Ö Ú, ÍÆ Â, Ó Ï Å, Ô ¾ (» Ë ): ³ Í, Í ph Ù, µ¹ Í Ê Ñ Å. ¹ Ò «Í ε «É, ǵ Ï Ð Òß Æ ¹, Ï Ö Û É., Î Ü Â ß Ô Ë ÓÔ ¹Ð Á À¹ ; à ¹ Ò µ» Ð Á Ó Ê, Þ ÛÏ É ² (»Ç ± SEM, TEM XPS Å) Ð. 3 (1) Å Đ Å Fe Ni Í»Ô Í «Å«, ÑÁ» BGA Fe Ni UBM Ð. Fe 2+ Ü Ð Ñ Í Þ. ß Fe Í 5.38% 70.59% Ú»Ò Ò, Æ É½ (0.16 0.21) 10 4 µm min 1 (A/mm 2 ) 1. Ò Ù½ 1.87 nm, Ç ½ 181.8 nm, Ø ÉÙ. (2) Ñ Fe ß γ ¹ α ¹, Fe ß «56% Å, ½ßÎ γ ¹, Ð Fe ß Ú 68% Å, ½ßÎ α ¹. Ð Fe ß Í 56% 68% Õ Å, ½ fcc/bcc. Fe 75Ni Fe Ni Í Cu ± Î, ÐÍØÚÆ½ nm Æ Ñº. Fe Ni Í Ã Æ 0 500 nm, Æ Ñ» Æ, ºÜÕ Ñº Ö½ nm  À ŠѺ. (3) Ø A h» µ Á ÅÂ, ÓÔ Æ, Í ½ Ni 2+ 10%, Fe 2+ 12%. Å, ¾ÎĐÉ ÞĐ Fe 3+ ¼Ô¼ ͵ ÒÉŹ, Fe 3+ Ü ³ Đ Ð. Ø 16 A h Å, Fe 3+ Ü ³Ú, ƽ 0.3 g/l, īԾ Òà Á Ü. ÉÅ Í, Û Ñ µ µ ε, Ø Ô Ð Í. ÜÝ [1] O Donnell T, Wang N N, Kulkarni S, Meere R, Rhen F M F, Roy S, O Mathuna S C. J Magn Magn Mater, 10; 322: 1690 [2] Esmaili S, Bahrololoom M E, Kavanagh K L. Mater Charact, 11; 62: 4

1280 Ú 48 [3] Leith S D, Ramli S, Schwartz D T. J Electrochem Soc, 1999; 146: 1431 [4] Koo B, Yoo B. Surf Coat Technol, 10; 5: 7 [5] Zeng K, Tu K N. Mater Sci Eng, 02; R38: 55 [6] Yan Y F, Wang W L, Chen G F. Pb free Solders in SMT. Beijing: Publishing House of Electronics Industry, 10: 102 ( Đ, µ, Ë. ¾. Ò:, 10: 102) [7] Dariavach N, Callahan P, Liang J, Fournelle R. J Electron Mater, 06; 35: 1581 [8] Zhu Q S, Guo J J, Shang P J, Wang Z G, Shang J K. Adv Eng Mater, 10; 12: 497 [9] Guo J J, Zhang L, Xian A P, Shang J K. J Mater Sci Technol, 07; 23: 811 [10] Zhang H, Zhang L, Duan Z Z, Liu Z Q. Sci J Microelectron, 12; 2: 13 ( º,, ±, Û., 12; 2: 13) [11] Huang Z X, Wu C S. Theory of Electroplating. Beijing: China Machine Press, 1982: 5 ( ß, Ý. ±Ì. Ò: ², 1982: 5) [12] Chen T Y. Electroplating of Nickel Alloy. Beijing: Chemical Industry Press, 07: 18 (Ë. Ø. Ò: Ü, 07: 18) [13] Han P X. Environ Sci Technol, 06; 29: 42 (Ý Ü. Ø Ü½Ò, 06; 29: 42) [14] Chen T Y. Trouble Settlement and Actual Samples of Nickel Plating. Beijing: Chemical Industry Press, 10: 19 (Ë. Ø ± È. Ò: Ü, 10: 19) [15] Li P, Lu L, Liu T C, Sun K, Lu Z C, Lu Y P. J Funct Mater, 01; 38: 32 (³, À, Ì,, ÀÛÈ, ÀÅ. Ó, 01; 38: 32) [16] Liu T C, Lu Z C, Li D R, Lu Y P, Sun K, Zhou S X. J Univ Sci Technol Beijing, 06; 28: 298 ( Ì, ÀÛÈ, ³ ³, ÀÅ,, Ô. Ò ½Ù ÜÜ, 06; 28: 298) [17] Han Y, Wang P, Wang B Y, Qin Q X. Plat Finish, 1997; 19: 8 (Ý,,, ½«Å. Ó, 1997; 19: 8) [18] Tabakovic I, Inturi V, Thurn J, Kief M. Electrochim Acta, 10; 55: 6749 [19] Su X H, Qiang C W. Bull Mater Sci, 12; 35: 183 [] Rousse C, Fricoteaux P. J Mater Sci, 11; 46: 6046 [21] Grimmett D L, Schwartz M, Nobe K. J Electrochem Soc, 1993; 1: 973 [22] Kieling V C. Surf Coat Technol, 1997; 96: 135 [23] Li P, Liu T C, Sun K, Lu Y P, Lu Z C. Electroplat Finish, 05; 24: 6 (³, Ì,, ÀÅ, ÀÛÈ. ², 05; 24: 6) [24] Tabakovic I, Inturi V, Thurn J, Kief M. Electrochim Acta, 11; 56: 2616 [25] Chen T Y. Technological Foundation of Nickel Plating. Beijing: Chemical Industry Press, 11: 37 (Ë. Ø. Ò: Ü, 11: 37) ( Æ : )